CS10 The Beauty and Joy of Computing

Lecture \#11 : Recursion II

2011-03-02

IPAD 2 ANNOUNCED TODAY

Will Apple continue to thrall its users with outstanding technology amidst tons of competition from its Android Rivals? Will Steve Jobs make an appearance? Will you buy one?

How the Computer Works ... n!

- Factorial(n) = n! Inductive definition:
- $n!=1 \quad, n=0$
- $\boldsymbol{n !}=\mathbf{n}^{*}(\mathbf{n}-7)!, n>0$
- Let's act it out...
" "Little people", or "subcontractor" model
- 5!

\mathbf{n}	$\mathrm{n}!$
0	1
1	1
2	2
3	6
4	24
5	120

How the Computer Works ... fib(n)

- Inductive detinifion:
- $\mathbf{f i b}(\mathrm{n})=\mathrm{n}$

$$
F(n):= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F(n-1)+F(n-2) & \text { if } n>1\end{cases}
$$

- Let's act it out...
- "contractor" model
- fib(5)
n fib(n)

0	0
1	1
2	1
3	2
4	3
5	5

,$n<2$

- fib(n) $=$ fib($n-1)+f i b(n-2), n>1$

Garcia, Spring 2011

Order of growth of \# of calls of fib(n)

a) Constant

b) Logarithmic
c) Linear
d) Quadratic
e) Exponential

Chimney of Turku Energia, Turku, Finland featuring Fibonacci sequence in 2 m high neon lights. By Italian artist Mario Merz for an environmental art project.

Counting Change (thanks to BH)

- Given coins $\{50,25$,
$10,5,1\}$ how many
ways are there of making change?
- 5: 2 (N,5 P)
- 10
- 4 (D, 2N, N 5P, 10P)
- 15
- 6 (DN,D5P,3N,2N5P,IN10P, 15P)

- 100?

Call Tree for "Count Change 10 (105 1)"

Skip Coin

Garcia, Spring 2011

Summary

- If's important to understand the machine model
- Recursion is a very powerful idea, and one way to separate good from great

Menger Cube by Dan Garcia

