ALAN TURING, FATHER OF CS @ 100

Alan Turing (1912-1954) would have turned 100 this year. He was a brilliant British mathematician (before there was Computer Science), and formalized the concept of “Algorithm”. Turing test, Turing completeness, Turing machine, etc.

en.wikipedia.org/wiki/Alan_Turing
Turing Completeness

- A Turing Machine has an infinite tape of 1s and 0s and instructions that say whether to move the tape left, right, read, or write it
 - Can simulate any computer algorithm!

- A Universal Turing Machine is one that can simulate a Turing machine on any input

- A language is considered Turing Complete if it can simulate a Universal Turing Machine
 - A way to decide that one programming language or paradigm is just as powerful as another

Turing Machine by Tom Dunne

Xkcd comic “Candy Button Paper”
World record for solving a 3x3x3 Rubik's cube?

a) 12 minutes, 3 seconds
b) 58.1 seconds
c) 7.96 seconds
d) 5.66 seconds
e) 3.31 seconds
Rubik's Cube Champion

Feliks Zemdegs (b 1995)
5.66 seconds, Melbourne Winter Open

[URL] www.youtube.com/watch?v=3v_Km6cv6DU
What is an algorithm?

- An algorithm is any well-defined computational procedure that takes some value or set of values as input and produces some value or set of values as output.

- The concept of algorithms, however, is far older than computers.
Early Algorithms

- Dances, ceremonies, recipes, and building instructions are all conceptually similar to algorithms.

- Babylonians defined some fundamental mathematical procedures ~3,600 years ago.

Photo credit: Daniel Niles
Algorithms You've Seen

- Addition algorithm (for humans)

```
187 + 53
---
1877 0
187 + 53
---
1877 0
0
```

Algorithms You've Seen in CS10

- Length of word
- Whether a word appears in a list
- Whether a list is sorted
- Sort a list
- Pick a random word of length x from list
Commonly-Used Algorithms

Luhn algorithm
Credit card number validation

Deflate
Lossless data compression

PageRank
Google’s way of measuring “reputation” of web pages

EdgeRank
Facebook’s method for determining what is in your news feed
Choosing a Technique

- Most problems can be solved in more than one way, i.e., multiple algorithms exist to describe how to find the solution.

- Not all of these algorithms are created equal. Very often we have to make some trade-offs when we select a particular one.

- We'll talk more about this next time.
Ways to Attack Problems

- There are many different categories of algorithms. Two common methods:
 - **Top-down**
 - Starting from the top, divide the full problem up into smaller subproblems, working your way down.
 - You often write “stubs” for missing things below to test
 - **Bottom-up**
 - Starting from the bottom (smallest thing you need to do), work your way up, building your way up.
 - Your system always “works” as you build layers on top.
Top-down vs Bottom-up example

HTML5 front-end

Server

Database

Solver

Game
Algorithms vs. Functions & Procedures

- **Algorithms** are conceptual definitions of how to accomplish a task and are language agnostic, usually written in pseudo-code.

 - E.g., (find max value in list)
 - Set (a temporary variable) the max as the first element
 - Go through every element, compare to max, and if it’s bigger, replace the max
 - Return the max

- A function or procedure is an implementation of an algorithm, in a particular language.

 - E.g., (find max value in list)
Algorithm Correctness

We don't only want algorithms to be fast and efficient; we want them to be *correct*!

TOTAL Correctness
Always reports, and the answer is always correct.

PARTIAL Correctness
Sometimes reports, and the answer is always correct *when it reports*.

We also have probabilistic algorithms that have a certain *probability* of returning the right answer.
Summary

- The concept of an algorithm has been around forever, and is an integral topic in CS.
- Algorithms are well-defined procedures that can take inputs and produce output (or have side-effects).
- We're constantly dealing with trade-offs when selecting / building algorithms.
- Correctness is particularly important and testing is the most practical strategy to ensure it.
 - Many write tests first!