

UC Berkeley EECS
Sr Lecturer SOE
Dan Garcia

# The Beauty and Joy of Computing

Lecture #23
Limits of Computing



#### **NEIL AI LEARNS BY ITSELF, 24/7**

Researchers at CMU have built a system which searches the Web for images constantly and tries to decide how the images relate to each other. The goal is to "recreate common sense".





# Computer Science ... A UCB view

#### CS research areas:

- Artificial Intelligence
- Biosystems & Computational Biology
- Database Management Systems
- Graphics
- Human-Computer Interaction
- Networking
- Programming Systems
- Scientific Computing
- Security
- Systems
- Theory
  - Complexity theory











# Let's revisit algorithm complexity

#### Problems that...

- are tractable with efficient solutions in reasonable time
- are intractable
- are solvable approximately, not optimally
- have no known efficient solution
- are not solvable







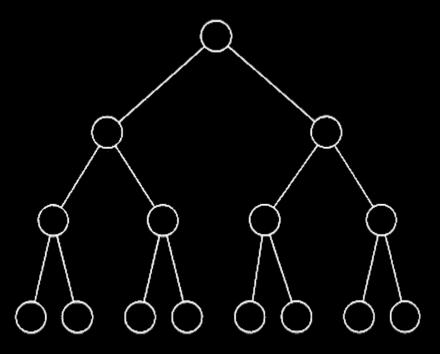


# Tractable with efficient sols in reas time

- Recall our algorithm complexity lecture, we've got several common orders of growth
  - Constant
  - Logarithmic
  - Linear
  - Quadratic
  - Cubic
  - Exponential

- Order of growth is polynomial in the size of the problem
- E.g.,
  - Searching for an item in a collection
  - Sorting a collection
  - Finding if two numbers
     in a collection are same
- These problems are called being "in P" (for polynomial)








### Intractable problems

- Problems that can be solved, but not solved fast enough
- This includes exponential problems
  - E.g.,  $f(n) = 2^n$ 
    - as in the image to the right
- This also includes poly-time algorithm with a huge exponent

• E.g, 
$$f(n) = n^{10}$$



Imagine a program that calculated something important at each of the bottom circles. This tree has height n, but there are 2<sup>n</sup> bottom circles!



Only solve for small n





### **Peer Instruction**



What's the most you can put in your knapsack?

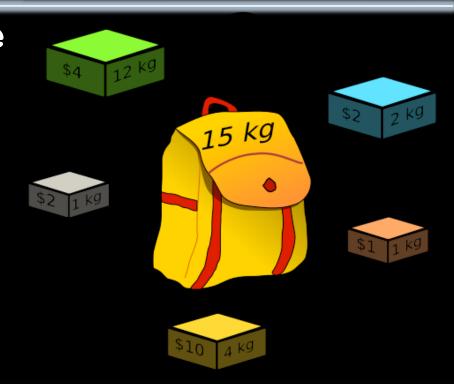


- a) \$10
- b) \$15
- c) \$33
- d) \$36
- e) \$40

#### **Knapsack Problem**

You have a backpack with a weight limit (here 15kg), which boxes (with weights and values) should be taken to maximize value?

(any # of each box is available)








### Solvable approximately, not optimally in reas time

- A problem might have an optimal solution that cannot be solved in reasonable time
- BUT if you don't need to know the perfect solution, there might exist algorithms which could give pretty good answers in reasonable time



#### **Knapsack Problem**

You have a backpack with a weight limit (here 15kg), which boxes (with weights and values) should be taken to maximize value?







### Have no known efficient solution

- Solving one of them would solve an entire class of them!
  - We can transform one to another, i.e., reduce
  - A problem P is "hard"
     for a class C if every
     element of C can be
     "reduced" to P
- If you're "in NP" and "NP-hard", then you're "NP-complete"

 -2
 -3
 15

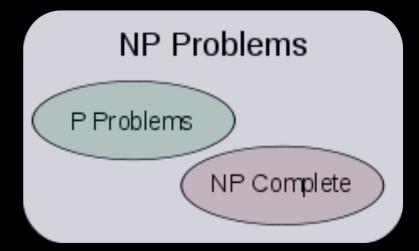
 14
 7
 -10

#### **Subset Sum Problem**

Are there a handful of these numbers (at least 1) that add together to get 0?

- If you guess an answer, can I verify it in polynomial time?
  - Called being "in NP"
  - Non-deterministic (the "guess" part) Polynomial








# The fundamental question. Is P = NP?

- This is THE major unsolved problem in Computer Science!
  - One of 7 "millennium prizes" w/a \$1M reward
- All it would take is solving ONE problem in the NP-complete set in polynomial time!!
  - Huge ramifications for cryptography, others

If  $P \neq NP$ , then



- Other NP-Complete
  - Traveling salesman who needs most efficient route to visit all cities and return home



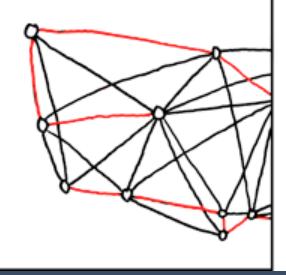




## imgs.xkcd.com/comics/np\_complete.png

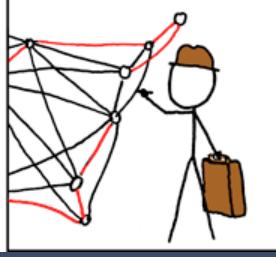
#### MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

|   | [CHOTCHKIES RESTAURANT] |    |  |
|---|-------------------------|----|--|
|   | ~APPETIZERS~            | •  |  |
| 1 | MIXED FRUIT 2.          | 15 |  |
|   | FRENCH FRIES 2.7        | 15 |  |
| ١ | SIDE SALAD 3.3          | 35 |  |
| ١ | HOT WINGS 3.5           | 5  |  |
| ۱ | MOZZARELLA STICKS 4.2   | 0  |  |
|   | SAMPLER PLATE 5.80      | >  |  |
|   | → SANDWICHES →          |    |  |
|   | RARRECUE 6.55           |    |  |


WE'D LIKE EXACTLY \$ 15, 05 WORTH OF APPETIZERS, PLEASE. ... EXACTLY? UHH ... HERE, THESE PAPERS ON THE KNAPSACK PROBLEM MIGHT HELP YOU OUT. LISTEN, I HAVE SIX OTHER TABLES TO GET TO -- AS FAST AS POSSIBLE, OF COURSE. WANT SOMETHING ON TRAVELING SALESMAN?



### imgs.xkcd.com/comics/travelling\_salesman\_problem.png


BRUTE-FORCE SOLUTION:

O(u!)



DYNAMIC PROGRAMMING ALGORITHMS:

 $O(n^2 2^n)$ 



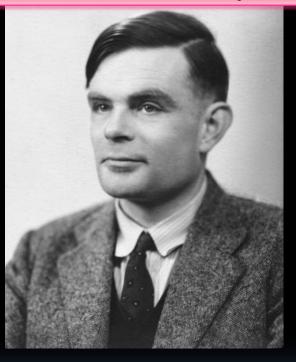
SELUNG ON EBAY: O(1)

STILL WORKING ON YOUR ROUTE?












### **Problems NOT solvable**

- Decision problems
   answer YES or NO for an infinite # of inputs
  - E.g., is N prime?
  - E.g., is sentence S grammatically correct?
- An algorithm is a <u>solution</u> if it correctly answers YES/NO in a finite amount of time
- A problem is <u>decidable</u>
   if it has a solution

June 23, 2012 was his 100th birthday celebration!!



Alan Turing
He asked:
"Are all problems decidable?"
(people used to believe this was true)
Turing proved it wasn't for CS!





# Review: Proof by Contradiction

- Infinitely Many Primes?
- Assume the contrary, then prove that it's impossible
  - Only a finite set of primes,
     numbered p<sub>1</sub>, p<sub>2</sub>, ..., p<sub>n</sub>
  - □ Consider  $q=(p_1 \bullet p_2 \bullet \dots \bullet p_n)+1$
  - Dividing q by p<sub>i</sub> has remainder 1
  - q either prime or composite
    - If prime, q is not in the set
    - If composite, since no p<sub>i</sub> divides **q**, there must be another p that does that is not in the set.



#### **Euclid**

www.hisschemoller.com/wp-content/uploads/2011/01/euclides.jpg

So there's infinitely many primes





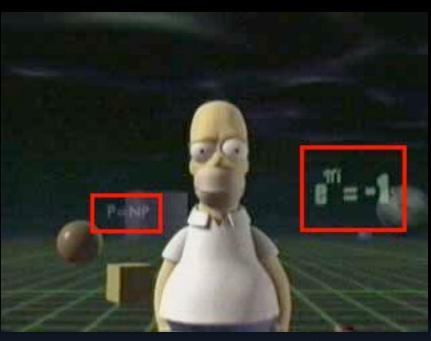


# Turing's proof: The Halting Problem

- Given a program and some input, will that program eventually stop? (or will it loop)
- Assume we could write it, then let's prove a contradiction
  - 1. write Stops on Self?
  - 2. Write Weird
  - 3. Call Weird on itself

```
Weird Weird
```

```
Would [Program] stop on [Input]
    Something Clever (Program)
                                Input
report true
report false
   Stops on Self? Program
      Would (Program) stop on (Program
   Weird Program
    Stops on Self? (Program)
forever
report (true
                                               Garcia
```






### Conclusion

- Complexity theory important part of CS
- If given a hard problem, rather than try to solve it yourself, see if others have tried similar problems
- If you don't need an exact solution, many approximation algorithms help

Some not solvable!



P=NP question even made its way into popular culture, here shown in the Simpsons 3D episode!



