

UC Berkeley EECS
Sr Lecturer SOE
Dan Garcia

The Beauty and Joy of Computing

Lecture #2 HowItWorks : 3D Graphics

LEAP MOTION ... WOW!

The Leap Motion (\$80) is a new generation of input devices that stands to change the way people interact with 3D data, and provide input to the computer (significant advantages over mouse & tablet)

LEAP MOTION ... UGH!

Have they considered the damage they're doing to backs & shoulders by asking users to hold their hands outstretched for hours at a time? No consistent interfaces, it's the wild west of UI

www.technologyreview.com/news/518721/leap-motions-struggles-reveal-problems-with-3-d-interfaces/

http://en.wikipedia.org/wiki/3D_computer_graphics

3D Computer Graphics, 10 Miles Up

- Computer Graphics one of the sub-fields of research in Computer Science
- UC Berkeley's
 Graphics group is ranked in the top 10
 - I graduated from this group in 2000
- 2D Graphics often called "graphic design"; very different

"The Last Guardian" by Johnny Yip (POV-Ray)

3D Graphics Used In...

Film, Television, Print

- Either pure CG (e.g., Pixar) or CG elements added to film plates
- hours / frame

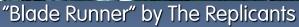
"Avatar" (wikipedia)

Video Games

- Both "in-engine" graphics + prerendered cinematics
- 30 frames / second

"Gran Turismo" (us.gran-turismo.com)

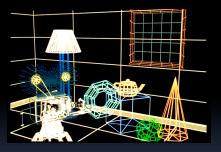
events.game-artist.net/scene_from_a_movie/ ...although that line is often blurred



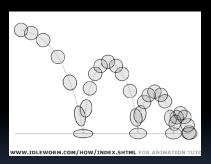
events.game-artist.net/scene_from_a_movie/winners.php

Aside: Scenes from a Movie winner

web.engr.oregonstate.edu/~mjb/intro2009/


3D Graphics: How it's done (simplified)

Modeling


Animation

Lighting & Shading

Rendering

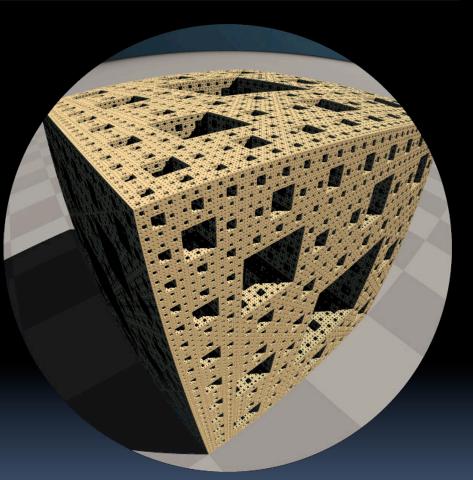
"Shutterbug Rendering Progression" by Pixar

"Squash & Stretch" by idleworm.com

"Procedural Wood" by Pixar

"Shutterbug Rendering Progression" by Pixar

www.youtube.com/watch?v=F00ynE1F4P4 www.cyberware.com



Could come from

- 3D Scanners
- Interactive modeling
- Model libraries
- Procedural techniques

This also involves

- Attaching animation variables to model, allowing animator to control a very complex model w/a few controls
- Representation: Lots of options, math

"Menger Cube" by UCB Alum David Wallace (now at LucasFilm)

web.engr.oregonstate.edu/~mjb/intro2009/
 en.wikipedia.org/wiki/Motion_capture
 www.youtube.com/watch?v=1wK1Ixr-UmM

Could come from

- Interactive keyframing
- Procedural motion
- Motion capture
 - This has put some animators out of a job
 - Used in Avatar, LotR, ...
- Physics
- Evolution, Rule systems

Emotions conveyed!

 Humans are very good at reading bad motion

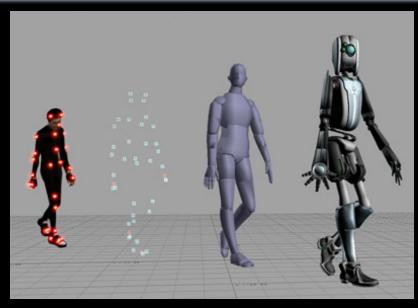
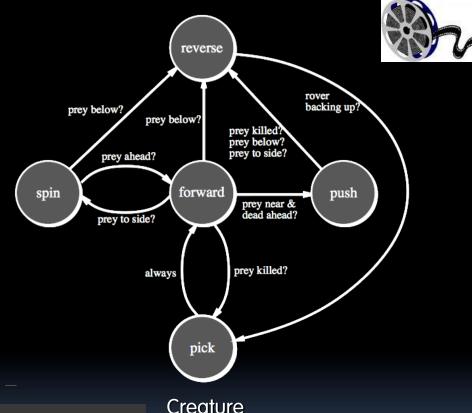


Image by Hipocrite (wikipedia)



www.kuffner.org/james/software/dynamics/mirtich/

Creature War ... Animation automatic!

- Brian Mirtich, 1996 UCB Ph.D.
 - Thesis: "Impulse -based **Dynamic Simulation of** Rigid Body Systems"
 - Very cool work!
- "Creature War" demo
 - His purpose: show off his simulator
 - Great example of ruledrive motion!

Genetic Algorithms

 Karl Sims blew away his colleagues with his 1994 seminal work on evolved creatures

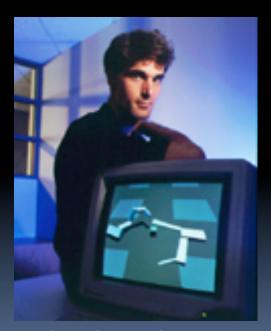
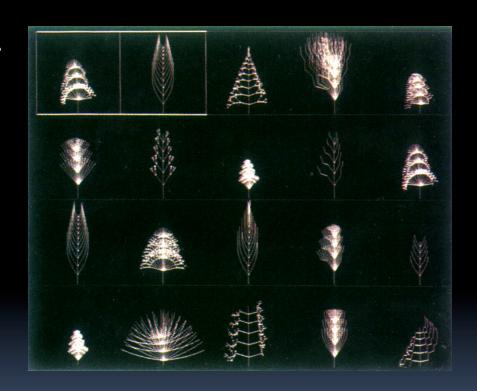



Photo by Hank Morgan

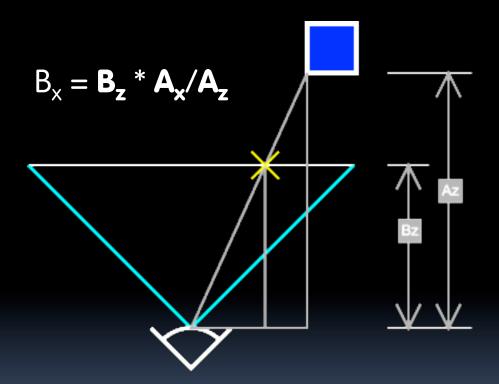
evolved virtual creatures

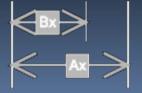
Lighting and Shading (and Camera...)

Just like in a movie...

- Artist sets up lights in the shot for mood
- Teams of artists apply hand-drawn and procedural textures, called "shaders"
 - There are layers of them
- The virtual 3D camera
 (and its movement) set
- But "render!" instead of "action!"...

"Harvest Time" by Gilles Tran (POV-RAY)




http://en.wikipedia.org/wiki/3D_projection

3D Projection Basics (in Rendering)

- For each frame...
 - Take 3D geometry (and lights and surface shaders) and figure out what color each 2D pixel should be
- The math is simply similar triangles
- There are lots of algorithms to do this
 - "Expensive" = slower,but quality usu higher

$$B_x/B_z = A_x/A_z$$

en.wikipedia.org/wiki/Global_illumination

Rendering: Global Illumination

What's our goal?

- Find rendering algorithms that simulate what real light does in real world
- "Photo-realism"

Limitations

- There are way too many photons to simulate all of them at once!
- Every technique is a different way to simulate the real world
- Each has costs & benefits
- Direct vs Global Illumination

"The Lovers" by Gilles Tran. (POV-Ray)

www.graphics.cornell.edu/online/box/compare.html

Cornell Box

"The Cornell Box experiments have come to symbolize our approach to physically based rendering. The Cornell box is a simple physical environment for which we have measured the lighting, geometry, and material reflectance properties. Synthetic images of this environment are then created, and compared to images captured with a calibrated CCD camera. In this way, we can confirm the accuracy of our simulations."

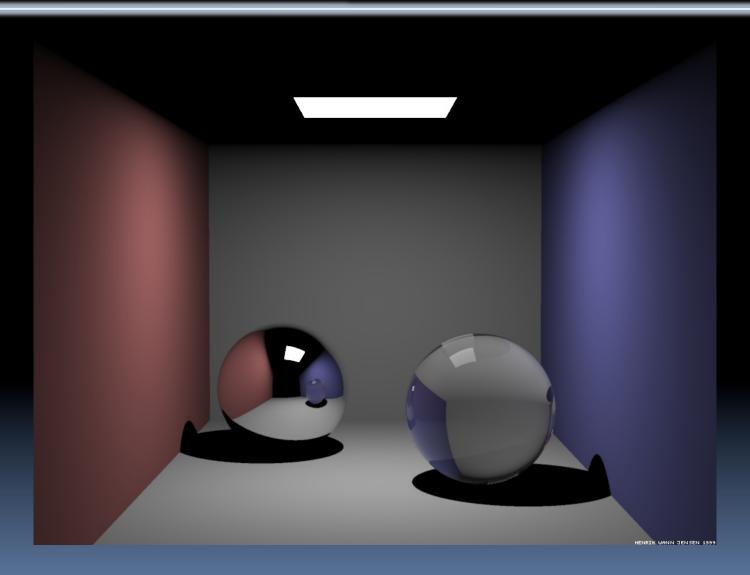

Rendering

Image courtesy Henrik Jensen @ UCSD

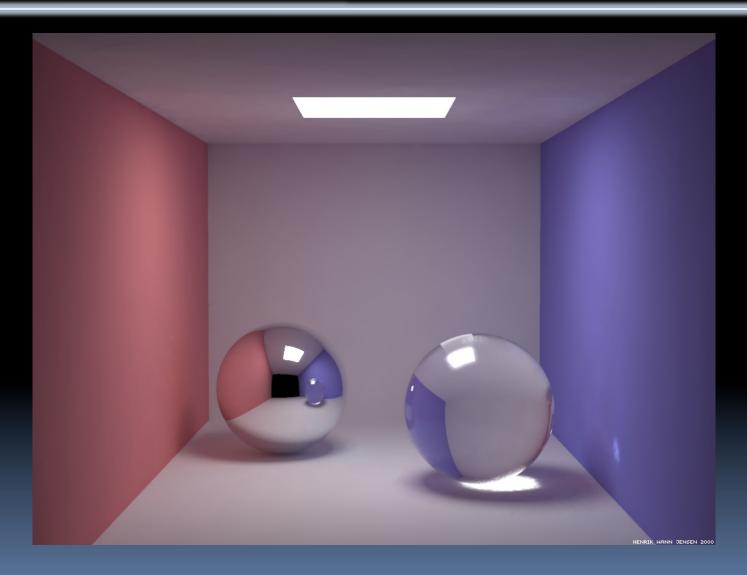

Direct Illumination Image court

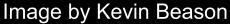
Image courtesy Henrik Jensen @ UCSD Global Illumination Image

bjc

How to learn more? ... UCBUGG!

UCB Undergrad Graphics Group

- No prereqs!!!
- Student-led DeCal
- Students make animated short film
 - Example : The Play3D
 - In 2002, made 3D recreation of famous Cal football play
- CS184 : Intro to Computer Graphics



Summary

- Beauty and Joy of Computing? You bet!
- The field of 3D Graphics has transformed film, television & video games
- How does it work?
 - Modeling
 - Animation
 - Lighting & Shading & Camera
 - Rendering (film, games different)
- It allows people to exercise right and left sides of brain
 - Opportunities @ Cal!

