
Beauty and Joy of Computing

Limits of Computing

Ivona Bezáková

CS10: UC Berkeley, April 14, 2014

(Slides inspired by Dan Garcia’s slides.)

Computer Science Research Areas

•  Artificial Intelligence
•  Biosystems & Computational Biology
•  Database Management Systems
•  Graphics
•  Human-Computer Interaction
•  Networking
•  Programming Systems
•  Scientific Computing
•  Security
•  Systems

•  Theory
 - Complexity theory
 - …

•  …

[www.eecs.berkeley.edu/Research/Areas/]

Revisiting Algorithm Complexity

A variety of problems that:

•  are tractable with efficient solutions in reasonable time
•  are intractable
•  are solvable approximately, not optimally
•  have no known efficient solution
•  are not solvable

Revisiting Algorithm Complexity

Recall:

-  running time of an algorithm: how many steps does the
algorithm take as a function of the size of the input

-  various orders of growth, for example:

-  constant

-  logarithmic

-  linear

-  quadratic

-  cubic

-  exponential

Examples ?

Revisiting Algorithm Complexity

Recall:

-  running time of an algorithm: how many steps does the
algorithm take as a function of the size of the input

-  various orders of growth, for example:

-  constant

-  logarithmic

-  linear

-  quadratic

-  cubic

-  exponential

Efficient:
order of growth is polynomial

Such problems are said to be
“in P” (for polynomial)

Intractable Problems

-  Can be solved, but not fast enough; for example

-  exponential running time

-  also, when the running time is polynomial with a huge
exponent (e.g., f(n) = n10)

-  in such cases, can solve only for small n…

Hamiltonian Cycle

Input: cities with road connections between some pairs of
cities

Output: possible to go through all such cities (every city
exactly once) ?

Notice: YES/NO problem
(such problems are called decision problems)

Hamiltonian Cycle

Input: cities with road connections between some pairs of
cities

Output: possible to go through all such cities (every city
exactly once) ?

PEER INSTRUCTION:

For this input, is there
a Hamiltonian cycle ?

(a)  Answer YES

(b)  Answer NO

Hamiltonian Cycle

Input: cities with road connections between some pairs of
cities

Output: possible to go through all such cities (every city
exactly once) ?

What did you do
to solve the problem ?

Traveling Salesman Problem

Input: cities with road connections between pairs of cities,
roads have lengths

Output: find a route that goes through all the cities, returns
to the origin, and minimizes the overall traveled length

PEER INSTRUCTION:

For this input, what is the shortest
possible length ?

(a)  total length 7

(b)  total length 8

(c)  total length 9

(d)  total length 10

1 2

3

2

1

5

Traveling Salesman Problem

Input: cities with road connections between pairs of cities,
roads have lengths

Output: find a route that goes through all the cities, returns
to the origin, and minimizes the overall traveled length

Not a decision problem…

But we can ask:
Is there a route shorter than x ? 1 2

3

2

1

5

Traveling Salesman Problem

Bob Bosch (TSP Art) David Applegate, Robert Bixby, Vašek Chvátal, William Cook

-  suppose we have a magic device that solves the Traveling
Salesman Problem

-  can we use it to solve the Hamiltonian Cycle ?

This is called a reduction. Find a solution to one problem, then
all others that reduce to it can be solved!

Hamiltonian Cycle vs Traveling Salesman

Recall: P = problems with polynomial-time algorithms

We do not know how to solve Hamiltonian Cycle or Traveling
Salesman in polynomial time! (No efficient solution known.)

But…

If we “guess” a permutation of the cities, we can easily verify
whether they form a cycle of length shorter than x.

NP = problems whose solutions can be efficiently verified

(N stands for non-deterministic [guessing]; P is for polynomial)

P vs NP

P = problems with polynomial-time algorithms

NP = problems whose solutions can be efficiently verified

The BIG OPEN PROBLEM in CS: Is P = NP ???

A problem is NP-hard if all problems in NP reduce to it.

I.e., efficiently solving an NP-hard problem gives efficient
algorithms for all problems in NP!

An NP-hard problem is NP-complete if it is in NP.

Examples: Hamiltonian Cycle, Traveling Salesman Problem, …

P vs NP

$1,000,000 reward
http://www.claymath.org/millennium-problems

NP-complete problem: what to do ?

What to tell your boss if they ask you to solve an NP-complete problem:
“I can’t find an efficient solution but neither can all these famous people.”

http://max.cs.kzoo.edu/~kschultz/CS510/ClassPresentations/NPCartoons.html

NP-complete problem: what to do ?

Another option: approximate the solution

-  Seems unlikely to solve exactly but sometimes can get “close”
to the optimum

-  For example, traveling salesman:

-  If the input is a metric (satisfies the triangle inequality),
then we can efficiently find a solution that is not worse
than 1.5x optimum

Beyond NP: Unsolvable problems

Are there problems that, no matter how much time we use, we
cannot solve ?

Some terminology:

-  Decision problems: YES/NO answer

-  Algorithm is a solution if it produces
the correct answer in a finite amount of
time

-  Problem is decidable if it has a solution
Alan Turing

proved that not all
problems are decidable!

Review: Proof by Contradiction

How many primes are there ?

Input: a program and its input

Output: does the program
eventually stop ?

Turing’s proof, by contradiction:

-  Suppose somebody can solve it

-  Write Stops on Self

-  Write Weird

-  Call Weird on itself…

Beyond NP: The Halting Problem

-  Complexity theory: important part of CS

-  If given an important problem, rather than try to solve it
yourself, see if others have tried similar problems

-  If you do not need an exact solution, approximation
algorithms might help

-  Some problems are not solvable!

Conclusions

http://www.win.tue.nl/~gwoegi/P-versus-NP.htm

P = NP ?

Pavel Pudlák

