

Review: Proof by Contradiction

- Infinitely Many Primes?
- Assume the contrary, then prove that it's impossible
- Only a finite set of primes, numbered $p_{1}, p_{2}, \ldots, p_{n}$
- Consider $q=\left(p_{1} \bullet p_{2} \bullet \ldots \bullet p_{n}\right)+1$
- Dividing q by p_{i} has remainder 1
- q either prime or composite
- If prime, q is not in the set
- If composite, since no p_{i} divides q, there must be another p that does that is not in the set.

