
 
CS10

The Beauty and Joy of Computing

Lecture #18
Distributed Computing

2011-11-02

US STUDENTS INTERNET ADDICTED

A study from the University of Maryland
asked 200 students not to use any
media for one day. “Many showed signs
of withdrawal, craving and anxiety
along with an inability to function well”.

UC Berkeley
EECS Lecturer SOE

Dan Garcia

www.reuters.com/article/2010/04/23/us-internet-addicts-life-idUSTRE63M4QN20100423

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (2)

Garcia, Fall 2011

§  Basics
ú  Memory
ú  Network

§  Distributed
Computing
ú  Themes
ú  Challenges

§  Solution! MapReduce
ú  How it works
ú  Our implementation

Lecture Overview

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (3)

Garcia, Fall 2011

Memory Hierarchy
Processor

Size of memory at each level

Increasing
Distance from

Processor
Level 1
Level 2

Level n

Level 3
. . .

Higher

Lower

Levels in
memory
hierarchy

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (4)

Garcia, Fall 2011

Memory Hierarchy Details
§  If level closer to Processor, it is:

ú  Smaller
ú  Faster
ú  More expensive
ú  subset of lower levels

   …contains most recently used data

§  Lowest Level (usually disk) contains all
available data (does it go beyond the disk?)

§  Memory Hierarchy Abstraction presents the
processor with the illusion of a very large &
fast memory

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (5)

Garcia, Fall 2011

Networking Basics
§  source encodes and destination decodes

content of the message
§  switches and routers use the destination in

order to deliver the message, dynamically

Internet

source destination

Network
interface
device

Network
interface
device

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (6)

Garcia, Fall 2011

Networking Facts and Benefits
§  Networks connect

computers, sub-
networks, and other
networks.
ú  Networks connect

computers all over the
world (and in space!)

ú  Computer networks...
   support asynchronous and

distributed communication
   enable new forms of

collaboration

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (7)

Garcia, Fall 2011

Performance Needed for Big Problems
§  Performance terminology

ú  the FLOP: FLoating point OPeration
ú  “flops” = # FLOP/second is the standard metric for computing power

§  Example: Global Climate Modeling
ú  Divide the world into a grid (e.g. 10 km spacing)
ú  Solve fluid dynamics equations for each point & minute

   Requires about 100 Flops per grid point per minute

ú  Weather Prediction (7 days in 24 hours):
   56 Gflops

ú  Climate Prediction (50 years in 30 days):
   4.8 Tflops

§  Perspective
ú  Intel Core i7 980 XE Desktop Processor

   ~100 Gflops
   Climate Prediction would take ~5 years

www.epm.ornl.gov/chammp/chammp.html

en.wikipedia.org/wiki/FLOPS

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (8)

Garcia, Fall 2011

§  Supercomputing – like those listed in top500.org
ú  Multiple processors “all in one box / room” from one

vendor that often communicate through shared memory
ú  This is often where you find exotic architectures

§  Distributed computing
ú  Many separate computers (each with independent CPU,

RAM, HD, NIC) that communicate through a network
   Grids (heterogenous computers across Internet)
   Clusters (mostly homogeneous computers all in one room)

­  Google uses commodity computers to exploit “knee in curve”
price/performance sweet spot

ú  It’s about being able to solve “big” problems,
not “small” problems faster
   These problems can be data (mostly) or CPU intensive

What Can We Do? Use Many CPUs!

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (9)

Garcia, Fall 2011

Distributed Computing Themes
§  Let’s network many disparate machines into

one compute cluster
§  These could all be the same (easier) or very

different machines (harder)
§  Common themes

ú  “Dispatcher” gives jobs & collects results
ú  “Workers” (get, process, return) until done

§  Examples
ú  SETI@Home, BOINC, Render farms
ú  Google clusters running MapReduce

en.wikipedia.org/wiki/Distributed_computing

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (10)

Garcia, Fall 2011

Peer Instruction

1.  Writing & managing SETI@Home is relatively
straightforward; just hand out & gather data

2.  The majority of the world’s computing power
lives in supercomputer centers

 12
a) FF
b) FT
c) TF
d) TT

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (11)

Garcia, Fall 2011

1.  The heterogeneity of the machines, handling machines
that fail, falsify data. FALSE

2.  Have you considered how many PCs + game devices
exist? Not even close. FALSE

Peer Instruction Answer

1.  Writing & managing SETI@Home is relatively
straightforward; just hand out & gather data

2.  The majority of the world’s computing power
lives in supercomputer centers

 12
a) FF
b) FT
c) TF
d) TT

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (12)

Garcia, Fall 2011

Distributed Computing Challenges
§  Communication is fundamental difficulty

ú  Distributing data, updating shared resource,
communicating results, handling failures

ú  Machines have separate memories, so need network
ú  Introduces inefficiencies: overhead, waiting, etc.

§  Need to parallelize algorithms, data structures
ú  Must look at problems from parallel standpoint
ú  Best for problems whose compute times >> overhead

en.wikipedia.org/wiki/Embarrassingly_parallel

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (13)

Garcia, Fall 2011

§  We told you “the beauty of
pure functional programming
is that it’s easily parallelizable”
ú  Do you see how you could

parallelize this?
ú  Reducer should be associative

and commutative

§  Imagine 10,000 machines
ready to help you compute
anything you could cast as a
MapReduce problem!
ú  This is the abstraction Google is

famous for authoring
ú  It hides LOTS of difficulty of

writing parallel code!
ú  The system takes care of load

balancing, dead machines, etc.

Google’s MapReduce Simplified
en.wikipedia.org/wiki/MapReduce

1 20 3 10

*	
 *	
 *	
 *	

1 400 9 100
+	
 +	

401 109
+	

510 Output:

Input:

Note:
only
two
data

types!

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (14)

Garcia, Fall 2011

MapReduce Advantages/Disadvantages
§  Now it’s easy to program for many CPUs

ú  Communication management effectively gone
ú  Fault tolerance, monitoring

   machine failures, suddenly-slow machines, etc are handled

ú  Can be much easier to design and program!
ú  Can cascade several (many?) MapReduce tasks

§  But … it might restrict solvable problems
ú  Might be hard to express problem in MapReduce
ú  Data parallelism is key

   Need to be able to break up a problem by data chunks

ú  Full MapReduce is closed-source (to Google) C++
   Hadoop is open-source Java-based rewrite

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (15)

Garcia, Fall 2011

a)  Dividing problem up
b)  Shipping it out /

Getting it back
c)  Verifying the result
d)  Putting results together
e)  Depends on problem

What contributes to overhead the most?

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (16)

Garcia, Fall 2011

§  Systems and networks
enable and foster
computational problem
solving

§  MapReduce is a great
distributed computing
abstraction
ú  It removes the onus of

worrying about load
balancing, failed machines,
data distribution from the
programmer of the problem

ú  (and puts it on the authors of
the MapReduce framework)

Summary

