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California Law Says All Websites Must Give Minors Option To Delete 
User Activity  
 
Good: More privacy! 
Bad: How exactly do you delete content from the Internet? 
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  A block, or function 
has inputs & outputs 
  Possibly no inputs 
  Possibly no outputs (if 

block is a command) 
  In this case, it would have 

a “side effect”, i.e., what it 
does (e.g., move a robot) 

  The contract 
describing what that 
block does is called a 
specification or spec 

Functional Abstraction (review) 

F 

x  

F(x) 
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  Typically they all have 
  NAME!
  INPUT(s)!

  (and types, if appropriate) 
  Requirements 

  OUTPUT!
  Can write “none” 

  (SIDE-EFFECTS)!
  EXAMPLE CALLS!

  Example 
  NAME  : Double 
  INPUT : n (a number) 
  OUTPUT: n + n 

What is IN a spec? (review) 

Double 

n  

Double(n) 
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  How! 
  That’s the beauty of a 

functional abstraction; it 
doesn’t say how it will 
do its job. 

  Example: Double 
  Could be n * 2 
  Could be n + n 
  Could be n+1 (n times) 

  if n is a positive integer 

  This gives great 
freedom to author! 
  You choose Algorithm(s)! 
 

What is NOT in a spec? 
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What do YOU think? 
Which factor below is the most important in 

choosing the algorithm to use? 
 

A.  Simplest? 
B.  Easiest to implement? 
C.  Takes less time? 
D.  Uses up less space (memory)? 
E.  Gives a more precise answer? 
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  An algorithm is correct if, 
for every input, it reports 
the correct output and 
doesn’t run forever or 
cause an error. 
  Incorrect algorithms may 

run forever, or may crash, or 
may not return the correct 
answer. 
  They could still be useful! 
  Consider an approximation… 

  For now, we’ll only consider 
correct algorithms 

Algorithm analysis : the basics 

Algorithm for managing Vitamin D sterols based on 
serum calcium levels. 

 
www.kidney.org/professionals/kdoqi/guidelines_bone/guide8b.htm 
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How do you know if “it” is correct? 
-  Mathematical proof for algorithms 
-  Empirical verification through testing of 

programs: 
-  Unit Testing 
-  Debugging 
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  This book launched a 
generation of CS students 
into Algorithm Analysis 
  It’s on everyone’s shelf 
  It might be hard to grok at this 

point, but if you go on in CS, 
remember it & own it! 
  …but get the most recent 

vears 

Reference text 
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  One commonly used 
criterion in making a 
decision is running time 
  how long does the 

algorithm take to run and 
finish its task? 

  How do we measure it? 

Algorithm analysis : running time 
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08:23:12!
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  Time w/stopwatch, but… 
  Different computers may 

have different runtimes.   
  Same computer may have 

different runtime on the 
same input.   

  Need to implement the 
algorithm first to run it.   

  Solution: Count the 
number of “steps” 
involved, not time! 
  Each operation = 1 step 
  If we say “running time”, we’ll 

mean # of steps, not time! 

Runtime analysis problem & solution 
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  Definition 
  Input size: the # of 

things in the input.  
  E.g., # of things in a list 
  Running time as a 

function of input size 
  Measures efficiency 

  Important! 
  In CS10 we won’t care 

about the efficiency of 
your solutions! 

  …in CS61B we will 

CS10 

CS61A 

CS61B 

CS61C 

Runtime analysis : input size & efficiency 
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  Could use avg case 
  Average running time over 

a vast # of inputs 

  Instead: use worst case 
  Consider running time as 

input grows 

  Why? 
  Nice to know most time 

we’d ever spend 
  Worst case happens often 
  Avg is often ~ worst 

Runtime analysis : worst or avg case? 
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  Instead of an exact 
number of operations 
we’ll use abstraction 
  Want order of growth, or 

dominant term 

  In CS10 we’ll consider 
  Constant 
  Logarithmic 
  Linear 
  Quadratic 
  Cubic 
  Exponential 

  E.g. 10 n2 + 4 log n + n 
  …is quadratic 

Runtime analysis: Final abstraction 

Graph of order of growth curves 
on log-log plot 

Constant 

Logarithmic 

Linear 

Quadratic Cubic Exponential 
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  Input 
  Unsorted list of students L 
  Particular student S 

  Output 
  True if S is in L, else False 

  Pseudocode Algorithm 
  Go through one by one, 

checking for match. 
  If match, true 
  If exhausted L and didn’t 

find S, false 

Example: Finding a student (by ID) 

  Worst-case running 
time as function of 
the size of L? 
1.  Constant 
2.  Logarithmic 
3.  Linear 
4.  Quadratic 
5.  Exponential 
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  Input 
  Sorted list of students L 
  Particular student S 

  Output : same 
  Pseudocode Algorithm 

  Start in middle 
  If match, report true 
  If exhausted, throw away 

half of L and check again 
in the middle of 
remaining part of L 

  If nobody left, report false 

Example: Finding a student (by ID) 

  Worst-case running 
time as function of 
the size of L? 
1.  Constant 
2.  Logarithmic 
3.  Linear 
4.  Quadratic 
5.  Exponential 
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  What if L were given to 
you in advance and 
you had infinite 
storage? 
  Could you do any better 

than logarithmic? 

Example: Finding a student (by ID) 

  Worst-case running 
time as function of 
the size of L? 
1.  Constant 
2.  Logarithmic 
3.  Linear 
4.  Quadratic 
5.  Exponential 
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  Input 
  Unsorted list L (of size n) of 

birthdays of team 

  Output 
  True if any two people 

shared birthday, else False 

  What’s the worst-case 
running time? 

Example: Finding a shared birthday 

  Worst-case running 
time as function of 
the size of L? 
1.  Constant 
2.  Logarithmic 
3.  Linear 
4.  Quadratic 
5.  Exponential 
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  Input: 
  Unsorted list L (of size n) of 

people 

  Output 
   All the subsets 

  Worst-case running 
time? (as function of n) 

  E.g., for 3 people (a,b,c): 
  1 empty: { } 
  3 1-person: {a, b, c} 
  3 2-person: {ab, bc, ac} 
  1 3-person: {abc} 

Example: Finding subsets 

  Worst-case running 
time as function of 
the size of L? 
1.  Constant 
2.  Logarithmic 
3.  Linear 
4.  Quadratic 
5.  Exponential 
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  We can prove mathematically that some 
algorithms are never solveable! 

  We can (almost) prove mathematically that some 
algorithms will never be efficient! 
  Famous problem P = NP ? 
  Example:  

Travelling Salesman  
Problem 

  BUT: Can use heuristics  
for approximation 

Limits 
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  When developing an 
algorithm, could optimize 
for 
  Simplest 
  Easiest to implement? 
  Most efficient 
  Uses up least resources 
  Gives most precision 
  … 

  In CS10 we’ll consider 
  Constant 
  Logarithmic 
  Linear 
  Quadratic 
  Cubic 
  Exponential 

Summary 
  There are empirical 

and formal methods 
to verify efficienct and 
correctness 

  Some algorithms 
cannot be 
implemtented 
efficiently 


