Beauty and Joy of Computing

Limits of Computing

Ivona Bezáková

CS10: UC Berkeley, April 14, 2014
(Slides inspired by Dan Garcia's slides.)

Computer Science Research Areas

- Artificial Intelligence
- Biosystems \& Computational Biolo
- Database Management Systems
- Graphics
- Human-Computer Interaction
- Networking
- Programming Systems
- Scientific Computing
- Security
- Systems
- Theory
- Complexity theory
- ...

- ...
[www. eecs.berkeley.edu/Research/Areas/]

Revisiting Algorithm Complexity

A variety of problems that:

- are tractable with efficient solutions in reasonable time
- are intractable
- are solvable approximately, not optimally
- have no known efficient solution
- are not solvable

Revisiting Algorithm Complexity

Recall:

- running time of an algorithm: how many steps does the algorithm take as a function of the size of the input
- various orders of growth, for example:
- constant
- logarithmic
- linear
- quadratic
- cubic
- exponential

Examples?

Revisiting Algorithm Complexity

Recall:

- running time of an algorithm: how many steps does the algorithm take as a function of the size of the input
- various orders of growth, for example:
- constant
- logarithmic
- linear
- quadratic
- cubic

Efficient:
order of growth is polynomial
Such problems are said to be "in P" (for polynomial)

- exponential

Intractable Problems

- Can be solved, but not fast enough; for example
- exponential running time
- also, when the running time is polynomial with a huge exponent (e.g., $f(n)=n^{10}$)
- in such cases, can solve only for small n...

Hamiltonian Cycle

Input: cities with road connections between some pairs of cities

Output: possible to go through all such cities (every city exactly once)?

Notice: YES/NO problem
(such problems are called decision problems)

Hamiltonian Cycle

Input: cities with road connections between some pairs of cities

Output: possible to go through all such cities (every city exactly once)?

PEER INSTRUCTION:
For this input, is there a Hamiltonian cycle ?
(a) Answer YES
(b) Answer NO

Hamiltonian Cycle

Input: cities with road connections between some pairs of cities

Output: possible to go through all such cities (every city exactly once)?

What did you do to solve the problem?

Traveling Salesman Problem

Input: cities with road connections between pairs of cities, roads have lengths

Output: find a route that goes through all the cities, returns to the origin, and minimizes the overall traveled length

PEER INSTRUCTION:
For this input, what is the shortest possible length?
(a) total length 7
(b) total length 8
(c) total length 9

(d) total length 10

Traveling Salesman Problem

Input: cities with road connections between pairs of cities, roads have lengths

Output: find a route that goes through all the cities, returns to the origin, and minimizes the overall traveled length

Not a decision problem...
But we can ask:
Is there a route shorter than x ?

Traveling Salesman Problem

David Applegate, Robert Bixby, Vašek Chvátal, William Cook

Bob Bosch (TSP Art)

Hamiltonian Cycle vs Traveling Salesman

- suppose we have a magic device that solves the Traveling Salesman Problem
- can we use it to solve the Hamiltonian Cycle?

This is called a reduction. Find a solution to one problem, then all others that reduce to it can be solved!

P vs NP

Recall: $P=$ problems with polynomial-time algorithms
We do not know how to solve Hamiltonian Cycle or Traveling Salesman in polynomial time! (No efficient solution known.)

But...
If we "guess" a permutation of the cities, we can easily verify whether they form a cycle of length shorter than x.
$N P=$ problems whose solutions can be efficiently verified
(N stands for non-deterministic [guessing]; P is for polynomial)

P vs NP

$P=$ problems with polynomial-time algorithms
$N P=$ problems whose solutions can be efficiently verified
The BIG OPEN PROBLEM in CS: Is $P=N P$???
$\$ 1,000,000$ reward
http://www.claymath.org/millennium-problems
A problem is NP-hard if all problems in NP reduce to it.
I.e., efficiently solving an NP-hard problem gives efficient algorithms for all problems in NP!

An NP-hard problem is NP-complete if it is in NP.
Examples: Hamiltonian Cycle, Traveling Salesman Problem, ...

NP-complete problem: what to do ?

What to tell your boss if they ask you to solve an NP-complete problem: "I can't find an efficient solution but neither can all these famous people."

NP-complete problem: what to do ?

Another option: approximate the solution

- Seems unlikely to solve exactly but sometimes can get "close" to the optimum
- For example, traveling salesman:
- If the input is a metric (satisfies the triangle inequality), then we can efficiently find a solution that is not worse than $1.5 \times$ optimum

Beyond NP: Unsolvable problems

Are there problems that, no matter how much time we use, we cannot solve?

Some terminology:

- Decision problems: YES/NO answer
- Algorithm is a solution if it produces the correct answer in a finite amount of time
- Problem is decidable if it has a solution

Alan Turing
proved that not all problems are decidable!

Review: Proof by Contradiction

How many primes are there?

Euclid
www.hisschemoller.com/wp-content/ uploads/2011/01/euclides.jpg

Beyond NP: The Halting Problem

Input: a program and its input
Output: does the program eventually stop?

Turing's proof, by contradiction:

- Suppose somebody can solve it

- Write Stops on Self
- Write Weird
- Call Weird on itself...

Conclusions

- Complexity theory: important part of CS
- If given an important problem, rather than try to solve it yourself, see if others have tried similar problems
- If you do not need an exact solution, approximation algorithms might help
- Some problems are not solvable!

$P=N P$?

