
The Beauty and Joy of
Computing

Lecture #7

Algorithms II

http://abcnews.go.com/Technology/calif-law-
websites-minors-delete-activity/story?

id=20361045/!

UC Berkeley EECS
Lecturer

Gerald Friedland

California Law Says All Websites Must Give Minors Option To Delete
User Activity

Good: More privacy!
Bad: How exactly do you delete content from the Internet?

UC Berkeley “The Beauty and Joy of Computing” : Algorithms II (2)

Friedland

  A block, or function
has inputs & outputs
  Possibly no inputs
  Possibly no outputs (if

block is a command)
  In this case, it would have

a “side effect”, i.e., what it
does (e.g., move a robot)

  The contract
describing what that
block does is called a
specification or spec

Functional Abstraction (review)

F

x

F(x)

UC Berkeley “The Beauty and Joy of Computing” : Algorithms II (3)

Friedland

  Typically they all have
  NAME!
  INPUT(s)!

  (and types, if appropriate)
  Requirements

  OUTPUT!
  Can write “none”

  (SIDE-EFFECTS)!
  EXAMPLE CALLS!

  Example
  NAME : Double
  INPUT : n (a number)
  OUTPUT: n + n

What is IN a spec? (review)

Double

n

Double(n)

UC Berkeley “The Beauty and Joy of Computing” : Algorithms II (4)

Friedland

  How!
  That’s the beauty of a

functional abstraction; it
doesn’t say how it will
do its job.

  Example: Double
  Could be n * 2
  Could be n + n
  Could be n+1 (n times)

  if n is a positive integer

  This gives great
freedom to author!
  You choose Algorithm(s)!

What is NOT in a spec?

UC Berkeley “The Beauty and Joy of Computing” : Algorithms II (5)

Friedland

What do YOU think?
Which factor below is the most important in

choosing the algorithm to use?

A.  Simplest?
B.  Easiest to implement?
C.  Takes less time?
D.  Uses up less space (memory)?
E.  Gives a more precise answer?

U
C
B
e
rk
el
e
y
C
S
1
0
"
T
h
e
B
e
a
ut
y
a
n
d
J
o
y
of
C
o
m
p
ut
in
g
"
:
A
lg
o
rit
h
m
C
o
m
pl
e
xi
ty"

5
UC Berkeley “The Beauty and Joy of Computing” : Algorithms II (6)

Friedland

  An algorithm is correct if,
for every input, it reports
the correct output and
doesn’t run forever or
cause an error.
  Incorrect algorithms may

run forever, or may crash, or
may not return the correct
answer.
  They could still be useful!
  Consider an approximation…

  For now, we’ll only consider
correct algorithms

Algorithm analysis : the basics

Algorithm for managing Vitamin D sterols based on
serum calcium levels.

www.kidney.org/professionals/kdoqi/guidelines_bone/guide8b.htm

UC Berkeley “The Beauty and Joy of Computing” : Algorithms II (7)

Friedland

How do you know if “it” is correct?
-  Mathematical proof for algorithms
-  Empirical verification through testing of

programs:
-  Unit Testing
-  Debugging

UC Berkeley “The Beauty and Joy of Computing” : Algorithms II (8)

Friedland

  This book launched a
generation of CS students
into Algorithm Analysis
  It’s on everyone’s shelf
  It might be hard to grok at this

point, but if you go on in CS,
remember it & own it!
  …but get the most recent

vears

Reference text

UC Berkeley “The Beauty and Joy of Computing” : Algorithms II (9)

Friedland

  One commonly used
criterion in making a
decision is running time
  how long does the

algorithm take to run and
finish its task?

  How do we measure it?

Algorithm analysis : running time

U
C
B
e
rk
el
e
y
C
S
1
0
"
T
h
e
B
e
a
ut
y
a
n
d
J
o
y
of
C
o
m
p
ut
in
g
"
:
A
lg
o
rit
h
m
C
o
m
pl
e
xi
ty"

9

08:23:12!

UC Berkeley “The Beauty and Joy of Computing” : Algorithms II (10)

Friedland

  Time w/stopwatch, but…
  Different computers may

have different runtimes.
  Same computer may have

different runtime on the
same input.

  Need to implement the
algorithm first to run it.

  Solution: Count the
number of “steps”
involved, not time!
  Each operation = 1 step
  If we say “running time”, we’ll

mean # of steps, not time!

Runtime analysis problem & solution

U
C
B
e
rk
el
e
y
C
S
1
0
"
T
h
e
B
e
a
ut
y
a
n
d
J
o
y
of
C
o
m
p
ut
in
g
"
:
A
lg
o
rit
h
m
C
o
m
pl
e
xi
ty"

1
0

UC Berkeley “The Beauty and Joy of Computing” : Algorithms II (11)

Friedland

  Definition
  Input size: the # of

things in the input.
  E.g., # of things in a list
  Running time as a

function of input size
  Measures efficiency

  Important!
  In CS10 we won’t care

about the efficiency of
your solutions!

  …in CS61B we will

CS10

CS61A

CS61B

CS61C

Runtime analysis : input size & efficiency

U
C
B
e
rk
el
e
y
C
S
1
0
"
T
h
e
B
e
a
ut
y
a
n
d
J
o
y
of
C
o
m
p
ut
in
g
"
:
A
lg
o
rit
h
m
C
o
m
pl
e
xi
ty"

1
1

UC Berkeley “The Beauty and Joy of Computing” : Algorithms II (12)

Friedland

  Could use avg case
  Average running time over

a vast # of inputs

  Instead: use worst case
  Consider running time as

input grows

  Why?
  Nice to know most time

we’d ever spend
  Worst case happens often
  Avg is often ~ worst

Runtime analysis : worst or avg case?

U
C
B
e
rk
el
e
y
C
S
1
0
"
T
h
e
B
e
a
ut
y
a
n
d
J
o
y
of
C
o
m
p
ut
in
g
"
:
A
lg
o
rit
h
m
C
o
m
pl
e
xi
ty"

1
2

UC Berkeley “The Beauty and Joy of Computing” : Algorithms II (13)

Friedland

  Instead of an exact
number of operations
we’ll use abstraction
  Want order of growth, or

dominant term

  In CS10 we’ll consider
  Constant
  Logarithmic
  Linear
  Quadratic
  Cubic
  Exponential

  E.g. 10 n2 + 4 log n + n
  …is quadratic

Runtime analysis: Final abstraction

Graph of order of growth curves
on log-log plot

Constant

Logarithmic

Linear

Quadratic Cubic Exponential

UC Berkeley “The Beauty and Joy of Computing” : Algorithms II (14)

Friedland

  Input
  Unsorted list of students L
  Particular student S

  Output
  True if S is in L, else False

  Pseudocode Algorithm
  Go through one by one,

checking for match.
  If match, true
  If exhausted L and didn’t

find S, false

Example: Finding a student (by ID)

  Worst-case running
time as function of
the size of L?
1.  Constant
2.  Logarithmic
3.  Linear
4.  Quadratic
5.  Exponential

UC Berkeley “The Beauty and Joy of Computing” : Algorithms II (15)

Friedland

  Input
  Sorted list of students L
  Particular student S

  Output : same
  Pseudocode Algorithm

  Start in middle
  If match, report true
  If exhausted, throw away

half of L and check again
in the middle of
remaining part of L

  If nobody left, report false

Example: Finding a student (by ID)

  Worst-case running
time as function of
the size of L?
1.  Constant
2.  Logarithmic
3.  Linear
4.  Quadratic
5.  Exponential

UC Berkeley “The Beauty and Joy of Computing” : Algorithms II (16)

Friedland

  What if L were given to
you in advance and
you had infinite
storage?
  Could you do any better

than logarithmic?

Example: Finding a student (by ID)

  Worst-case running
time as function of
the size of L?
1.  Constant
2.  Logarithmic
3.  Linear
4.  Quadratic
5.  Exponential

UC Berkeley “The Beauty and Joy of Computing” : Algorithms II (17)

Friedland

  Input
  Unsorted list L (of size n) of

birthdays of team

  Output
  True if any two people

shared birthday, else False

  What’s the worst-case
running time?

Example: Finding a shared birthday

  Worst-case running
time as function of
the size of L?
1.  Constant
2.  Logarithmic
3.  Linear
4.  Quadratic
5.  Exponential

UC Berkeley “The Beauty and Joy of Computing” : Algorithms II (18)

Friedland

  Input:
  Unsorted list L (of size n) of

people

  Output
  All the subsets

  Worst-case running
time? (as function of n)

  E.g., for 3 people (a,b,c):
  1 empty: { }
  3 1-person: {a, b, c}
  3 2-person: {ab, bc, ac}
  1 3-person: {abc}

Example: Finding subsets

  Worst-case running
time as function of
the size of L?
1.  Constant
2.  Logarithmic
3.  Linear
4.  Quadratic
5.  Exponential

UC Berkeley “The Beauty and Joy of Computing” : Algorithms II (19)

Friedland

  We can prove mathematically that some
algorithms are never solveable!

  We can (almost) prove mathematically that some
algorithms will never be efficient!
  Famous problem P = NP ?
  Example:

Travelling Salesman
Problem

  BUT: Can use heuristics
for approximation

Limits

UC Berkeley “The Beauty and Joy of Computing” : Algorithms II (20)

Friedland

  When developing an
algorithm, could optimize
for
  Simplest
  Easiest to implement?
  Most efficient
  Uses up least resources
  Gives most precision
  …

  In CS10 we’ll consider
  Constant
  Logarithmic
  Linear
  Quadratic
  Cubic
  Exponential

Summary
  There are empirical

and formal methods
to verify efficienct and
correctness

  Some algorithms
cannot be
implemtented
efficiently

