

UC Berkeley EECS Sr. Lecturer SOE Dan Garcia

CS10

The Beauty and Joy of Computing

Lecture \#19
 Higher Order Functions II

PRO SELF-DRIVING CARS
 2013-11-13

 SELF-DRIVING CARS

 SELF-DRIVING CARS}- Fewer accidents - 90\% of accidents caused by human error
- Efficient travel since can create convoys
- Huge efficiency gains if you can work + drive

- Who gets sued when there's an accident?
- Handing control back to driver takes ~5 sec
- Very expensive
- Could be dangerous if they can't handle case

I do research on Board Games...

- No chance, such as dice or shuffled cards
- Both players have complete information
- No hidden information, as in Stratego \& Magic
- Two players (Left \& Right) usually alternate moves
- Repeat \& skip moves ok
- Simultaneous moves not ok
- The game can end in a pattern, capture, by the absence of moves, or ...

A Strong Solution visits every position

- For every position
- Assuming alternating play
- Value ...
(for player whose turn it is)
- Winning (\exists losing child)
- Losing (All children winning)
- Tieing (! \exists losing child, but \exists tieing child)
- Drawing (can’t force a win or be forced to lose)
- Remoteness
- How long before game ends?

Strong Solving Example: 1,2,...,10

- Rules (on your turn):
- Running total $=0$
- Rules (on your turn):
- Add 1 or 2 to running total
- Goal
- Be the FIRST to get to 10
- Example
- Ana: "2 to make it 2"
- Bob: " 1 to make it 3 "
- Ana: " 2 to make it 5"
- Bob: " 2 to make it 7 " \rightarrow photo

7 ducks (out of 10)

- Ana: "1 to make it 8"
- Bob: "2 to make it 10" I WIN!

Let's write code to determine value!

- $0=$ Win
- 1 = Lose
- 2 = Win
- 3 = Win
- 4 = Lose
- 5 = Win
- $6=$ Win
- 7 = Lose
- 8 = Win
- 9 = Win
- 10 = Lose
- $P=$ Position
- $M=$ Move
- We only need 3 blocks to define a game
- Do Move M on Position P
- \rightarrow a new Position
- Generate Moves from Position P
- \rightarrow list of Moves
- Primitive Value of Position P
- \rightarrow \{win, lose, tie, undecided\}
- Let's write Value of Position P

Answer

UC Berkeley CST0 "The Beauty and Joy of Computing" : HOF II (6)

