

UC Berkeley FECS

The Beauty and Joy of Computing

Lecture #10 Recursion II

EECS
Guest TA
Jon McKinsey

RECURSIVE DRAWING

Toby Shachman created this amazing spatial programming language called "Recursive Drawing" that allows you to create drawings (even recursive ones) without typing a line of code. It's a great example of a next-generation interface...

recursivedrawing.com

How the Computer Works ... n!

Factorial(n) = n! Inductive definition:

```
    n! = 1 , n = 0
    n! = n * (n-1)!, n > 0
```

- Let's act it out...
 - "contractor" model
 - **5!**

n	n!
0	1
1	1
2	2
3	6
4	24
5	120

Garcia

Order of growth of # of calls of n!

- a) Constant
- b) Logarithmic
- c) Linear
- d) Quadratic
- e) Exponential

How the Computer Works ... fib(n)

Inductive definition:

- Let's act it out...
 - "contractor" model
 - fib(5)

n	fik)(n)
		` '

0	0
1	1
2	1
3	2
4	3
5	5

Leonardo de Pisa aka, Fibonacci

Garcia

Order of growth of # of calls of fib(n)

a) Constant

b) Logarithmic

c) Linear

d) Quadratic

e) Exponential

Chimney of Turku Energia, Turku, Finland featuring Fibonacci sequence in 2m high neon lights. By Italian artist Mario Merz for an environmental art project.

(Wikipedia)

Counting Change (thanks to BH)

Given coins {50, 25, 10, 5, 1} how many ways are there of making change?

Count Change

```
+Count+Change+ amount + Using+ coins : +

if amount < 0 or empty? coins

report 0

if amount = 0
```

```
• 2 (N, 5P)
10
```

• **4** (D, 2N, N5P, 10P)

15

• 6 (DN, D5P, 3N, 2N5P, 1N10P, 15P)

Using coins

100?

report 1

report

amount | - item 1 → of coins

Count Change amount Using all but first of coins

bjc

Call Tree for "Count Change 10 (10 5 1)"

"I understood Count Change"

- a) Strongly disagree
- b) Disagree
- c) Neutral
- d) Agree
- e) Strongly agree

img4.joyreactor.com/pics/post/drawing-recursion-girl-275624.jpeg

Summary

- It's important to understand the machine model
- It's often the cleanest, simplest way to solve many problems
 - Esp those recursive in nature!
- Recursion is a very powerful idea, often separates good from great (you're great!)

Menger Cube by Dan Garcia

