

Why are you Interested in Computer Science?

I want to:

- A. Build computer hardware and software
- B. Create new companies and industries
- C. Solve important problems facing the world
- D. Work on teams with other creative people
- E. All of the above

Addressing Challenges using Computing

Two of the most significant challenges

- Our changing world: understanding climate change, alternative energy sources, mitigation techniques, etc.
- Health and medicine: understanding the human body, development of treatments, and disease prevention

Experimental Data: Visible Human The National Library of Medicine's Visible Human Project (TM) Human-Computer Interaction Lab Univ. of Maryland at College Park

- 1) Because computers can help solve important problems
- 2) Because programming is fun and there are plenty of new problems to solve

Trends in Computer Science

Which of the following are true?

- A. Moore's Law says that processor performance doubles every 18 months
- B. Moore's Law has ended
- C. Most of the time in scientific codes is spent doing arithmetic
- D. None of the above
- E. All of the above

#	Site	Manufacturer	Computer	Country	Cores	Rmax [Pfliops]	Power [MW]
1	National University of Defense Technology	NUDT	Tianhe-2 NUDT TH-IVB-FEP, Xeon 12C 2.2GHz, IntelXeon Phi	China	3,120,000	33.9	17.8
2	Oak Ridge National Laboratory	Cray	Titan Cray XK7, Opteron 16C 2.2GHz, Gemini, NVIDIA K20x	USA	560,640	17.6	8.21
3	Lawrence Livermore National Laboratory	IBM	Sequoia BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	1,572,864	17.2	7.89
4	RIKEN Advanced Institute for Computational Science	Fujitsu	K Computer SPARC64 VIIIfx 2.0GHz, Tofu Interconnect	Japan	795,024	10.5	12.7
5	Argonne National Laboratory	IBM	Mira BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	786,432	8.59	3.95
6	Swiss National Supercomputing Centre (CSCS)	Cray	Piz Daint Cray XC30, Xeon E5 8C 2.6GHz, Aries, NVIDIA K20x	Switzer- land	115,984	6.27	2.33
7	Texas Advanced Computing Center/UT	Dell	Stampede PowerEdge C8220, Xeon E5 8C 2.7GHz, Intel Xeon Phi	USA	462,462	5.17	4.51
8	Forschungszentrum Juelich (FZJ)	IBM	JuQUEEN BlueGene/Q, Power BQC 16C 1.6GHz, Custom	Germany	458,752	5.01	2.30
9	Lawrence Livermore National Laboratory	IBM	Vulcan BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	393,216	4.29	1.97
10	Leibniz Rechenzentrum	IBM	SuperMUC iDataPlex DX360M4, Xeon E5 8C 2.7GHz, Infiniband FDR	Germany	147,456	2.90	3.52

Technology for Innovation

Which of the following are true?

- A. Google developed its own programming language to hide machine failures
- B. iPhones are programmed using Java
- C. Web search algorithms use only integer arithmetic, not floating point (real) numbers
- D. Scientific computing is done mostly using "Vector Supercomputers"
- E. All of the above

BW Latency

15%

5% 23%

now

2018

Off-Chip

The Fastest Computers (for Science) **Challenge: Data Movement Dominates Cost** Have Been Parallel for a Long Time Communication is expensive... • Fastest Computers in the world: top500.org Flops ... time and energy Network 26% • Our Hopper Computer has 150,000 cores and ... processor to memory and 59% DRAM > 1 Petaflop (10¹⁵ math operations / second) processor to processor 10000 Programming and "debugging" are 1000 Cost components: 100 On-Chip challenging · Bandwidth: # of words 2 COL 10 • Latency: # messages Strategies: hide latency, use new algorithms Supercomputing is Hard to change: Latency is physics; bandwidth is money! done by parallel proarammina

- 1) Because computers can help solve important problems
- 2) Because computers are fun to program
- 3) Because computers make a good career

Real-Time Deformation and Fracture in a Game Environment

Eric Parker **Pixelux Entertainment**

> James O'Brien U.C. Berkeley

Video Edited by Sebastian Burke

From the proceedings of SCA 2009, New Orleans

Writing Software

Which of the following are true?

- A. Most computer software is written by brilliant hackers, working alone
- B. Parallel programming is a *solved problem*
- C. Speed of programming and speed of programs are the top goals in software
- D. Most software is rewritten from scratch every few years
- E. None of the above

Computational Science is Necessarily Collaborative

Why Study Computer Science?

- 1) Because computers can help solve important problems
- 2) Because computers are fun to program
- 3) Because computers make a good career
- 4) Because you will get to work with lots of great people

