The Beauty and Joy of Computing

Lecture \#10 Recursion II

UC Berkeley EECS

Guest TA

Jon McKinsey

RECURSIVE DRAWING

Toby Shachman created this amazing spatial programming language called "Recursive Drawing" that allows you to create drawings (even recursive ones) without typing a line of code. It's a great example of a next-generation interface...

recursivedrawing. com

How the Computer Works ... n!

- Factorial(n) = n! Inductive definition:
- $\mathrm{n}!=1 \quad, \mathrm{n}=0$
- $n!=n$ * $(n-1)!, n>0$
- Let's act it out...
- "contractor" model - 5!

Order of growth of \# of calls of n!

(source: FallingFifth.com)
a) Constant
b) Logarithmic
c) Linear
d) Quadratic
e) Exponential

$P_{\text {R }}$ Eating Contest

I can eat more pies than you. I will eat 6 !

There is no way you will eat 720 pies.

How the Computer Works ... fib(n)

- Inductive definition:
fibs)= $\quad, \mathbf{n}<\mathbf{2} \quad F(n):= \begin{cases}0 & \text { if } n=0 ; \\ 1 & \text { if } n=1 ; \\ F(n-1)+F(n-2) & \text { if } n>1 .\end{cases}$
- Let's act it out...
- "contractor" model - fib (5)

n fib (n)

0	0
1	1
2	1
3	2
4	3
5	5

Let's now: trace... (gif from
Ybungalobill@wikimedia)
Garcia

Order of growth of \# of calls of fib(n)

Chimney of Turku Energia, Turku, Finland featuring Fibonacci sequence in 2 m high neon lights. By Italian artist Mario Merz for an environmental art project.
(Wikipedia)
a) Constant
b) Logarithmic
c) Linear
d) Quadratic
e) Exponential

Counting Change (thanks to BH)

- Given coins $\{50,25$, $10,5,1\}$ how many ways are there of making change?
- 2 (N, 5P)
- 10
- 4 (D, 2N, N5P, 10P)
- 15
- 6 (DN, D5P, 3N, 2N5P, 1N10P, 15P)
- 100?
if amount $=0$
report 1
report
Count Change amount Using all but first of coins +
Count Change amount - item $1 \geqslant$ of coins Using coins

Call Tree for "Count Change 10 (10 5 1)"

\& Skip Coin Use Coin $\boldsymbol{>}$

"I understood Count Change"

a) Strongly disagree
b) Disagree
c) Neutral
d) Agree
e) Strongly agree
img4.joyreactor.com/pics/post/drawing-recursion-girl-275624.jpeg

Summary

- It's important to understand the machine model
- It's often the cleanest, simplest way to solve many problems
- Esp those recursive in nature!
- Recursion is a very powerful idea, often separates good from great (you're great!)

