
The Beauty and Joy of
Computing

Lecture #8

Concurrency
UC Berkeley EECS

Lecturer
Gerald Friedland

UC Berkeley “The Beauty and Joy of Computing” : Concurrency (2)

Friedland

Concurrency: A Definition

Concurrency: A property of computer systems in
which several computations are executing
simultaneously, and potentially interacting with
each other.

UC Berkeley “The Beauty and Joy of Computing” : Concurrency (3)

Friedland

Examples:
  Mouse cursor movement while SNAP!

calculates.
  Screen clock advances while typing in a text.
  Busy cursor spins while browser connects to

server, waiting for response

Question: Is this real concurrency?

Concurrency is Everywhere!

UC Berkeley “The Beauty and Joy of Computing” : Concurrency (4)

Friedland

Intra-computer
  Today’s lecture
  Multiple computing

“helpers” are cores
within one machine

  Aka “multi-core”
  Although GPU parallism

is also “intra-computer”

Inter-computer
  Future lecture
  Multiple computing

“helpers” are different
machines

  Aka “distributed
computing”
  Grid & cluster computing

Concurrency & Parallelism

UC Berkeley “The Beauty and Joy of Computing” : Concurrency (5)

Friedland

Anatomy: 5 components of any Computer

Computer

Memory

Devices

Input

Output

John von Neumann
invented this
 architecture

 Processor

Control
(“brain”)

Datapath
(“brawn”)

What causes the most headaches
for SW and HW designers with

multi-core computing?

a)  Control
b)  Datapath
c)  Memory
d)  Input
e)  Output

UC Berkeley “The Beauty and Joy of Computing” : Concurrency (6)

Friedland

 Processor

Control
(“brain”)

Datapath
(“brawn”)

But what is INSIDE a Processor?

UC Berkeley “The Beauty and Joy of Computing” : Concurrency (7)

Friedland

But what is INSIDE a Processor?
•  Primarily Crystalline Silicon

•  1 mm – 25 mm on a side

•  2009 “feature size” (aka process)
~ 45 nm = 45 x 10-9 m
(then 32, 22, and 16 [by yr 2013])

•  100 - 1000M transistors

•  3 - 10 conductive layers

•  “CMOS” (complementary metal oxide
semiconductor) - most common

•  Package provides:
•  spreading of chip-level signal paths to

board-level
•  heat dissipation.

•  Ceramic or plastic with gold wires. Chip in Package

Bare Processor Die

 Processor

Control
(“brain”)

Datapath
(“brawn”)

UC Berkeley “The Beauty and Joy of Computing” : Concurrency (8)

Friedland

Moore’s Law
Predicts: 2X Transistors / chip every 2 years

Gordon Moore
Intel Cofounder
B.S. Cal 1950!

Year

of

 tr
an

si
st

or
s

on
 a

n

in
te

gr
at

ed
 c

irc
ui

t (
IC

)

en.wikipedia.org/wiki/Moore's_law!

What is this “curve”?
a)  Constant
b)  Linear
c)  Quadratic
d)  Cubic
e)  Exponential

UC Berkeley “The Beauty and Joy of Computing” : Concurrency (9)

Friedland

Moore’s Law and related curves

UC Berkeley “The Beauty and Joy of Computing” : Concurrency (10)

Friedland

Moore’s Law and related curves

UC Berkeley “The Beauty and Joy of Computing” : Concurrency (11)

Friedland

Power Density Prediction circa 2000

4004"
8008"

8080" 8085"

8086"

286" 386"
486"

Pentium® proc"
P6"

1"

10"

100"

1000"

10000"

1970" 1980" 1990" 2000" 2010"
Year"

Po
w

er
 D

en
si

ty
 (W

/c
m

2)"

Hot Plate"

Nuclear Reactor"

Rocket Nozzle"

Source:	 S.	 Borkar	 (Intel)	

Sun’s Surface"

Core 2 "

UC Berkeley “The Beauty and Joy of Computing” : Concurrency (12)

Friedland

  A Thread stands for “thread of execution”, is a
single stream of instructions
  A program / process can split, or fork itself into separate

threads, which can (in theory) execute simultaneously.
  An easy way to describe/think about parallelism

  A single CPU can execute many threads by
Time Division Multipexing

  Multithreading is running multiple threads
through the same hardware

CPU

Time

Thread0

Thread1

Thread2

Background: Threads

UC Berkeley “The Beauty and Joy of Computing” : Concurrency (13)

Friedland

•  Applications can almost never be completely parallelized; some serial
code remains

•  s is serial fraction of program, P is # of cores (was processors)

•  Amdahl’s law:

Speedup(P) = Time(1) / Time(P)

 ≤ 1 / (s + [(1-s) / P)], and as P ∞

 ≤ 1 / s

•  Even if the parallel portion of your application speeds up perfectly,
your performance may be limited by the sequential portion

Speedup Issues : Amdahl’s Law

Time

Number of Cores

Parallel portion
Serial portion

1 2 3 4 5

en.wikipedia.org/wiki/Amdahl's_law!

UC Berkeley “The Beauty and Joy of Computing” : Concurrency (14)

Friedland

Speedup Issues : Overhead
  Even assuming no sequential portion, there’s…

  Time to think how to divide the problem up
  Time to hand out small “work units” to workers
  All workers may not work equally fast
  Some workers may fail
  There may be contention for shared resources
  Workers could overwriting each others’ answers
  You may have to wait until the last worker returns to

proceed (the slowest / weakest link problem)
  There’s time to put the data back together in a way

that looks as if it were done by one

UC Berkeley “The Beauty and Joy of Computing” : Concurrency (15)

Friedland

  This “sea change” to multi-
core parallelism means
that the computing
community has to rethink:
a)  Languages
b)  Architectures
c)  Algorithms
d)  Data Structures
e)  All of the above

Life in a multi-core world…

UC Berkeley “The Beauty and Joy of Computing” : Concurrency (16)

Friedland

  What if two people
were calling withdraw
at the same time?
  E.g., balance=100 and

two withdraw 75 each
  Can anyone see what

the problem could be?
  This is a race condition

  In most languages,
this is a problem.
  In Scratch, the system

doesn’t let two of these
run at once.

But parallel programming is hard!
en.wikipedia.org/wiki/Concurrent_computing!

UC Berkeley “The Beauty and Joy of Computing” : Concurrency (17)

Friedland

  Two people need to
draw a graph but
there is only one
pencil and one ruler.
  One grabs the pencil
  One grabs the ruler
  Neither release what

they hold, waiting for the
other to release

  Livelock also possible
  Movement, no progress

Another concurrency problem … deadlock!
en.wikipedia.org/wiki/Deadlock!

UC Berkeley “The Beauty and Joy of Computing” : Concurrency (18)

Friedland

  “Sea change” of
computing because
of inability to cool
CPUs means we’re
now in multi-core
world

  This brave new world
offers lots of potential
for innovation by
computing
professionals, but
challenges persist

Summary

