

Using Computers for Science and Engineering Computers are used to understand things that are: • too big • too small • too fast • too slow • too expensive or • too dangerous for experiments Understanding the universe like Alzheimer's Energy-efficient combustion engines

Addressing Challenges using Computing

- · Two of the most significant challenges
 - Our changing world: understanding climate change, alternative energy sources, mitigation techniques, etc.
 - Health and medicine: understanding the human body, development of treatments, and disease prevention

Towards a Digital Human: The 20+ Year Vision

- Imagine a "digital body double"
 - -3D image-based medical record
 - Includes diagnostic, pathologic, and other information
- Used for:
 - Diagnosis
 - -Less invasive surgery-by-robot
 - Experimental treatments

The Visible Human Project - 18,000 digitized sections of the body Male: 1mm sections, released in 1994 Female: .33mm sections, released in 1995 Goals study of human anatomy testing medical imaging algorithms - Current applications: educational, diagnostic, treatment planning, virtual reality, artistic, mathematical and industrial Used by > 1,400 licensees in 42 countries

The National Library of Medicine's Visible Human Project (TM) Human-Computer Interaction Lab Univ. of Maryland at College Park

Trends in Computer Science

Which of the following are true?

- A. Moore's Law says that processor performance doubles every 18 months
- B. Moore's Law has ended
- C. Most of the time in scientific codes is spent doing arithmetic
- D. None of the above
- E. All of the above

#		Manufacturer	Computer	Country	Cores	Rmax [Pflops]	Power [MW]
1	National University of Defense Technology	NUDT	Tianhe-2 NUDT TH-IVB-FEP, Xeon 12C 2.2GHz, IntelXeon Phi	China	3,120,000	33.9	17.8
2	Oak Ridge National Laboratory	Cray	Titan Cray XK7, Opteron 16C 2.2GHz, Gemini, NVIDIA K20x	USA	560,640	17.6	8.21
3	Lawrence Livermore National Laboratory	IBM	Sequoia BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	1,572,864	17.2	7.89
4	RIKEN Advanced Institute for Computational Science	Fujitsu	K Computer SPARC64 VIIIfx 2.0GHz, Tofu Interconnect	Japan	795,024	10.5	12.7
5	Argonne National Laboratory	IBM	Mira BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	786,432	8.59	3.95
6	Swiss National Supercomputing Centre (CSCS)	Cray	Piz Daint Cray XC30, Xeon E5 8C 2.6GHz, Aries, NVIDIA K20x	Switzer- land	115,984	6.27	2.33
7	Texas Advanced Computing Center/UT	Dell	Stampede PowerEdge C8220, Xeon E5 8C 2.7GHz, Intel Xeon Phi	USA	462,462	5.17	4.51
8	Forschungszentrum Juelich (FZJ)	IBM	JuQUEEN BlueGene/Q, Power BQC 16C 1.6GHz, Custom	Germany	458,752	5.01	2.30
9	Lawrence Livermore National Laboratory	IBM	Vulcan BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	393,216	4.29	1.97
10	Leibniz Rechenzentrum	IBM	SuperMUC iDataPlex DX360M4, Xeon E5 8C 2.7GHz. Infiniband FDR	Germany	147,456	2.90	3.52

Technology for Innovation

Which of the following are true?

- A. Google developed its own programming language to hide machine failures
- B. iPhones are programmed using Java
- C. Web search algorithms use only integer arithmetic, not floating point (real) numbers
- D. Scientific computing is done mostly using "Vector Supercomputers"
- E. All of the above

The Fastest Computers (for Science) Have Been Parallel for a Long Time

- Fastest Computers in the world: top500.org
- Our Hopper Computer has 150,000 cores and > 1 Petaflop (10¹⁵ math operations / second)

Writing Software

Which of the following are true?

- A. Most computer software is written by brilliant hackers, working alone
- B. Parallel programming is a solved problem
- C. Speed of programming and speed of programs are the top goals in software
- D. Most software is rewritten from scratch every few years
- E. None of the above

Why Study Computer Science?

- 1) Because computers can help solve important problems
- 2) Because computers are fun to program
- 3) Because computers make a good career
- 4) Because you will get to work with lots of great people