Debugging with STKDB

The STK Source-Level Debugger

First Edition, for STKDB version 1.0
July 2003

Paul N. Hilfinger




(Send bugs and comments on STKDB to Hilfinger@cs.berkeley.edu.)
Debugging with STKDB
TgEXinfo 2005-01-30.17

Copyright (©) 2003 Paul N. Hilfinger

387 Soda Hall, M.C. 1776
University of California
Berkeley, CA 94720-1776

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by
the Free Software Foundation; with the Invariant Sections being “Free Software” and “Free
Software Needs Free Documentation”, with the Front-Cover Texts being “A GNU Manual,”
and with the Back-Cover Texts as in (a) below.

(a) The Free Software Foundation’s Back-Cover Text is: “You have freedom to copy and
modify this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”



Summary of STKDB 1

Summary of STKDB

Generally speaking, a “debugger” is a program that allows its users to run, control, and
observe other programs in action for the purpose of diagnosing problems in these programs.
STKDB does this for Scheme programs written for the STK system. It is deliberately
designed to resemble the GNU debugger, GDB, which provides support for many languages,
including Ada, C, C++, Java, Fortran, and Modula~2.

STKDB provides a number of features that are common to most modern debuggers for
other languages as well. You can:

e Add (invisible) instrumentation to functions you have written so that you can track
them.

e Place breakpoints on expressions of your program, which cause STKDB to stop the
program when it evaluates those expressions.

e Step a program, evaluating one subexpression at a time and stopping after each one.

e Find out where a program has stopped, whether due to a breakpoint, an error, or an
interrupt (i.e., a C-c).

e Find out how the program arrived at a point where it has stopped—that is, to find
out what function call started the execution of the function body where the program
stopped, and in turn how that function call came to be evaluatued.

e Examine the variables of a stopped program—in fact, you can evaluate any Scheme
expression at the point where the program stopped.

STKDB is itself a Scheme program—a collection of function and variable definitions—
that runs on top of STK. It is loaded into STK like any other Scheme program. Once
loaded, it provides a function, stkdb:debug-file, which instruments and loads other files
full of Scheme definitions. Ordinarily, the functions loaded in this way behave like ordinary
Scheme functions. However, STKDB also provides a function, stkdb, that starts a special
read-evaluate-print loop (in other words, it acts as STK does normally, reading what you
type, evaluating it, and printing the result). This loop understands commands for perform-
ing special debugging functions, such as setting breakpoints, as well as the usual task of
evaluating expressions.

While you can use this simple command-line interface to talk to STKDB, you will proba-
bly find it much more convenient to use Emacs, which has special Scheme debugging support
that is integrated into the Scheme execution support already provided. Emacs provides

e Menu-based access to most STKDB commands.

e Fast key bindings (“accelerators”) for frequent operations.

e Simplified setting of breakpoints.

e Text highlighting to indicate points in your program where execution has stopped.

e And, of course, access to this documentation.

In the discussion that follows, we will show both the text-based and Emacs-based commands.



Debugging with STKDB



Chapter 1: Beginning a STKDB Session 3

1 Beginning a STKDB Session

STKDB uses the slib Scheme library; your STK system should first be configured to
“know” the location of the slib library. STKDB can then load the library, if necessary.
Once STK is properly configured, you can load STKDB into your STK session with the
commands

(load "DIR/stkdb.scm")

(import stk-debugger)
where DIR is the directory in which stkdb.scm is installed.

This is all much simpler in Emacs. Assuming you have properly installed the STKDB
Elisp file, stkdb.el, you need only issue the command M-x load-file DIR/stkdb.el
RET), or if DIR is on your Emacs load-path, then M-x load-library stkdb will
also work. Once you've done this, Emacs will set up a buffer running Scheme and with
STKDB properly loaded as soon as you use the “Debug File” menu command (or C-c d)
in a Scheme source buffer (see (undefined) [Preparing Files|, page (undefined)).

Normally, you won’t even bother to issue these load commands by hand, but will instead
include the line

(load "stkdb")

in your .emacs file.



Debugging with STKDB



Chapter 2: Preparing Files for Debugging 5)

2 Preparing Files for Debugging

In order to control the evaluation of a set of functions you want to examine, STKDB needs
to instrument them—that is, to add Scheme code to these functions before they are loaded.
The instrumentation is normally invisible to you (there are STK functions that allow you
to examine the internal definition of a function, but you’ll usually just go back to the source
file for that information instead, and STKDB doesn’t need to modify any source files).

stkdb:debug-file file [Function]
stkdb:debug-file instruments and loads the Scheme source file file. The file ar-
gument is a string. Only functions that have been loaded in this fashion can be
controlled by STKDB.

(stkdb:debug-file "probleml.scm")

The easy way to issue this command is from Emacs. There are several ways:

e C-c d while visiting a file containing Scheme code will create a Scheme buffer and start
the Scheme process, if necessary, and then instrument and load the source file. This
command also starts STKDB; you will see STKDB’s prompt in the Scheme buffer.

e The “Debug File” item in the Debugging menu that appears when visiting a buffer of
Scheme code does the same thing as C-c d.



Debugging with STKDB



Chapter 3: Activating the Debugger 7

3 Activating the Debugger

Once STKDB is loaded into a Scheme session running under Emacs (see (undefined) [Setting
Up|, page (undefined)) and you have loaded one or more files containing Scheme functions
you want to debug (see (undefined) [Preparing Files|, page (undefined)), the next step is to
activate the debugger so that it controls the evaluation of test cases you type. The Scheme
command (stkdb) puts your Scheme session into debugging mode; you tell that this mode
is active because your prompt will either end in [-] or [1], rather than the usual style of
prompt (which ends in >).

In debugging mode, an assortment of commands for manipulating and examining the
evaluation of your program become available. These are described in the sections that follow.
In addition to these commands, ordinary expression evaluation is available, as at the usual
STK prompt. Typically, you will enter debugging mode, type in a Scheme expression that
exercises some piece of program text you are trying to debug, possibly after first setting
up some breakpoints in that text. When something “interesting” happens, you will again
get a debugging prompt (usually ending in [1], which indicates that you are stopped in
the middle of an expression), and can then enter debugging commands. The command
reset (no parentheses needed) will exit from debugging mode, cancelling evaluation of any
expression you might be in the middle of.



Debugging with STKDB



Chapter 4: Stopping and Continuing 9

4 Stopping and Continuing

When in debugging mode, evaluation of an expression can be suspended and control given
back to you (indicated by a [1] prompt, generally) under several circumstances:

e The program evaluates an expression that has a breakpoint set on it.
e You ask STKDB to execute a single evaluation step, and that step completes.

e Scheme detects a run-time error in your program (e.g., performing a car on the value

nil).

4.1 Showing Where You’ve Stopped

Whenever STKDB stops your program during evaluation, it indicates where the stop has
occurred. If you are not using Emacs, the information consists of a file name and line
number, which is a bit clumsy to use. When run under Emacs, however, things are much
clearer. Emacs will show you a buffer containing file in which evaluation has stopped,
highlighting the precise expression at which you are stopped. This highlighting is color-
coded to indicate the reason for the stop:

e Green highlighting indicates an expression that is about to be evaluated. It results from
breakpoints (see (undefined) [Breakpoints], page (undefined)), steps (see (undefined)
[Stepping], page (undefined)), and interrupts (C-c C-c).

e Light blue highlighting indicates an expression that has just finished being evaluated.
The value just returned from that expression may be displayed in the Scheme execution
buffer, depending on how you got there. This kind of stop can result from stepping
or continuing a program with the finish command (see (undefined) [Continuing],
page (undefined)).

e Purple highlighting indicates an expression that is in the middle of being evaluated.
This is how the up command (see (undefined) [Viewing Callers], page (undefined))
indicates where a certain function was called.

e Red highlighting indicates an expression whose evaluation caused an error.

4.2 Setting and Clearing Breakpoints

A breakpoint is a point in program text at which to break off evaluation, returning control
to the programmer. What makes them interesting is that, unlike errors, it is then possible
to continue evaluation from the breakpoint.

In debugging mode (the [-] or [1] prompt), the command
break func

sets a breakpoint at the beginning of the code for function func (this is a command, not a
Scheme function call; there are no parentheses). You can only set breakpoints in functions
that have been instrumented first (see (undefined) [Preparing Files], page (undefined)). You
can use br or just b as shorthand for break. The command

break file:line
sets a breakpoint at line number line (numbering from 1) of file file.

As usual, it is much more convenient to use Emacs for setting breakpoints. When the
cursor is positioned at the line on which you want to break in a Scheme source buffer,



10 Debugging with STKDB

the Emacs command C-x SPC), or the “Set Breakpoint” menu command in the Debugging
menu, will set a breakpoint on the indicated line.

In response to these commands, STKDB will confirm with a breakpoint number, which
you can use subsequently to refer to the breakpoint. For example,

stk[-] br samplel.scm:200

Breakpoint 1 at samplel.scm:200

stk[-] break replace-all

Breakpoint 2 at samplel.scm:20
To remove breakpoints, use the command delete in debugging mode. This command allows
you to remove either specific breakpoints (by the numbers assigned by the break command)
or to remove all breakpoints:

stk[-] delete 12

Removing breakpoint 1

Removing breakpoint 2

stk[-] delete

Remove all breakpoints? [yn] y

Removing all breakpoints.
In Emacs, put the cursor on the line whose breakpoint you wish to remove and use the
“Clear Breakpoint” menu item, or use the “Clear All Breakpoints” menu item to delete
all breakpoints. In addition, re-loading a file under STKDB (as with C-c d) removes all
breakpoints on that file.

To see the current set of breakpoints set in your program, use the command
info break

in Scheme debugging mode.

4.3 Stopping Conditionally

Sometimes, you may have observed that there is a problem at some point in your program
that only occurs under certain infrequent circumstances (such as a list being null). Placing a
breakpoint at that point will force you to issue continue commands annoyingly many times
before you get to the problem. One way around this is to make the breakpoint conditional.
The command
condition bpnum expr
where bpnum is the number of an existing breakpoint and expr is a Scheme expression, will
cause STKDB to stop at the breakpoint only if expr evaluates to a true value. You may
abbreviate condition as cond. STKDB evaluates expr in the frame of the breakpointed
expression (see (undefined) [Viewing Values|, page (undefined)). To cancel the condition,
use
condition bpnum
(that is, without the conditional expression). In Emacs, the “Condition Breakpoint” menu
item will make the breakpoint at the cursor conditional, prompting for the condition in the
minibuffer (simply typing in response will deconditionalize the indicated breakpoint).
For example, suppose that a certain function is supposed to return a list of symbols, but
sometimes returns a list with a few scattered null lists as elements. The function constructs
this return value using an expression



Chapter 4: Stopping and Continuing 11

(cons (car L) rest)
You place a breakpoint on this line, to which STKDB responds:
Breakpoint 4 at glorp.scm:44
In order to filter the responses so that you look only at interesting cases, use the command
cond 4 (null? (car L))

Your program will then stop if L starts with a null list (or if L is not a pair, so that evaluating
car causes an error).

4.4 Stepping Through One Expression at a Time

Stepping a program means evaluating one subexpression at a time (just as a Scheme in-
terpreter would), stopping after each. This only makes sense when you are in the midst of
evaluating an expression in debugging mode and STKDB has stopped, presenting you with
a [1] prompt. At that point, you have the following choices:

e The command step (which may be abbreviated s) continues evaluation until it reaches
the next instrumented subexpression (that is, the next Scheme expression in a file
that you have loaded with stkdb:debug-file or equivalent key sequence). In Emacs,
simply use the key for this purpose.

e The command next (abbreviated n) continues evaluation until it completes the execu-
tion of the current subexpression and reaches the next one after that (or hits another
breakpoint). In Emacs, this is the key for this purpose.

To see the distinction between these two, let’s suppose that STKDB is stopped at the
expression (f (g 3)) below (in Emacs, that expression would be highlighted in green):

(define (g x) (+ x 3))
(define (f y) (x y 7))

(compute (f (g 3)) (h 1))

At this point, a step command moves to (g 3). Another step command moves to (+ x 3)
in the definition of g. A third returns us to (g 3), but highlighted in blue (assuming we are
using Emacs) to indicate that we have finished evaluating it. A fourth step takes us to (*
y 7) in the definition of £. A fifth returns us to (£ (g 3)) (in blue), and a sixth takes us
to (h 1).

If, on the other hand, we go back to where we started and use a next instead of step,
we go from (f (g 3)) immediately to (h 1), skipping the intermediate steps.

When using step, you can arrange to see the value of each subexpression you step
through. Use the debugging-mode command show values (the opposite is show novalues),
or turn on “Show All Returned Values” in the “Settings” submenu of the Debugging menu
under Emacs.

4.5 Tail Recursion and Debugging

In a Scheme program such as this:
(define (factorial n p)
(cond ((<=n 1) p) ;5 Breakpoint here
(else (factorial (- n 1) (* n p))))) ;; Line 3



12 Debugging with STKDB

it looks as evaluation of (factorial 15 1) ought to give backtraces like this:

[0] foo.scm:2 (factorial)
[1] foo.scm:3 (factorial)
[2] foo.scm:3 (factorial)
[3] foo.scm:3 (factorial)

But in fact, the actual backtrace will always have one line! This is because the call to
follows on line 4 is tail recursive. That is, follows returns the value of this recursive call
directly, without examining it or performing any other operations with it; the recursive call
is the very last action of follows.

The Scheme language actually requires that tail recursions such as this must be able
to run indefinitely, just like a loop in other languages. They are not allowed to require
increasing amounts of space just to keep track of the call chain. As a result, you’ll normally
see “truncated” backtraces like this in tail-recursive situations.

You'll also see that the next, step, and £inish commands work confusingly when dealing
with tail recursion. For example, if you were evaluating (factorial 5 1) and you are at
the expression (<=n 1) at the point that n is 1, any of these commands will simply print
120 (the final answer). You will not stop again at the call on line™3 (highlighted blue),
because all the intervening recursive calls that got you to the point where n is”1 will have
been “forgotten.”

This behavior can be confusing. If so, STKDB gives you a way to “cheat.” In Emacs,
simply turn on the the “Keep Tail Recursion” flag in the “Settings” submenu of the De-
bugging menu, and then reload the files you’re interested in with C-c d, as usual. You must
reload them after changing the value of this flag in order to have an effect. In this mode,
STKDB will treat tail recursions like general recursions. Of course, your program will now
“blow up” by exhausting memory in some cases where it wouldn’t have before, so you can’t
expect to be able to do any really long evaluations.

4.6 Resuming Normal Execution

To allow evaluation to proceed to the next breakpoint (or error), use the command continue
(abbreviated cont or c). In Emacs, this is the key.

It is sometimes useful to finish evaluation of the current function, and then stop again,
showing the value computed. The finish command (abbreviated f) does this. In Emacs,
this is the key. This command leaves us at the call whose body we were just executing
(highlighted in blue under Emacs).

For example, suppose we have called (printem foo), where:

(define (printem LL)
(if (not (null? LL))
(begin (print L) (printem (cdr LL)))))

(define (print L)
(display "[")
(let loop ((x L))

(if (aull? x)



Chapter 4: Stopping and Continuing 13

(display "1")
(begin
(display (car x)) ;3 << STOPPED HERE
(if (not (null? (cdr x))) (display ",™))
(Loop (cdr x))))))
and our program is stopped in print on the indicated line. The finish command will

continue the program until we finish printing the current list and return to printem; the
expression (print L) will be highlighted in blue.



14

Debugging with STKDB



Chapter 5: Examining the Evaluation State 15

5 Examining the Evaluation State

While your program has stopped, there are basically two sorts of things you’ll need to do:

e Figure you why evaluation got to this particular expression. In part, this usually
means figuring out what function call elsewhere in your program caused evaluation of
the function containing this expression.

e Observe the values of the local variables and parameters at the point in the program
where you’ve stopped.

5.1 BackTraces and the Call Chain

In debugging mode, the command bt (or where or backtrace) prints a backtrace of the
current state of evaluation. If you are running in an Emacs scheme buffer, the menu item
“Backtrace” displays the output of a backtrace in a separate buffer.

A backtrace is an account of how the current expression (the one you're stopped at)
came to be evaluated. To see what this involves, consider the following program:

;3 This is file count.scm, line 1
(define (count-tips tree)
(if (pair? tree)
(count-kids-tips (cdr tree)) ;; line 4
1))
(define (count-kids-tips kids)
(if (null? kids) O
(+
(count-tips (car kids)) ;5 line 9 << BREAKPOINT HERE
(count-kids-tips (cdr kids)))))

where we have set a breakpoint at the indicated location, are in the process of evaluating

(count-tips ’(martin
(marty (sally tommy matt) (heidi taylor))
(donald peter (melinda jessica))
(george paul ann (john dana))))

and have stopped a few times at the breakpoint, so that, let’s say, we are at the point in
the program where kids is (tommy matt). Asking for a backtrace will get us this:

*x[0] /tmp/count.scm:9 (count-kids-tips)

[1]
[2]
(3]
[4]
(5]

/tmp/count.
/tmp/count.
/tmp/count.
/tmp/count.
/tmp/count.

sScm
sScm
sScm
scm
scm

:4 (count-tips)
:9 (count-kids-tips)
:4 (count-tips)
:9 (count-kids-tips)
:4 (count-tips)

Translation: we are now at line 9 in count.scm, which is in count-kids-tips; we’re there
because we were called from line 4, which is in count-tips; we got there by being called
from line 9 in count-kids-tips, etc. If the debugger were perfect, there would be a line
[6] that said that we were in count-tips because we got called from the (count-tips
> (martin...)) line that the user typed. Sorry; it’s not perfect.



16 Debugging with STKDB

We say that each line in the backtrace denotes a frame, basically an instance of the
evaluation of a function. Frame number~0 is known as the innermost frame. The asterisk
marks the current frame, i.e., the one the debugger is examining at the moment. One can
also look at the other frames; See (undefined) [Viewing Callers|, page (undefined). The
highlighted expression that Emacs shows you when you stop is the expression within the
innermost frame that is currently being evaluated. We'll refer to this point (somewhat
archaically) as the program counter of the frame.

In Emacs, a copy of the backtrace gets put in a separate buffer. You can arrange to
have it reproduced automatically each time the program stops at a breakpoint or step by
turning on “Auto-Display Backtrace” in the “Settings” submenu of the Debugging menu.

5.2 Looking at Other Frames

A backtrace (see (undefined) [Backtraces|, page (undefined)) gives you a rough idea of the
overall program state. For more details, you can examine the stack frames in detail. In
debugging mode, the command up will increment the current frame number by one, so that
we are looking at what is called the caller of what used to be the current frame. In Emacs,
this is or “View Caller” in the Debugging menu. Emacs will highlight the expression
at the program counter of this new current frame—typically a function call—in purple,
indicating that it is not the innermost frame. At this point, you can examine the variables
in that frame (see (undefined) [Viewing Values|, page (undefined)).

The inverse operation to up is (of course) down (d), or in Emacs or “View Callee”
in the Debugging menu. In addition, the command frame n (or fr n), immediately makes
frame number n the current frame, so that frame 0 returns immediately to the innermost
frame.

Changing the current frame has no effect on the commands that step or continue the
program. In effect, we always step or continue from the innermost frame.

5.3 Looking at Variables and Parameters

At any time, the environment associated with the current frame—that is, the values of all
variables and parameters that are visible at that point in the program—is also available
to the debugger. In debugging mode, you can print the value of any Scheme expression,
EXPR, with the command print EXPR (and you may abbreviate print as pr or p). If the
syntax of EXPR does not conflict with that of any debugging command (i.e, if you are not
trying to evaluate a simple variable with a name like next, c, etc.), then can you leave off
the print, just as you would in an ordinary interactive Scheme session.

The debugging-mode command info locals (Debugging menu item “See Local Vari-
ables”) will print the “local variables” of the current frame. This is basically the set of all
parameters and let-bound variables defined with the function associated with the current
frame.

By combining printing with the use of the up and down commands (see (undefined)
[Viewing Callers|, page (undefined)), you can look at most of the variables relevant to your
program while it is stopped. Reusing an example from elsewhere, consider:

;; This is file count.scm, line 1
(define (count-tips tree)



Chapter 5: Examining the Evaluation State

(if (pair? tree)
(count-kids-tips (cdr tree)) ;; line 4

1)

(define (count-kids-tips kids)
(if (null? kids) O

(+

(count-tips (car kids)) ;;
(count-kids-tips (cdr kids)))))

where we are evaluating

(count-tips ’(martin
(marty (sally tommy matt) (heidi taylor))
(donald peter (melinda jessica))
(george paul ann (john dana))))

line 9 << BREAKPOINT HERE

and are stopped at the indicated breakpoint with the following backtrace:

*[0]
[1]
[2]
(3]
(4]
(5]

/tmp/count.
/tmp/count.
/tmp/count.
/tmp/count.
/tmp/count.
/tmp/count.

sScm
Scm
scm
Scm
sScm
Scm

:9 (count-kids-tips)
:4 (count-tips)
:9 (count-kids-tips)
:4 (count-tips)
:9 (count-kids-tips)
:4 (count-tips)

At this point, we might type any of the following:

stk[1
(tomm
stk[1
(tomm
stkl[1
(tomm
stk[1
tommy
stk[1
tommy
stk[1

]
y matt)
1 p kids
y matt)
1 kids

y matt)

print kids

1 pr (car kids)

1 (car kids)

] info locals

kids: (tommy matt)

Now suppose we go up to previous frames:

stk[1
stkl[1

tre
stk[1
tommy
stk[1
stk[1

1 up

] info locals
e: (sally tommy matt)

1 (cadr tree)

1 up
] info locals

kids: ((sally tommy matt) (heidi taylor))

stk[1

] (cadr kid

(heidi taylor)

s)

17



18 Debugging with STKDB

In Emacs mode, if there is a backtrace displayed, it will reflect the results of the info
locals commands, like this:

[0] /tmp/count.scm:9 (count-kids-tips)
kids: (tommy matt)
[1] /tmp/count.scm:4 (count-tips)
tree: (sally tommy matt)
*[2] /tmp/count.scm:9 (count-kids-tips)
kids: ((sally tommy matt) (heidi taylor))
[3] /tmp/count.scm:4 (count-tips)
[4] /tmp/count.scm:9 (count-kids-tips)
[6] /tmp/count.scm:4 (count-tips)

In addition, you can arrange to have local variables automatically displayed either for
the innermost (top) frame or for all frames whenever your program stops. To see just
those for the topmost frame, choose the “Auto-Display Backtrace/Top Frame” item in the
“Settings” submenu of the Debugging menu; to see locals in all frames, choose the “Auto-
Display Backtrace/Locals” item.



Appendix A: GNU GENERAL PUBLIC LICENSE 19

Appendix A GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (©) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.



20 Debugging with STKDB

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.



Appendix A: GNU GENERAL PUBLIC LICENSE 21

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

¢. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.



22

6.

10.

Debugging with STKDB

Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software



Appendix A: GNU GENERAL PUBLIC LICENSE 23

11.

12.

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS



24 Debugging with STKDB

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,

Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.
The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c¢’; they could even be mouse-clicks or menu items—whatever

suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coom, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.



Appendix B: GNU Free Documentation License 25

Appendix B GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you.”

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.



26

Debugging with STKDB

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque.”

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modifica-
tion. Opaque formats include PostScript, PDF, proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long



Appendix B: GNU Free Documentation License 27

as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has less than
five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the



28

Debugging with STKDB

Title Page. If there is no section entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section entitled “Endorsements.” Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that

added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission

to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,



Appendix B: GNU Free Documentation License 29

unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgements”, and any sections entitled “Dedications.” You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement



30

10.

Debugging with STKDB

between the translation and the original English version of this License, the original
English version will prevail.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled "GNU

Free Documentation License."

4

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying

which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing

these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.



Index

Index

(Index is nonexistent)

31



32

Debugging with STKDB



