The Beauty and Joy of Computing
Lecture #22: Computational Game Theory
2011-04-18

CHECKERS SOLVED IN 2007!
A 19-year project led by Prof. Jonathan Schaeffer, he used dozens (sometimes hundreds) of computers and AI to prove it is, in perfect play, a draw! This means that if two Gods were to play, nobody would ever win!

www.cs.ualberta.ca/~chinook/

Computer Science ... A UCB view

- CS research areas:
 - Artificial Intelligence
 - Biosystems & Computational Biology
 - Computer Architecture & Engineering
 - Database Management Systems
 - Graphics
 - Human-Computer Interaction
 - Operating Systems & Networking
 - Programming Systems
 - Scientific Computing
 - Security
 - Theory
 - ...

The Turk (1770)
- A Hoax!
- Built by Wolfgang von Kempelen
 - to impress the Empress
- Could play a strong game of Chess
 - Thanks to Master inside
- Toured Europe
 - Defeated Benjamin Franklin & Napoleon!
- Burned in an 1854 fire
 - Chessboard saved.

Claude Shannon's Paper (1950)
- The “Father of Information Theory”
 - Founded the digital computer
 - Defined fundamental limits on compressing/storing data
- Wrote “Programming a Computer for Playing Chess” paper in 1950
 - C. Shannon, Philos. Mag. 41, 256 (1950)
 - All chess programs today have his theories at their core
- His estimate of # of Chess positions called “Shannon #”
 - Now proved ≈ 432

Deep Blue vs Garry Kasparov (1997)
- Kasparov World Champ
- 1996 Tournament – Deep Blue
 - First game DB wins a classic!
 - But DB loses 3 and draws 2 to lose the 6-game match 4-2
 - In 1997 Deep Blue upgraded, renamed “Deeper Blue”
- 1997 Tournament – Deeper Blue
 - GK wins game 1
 - GK resigns game 2
 - even though it was drawn!
 - DB & GK draw games 3-5
 - Game 6 1997-05-11 (May 11)
 - Kasparov blunders in 7, loses in 11 moves. Loses tournament 2½ - 2½
 - GK accuses DB of cheating. No remark.
- Defining moment in AI history

Computational Game Theory
- History
- Definitions
 - Game Theory
 - What Games We Mean
 - Win, Lose, Tie, Draw
 - Weakly / Strongly Solving
- Gamesman
 - Dan’s Undergraduate R&D Group
 - Demo!
- Future
What is “Game Theory”?

Combinatorial
- Sprague and Grundy’s 1939 Mathematics and Games
- Nim, Domineering, dots and boxes
- Film: <last year in manslaughter>
- Complete info, alternating moves
- Goal: last move

Computational
- R. C. Bell’s 1938 Board and Table Games from many Civilizations
- Board games
- Tic-Tac-Toe, Chess, Connect 4, Othello
- Film: Searching for Bobby Fischer
- Complete info, alternating moves
- Goal: Variies

Economic
- von Neumann and Morgenstern’s 1944 Theory of Games and Economic Behavior
- Matrix games
- Prisoner’s dilemma, auctions
- Film: A Beautiful Mind (about John Nash)
- Incomplete info, simultaneous moves
- Goal: Maximize payoff

What “Board Games” do you mean?

- No chance, such as dice or shuffled cards
- Both players have complete information
- No hidden information, as in Stratego & Magic
- Two players (Left & Right) usually alternate moves
- Repeat & skip moves ok
- Simultaneous moves not ok
- The game can end in a pattern, capture, by the absence of moves, or …

What’s in a Strong Solution

- For every position
 - Assuming alternating play
 - Value …
 - for player whose turn it is!
 - Winning (3 losing child)
 - Losing (all children winning)
 - Tying (3 losing child, but 3 losing child)
 - Drawing (can’t force a win or be forced to lose)
 - Remoteness
 - How long before game ends?

GamesCrafters

- We strongly solve abstract strategy games and puzzles
 - 70 games / puzzles in our system
 - Allows perfect play against an opponent
 - Ability to do a post-game analysis

What did you mean “strongly solve”?

Weakly Solving A Game (Checkers)

Log of Search Space Size

Thanks to Jonathan Schaeffer @ U Alberta for this slide…
Strong Solving Example: 1, 2, …, 10

- Rules (on your turn):
 - Running total = 0
- Rules (on your turn):
 - Add 1 or 2 to running total
- Goal
 - Be the FIRST to get to 10
- Example
 - Ana: “2 to make it 2”
 - Bob: “1 to make it 3”
 - Ana: “2 to make it 5”
 - Bob: “2 to make it 7” → photo
 - Ana: “1 to make it 8”
 - Bob: “2 to make it 10”! WIN!

Example: Tic-Tac-Toe

- Rules (on your turn):
 - Place your X or O in an empty slot on 3x3 board
- Goal
 - If your make 3-in-a-row first in any row / column / diag, win
 - Else if board is full with no 3-in-a-row, tie
- Misère is tricky
 - 3-in-row LOSES
 - Pair up and play now, then swap who goes first

Tick-Tack-Toe Answer Visualized!

- Recursive Values Visualization Image
- Misère Tic-tac-toe
 - Outer rim is position
 - Inner levels moves
 - Legend
 - Lose
 - Tie
 - Win

GamesCrafters

- Undergraduate Computational Game Theory Research Group
- 300 students since 2001
 - We now average 200 students
 - They work in teams of 2+
- Most return, take more senior roles (sub-group team leads)
 - Maximization (bottom-up solved)
 - Minimax (value, alpha beta pruning)
 - D4 (graphical interface work)
 - GPU (GPU computing)
 - Architecture (core)
 - New game ideas (add / refactor)
 - Documentation (games & code)

Connect 4 Solved, Online!

- We've just finished a solve of Connect 4!
- It took 30 Machines x 8 Cores x 1 weeks
- Win for the first player (go in the middle!)
 - 3, 5 = tie
 - 1, 2, 6, 7 = lose
- Come play online!

Future

- Board games are exponential
 - So has been the progress of the speed / capacity of computers
- Therefore, every few years, we only get to solve one more "puzzle"
- One by one, we're going to solve them and/or beat humans
 - E.g., Checkers, Go
- Strongly solving (GamesCrafters)
 - We visit EVERY position, and know value of EVERY position
 - E.g., Connect 4
- Weakly solving (Lexiv Albertz)
 - We know game's value by only visiting SOME positions, so we only know value of SOME positions
 - E.g., Checkers

GamesCrafters.berkeley.edu

GamesCrafters.berkeley.edu