
CS10
The Beauty and Joy of Computing

Lecture #4 : Functions

2011-09-12 UC Berkeley EECS
Lecturer SOE
Dan Garcia

Researchers at Microsoft and UW are working
on a system that uses the fact that your body
can act as an antenna and notes how ambient
electric fields change to figure out what your
position or motion was. The idea is you don’t
need a camera or Wiimote to interact with it!

www.nytimes.com/2011/09/11/business/using-
gestures-to-control-electronic-devices.html

Quest (first exam) in
this room in 7 days!!

UC Berkeley CS10 “The Beauty and Joy of Computing” : Functions (2)

Garcia, Fall 2011

Enrollment – everyone IS in

UC Berkeley CS10 “The Beauty and Joy of Computing” : Functions (3)

Garcia, Fall 2011

§  You are going to learn
to write functions, like
in math class:

y = sin(x)

ú  sin is the function
ú  x is the input
ú  It returns a single value,

a number

Generalization (in CS10) REVIEW

“Function machine” from Simply
Scheme (Harvey)

x

sin

UC Berkeley CS10 “The Beauty and Joy of Computing” : Functions (4)

Garcia, Fall 2011

Function basics
§  Functions take in 0 or

more inputs and return
exactly 1 output

§  The same inputs MUST
yield same outputs.
ú  Output function of input only

§  Other rules of functions
ú  No state (prior history)
ú  No mutation (no variables

get modified)
ú  No side effects (nothing else

happens)

UC Berkeley CS10 “The Beauty and Joy of Computing” : Functions (5)

Garcia, Fall 2011

Which is NOT a function?

a) 

b) 

c) 

d) 

e) 

UC Berkeley CS10 “The Beauty and Joy of Computing” : Functions (6)

Garcia, Fall 2011

§  Domain
ú  The “class” of input a

function accepts
ú  Examples

§  Range
ú  All the possible return

values of a function
ú  Examples

More Terminology (from Math)

UC Berkeley CS10 “The Beauty and Joy of Computing” : Functions (7)

Garcia, Fall 2011

§  If a function only depends on
the information it gets as
input, then nothing else can
affect the output.
ú  It can run on any computer and

get the same answer.

§  This makes it incredibly easy
to parallelize functions.
ú  Functional programming is a

great model for writing software
that runs on multiple systems at
the same time.

Why functions are great!

Datacenter

UC Berkeley CS10 “The Beauty and Joy of Computing” : Functions (8)

Garcia, Fall 2011

§  Scratch
ú  Invented @ MIT
ú  Maintained by MIT
ú  Huge community
ú  Sharing via Website
ú  No functions L
ú  Scratch 2.0 in Flash

   No iOS devices. L

ú  scratch.mit.edu

§  BYOB (to be “SNAP!”)
ú  Based on Scratch code
ú  Maintained by jens & Cal
ú  Growing community
ú  No sharing (yet) L
ú  Functions! J … “Blocks”
ú  BYOB 4.0 in HTML5

   All devices J

ú  byob.berkeley.edu

Scratch à BYOB (Build Your Own Blocks)

UC Berkeley CS10 “The Beauty and Joy of Computing” : Functions (9)

Garcia, Fall 2011

Why use functions?

1
The power of generalization!

UC Berkeley CS10 “The Beauty and Joy of Computing” : Functions (10)

Garcia, Fall 2011

Why use functions?

2
They can be composed together to
make even more magnificent things.

They are literally the building blocks of
almost everything that we create when
we program.

We call the process of breaking big
problems down into smaller tasks
functional decomposition

UC Berkeley CS10 “The Beauty and Joy of Computing” : Functions (11)

Garcia, Fall 2011

§  Command
ú  No outputs, meant for

side-effects

§  Reporter (Function)
ú  Any type of output

§  Predicate (Function)
ú  Boolean output

   (true or false)

Types of Blocks

UC Berkeley CS10 “The Beauty and Joy of Computing” : Functions (12)

Garcia, Fall 2011

Quick Preview: Recursion
Recursion is a
technique for

defining functions
that use themselves

to complete their own
definition.

We will spend a lot of
time on this.

M. C. Escher : Drawing Hands!

UC Berkeley CS10 “The Beauty and Joy of Computing” : Functions (13)

Garcia, Fall 2011

§  Computation is the
evaluation of functions
ú  Plugging pipes together
ú  Each pipe, or function, has

exactly 1 output
ú  Functions can be input!

§  Features
ú  No state

   E.g., variable assignments

ú  No mutation
   E.g., changing variable values

ú  No side effects

§  Need BYOB not Scratch

Functional Programming Summary
en.wikipedia.org/wiki/Functional_programming

f(x)=(2+3)* x

+
2 3

*

x

f
x"

