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Computer Science Research Areas 

•  Artificial Intelligence 
•  Biosystems & Computational Biology 
•  Database Management Systems 
•  Graphics 
•  Human-Computer Interaction 
•  Networking 
•  Programming Systems 
•  Scientific Computing 
•  Security 
•  Systems 

•  Theory 
 - Complexity theory 
 - … 

•  … 

[www.eecs.berkeley.edu/Research/Areas/] 



Revisiting Algorithm Complexity 

A variety of problems that: 

•  are tractable with efficient solutions in reasonable time 
•  are intractable 
•  are solvable approximately, not optimally 
•  have no known efficient solution 
•  are not solvable 



Revisiting Algorithm Complexity 

Recall: 

-  running time of an algorithm: how many steps does the 
algorithm take as a function of the size of the input 

-  various orders of growth, for example: 

-  constant 

-  logarithmic 

-  linear 

-  quadratic 

-  cubic 

-  exponential 

Examples ? 



Revisiting Algorithm Complexity 

Recall: 

-  running time of an algorithm: how many steps does the 
algorithm take as a function of the size of the input 

-  various orders of growth, for example: 

-  constant 

-  logarithmic 

-  linear 

-  quadratic 

-  cubic 

-  exponential 

Efficient:                                     
order of growth is polynomial 

Such problems are said to be     
“in P” (for polynomial) 



Intractable Problems 

-  Can be solved, but not fast enough; for example 

-  exponential running time 

-  also, when the running time is polynomial with a huge 
exponent (e.g., f(n) = n10) 

-  in such cases, can solve only for small n… 



Hamiltonian Cycle 

Input: cities with road connections between some pairs of 
cities 

Output: possible to go through all such cities (every city 
exactly once) ? 

Notice: YES/NO problem                                                           
(such problems are called decision problems) 



Hamiltonian Cycle 

Input: cities with road connections between some pairs of 
cities 

Output: possible to go through all such cities (every city 
exactly once) ? 

PEER INSTRUCTION: 

For this input, is there                                                                   
a Hamiltonian cycle ? 

(a)  Answer YES 

(b)  Answer NO 



Hamiltonian Cycle 

Input: cities with road connections between some pairs of 
cities 

Output: possible to go through all such cities (every city 
exactly once) ? 

What did you do                                                                         
to solve the problem ? 



Traveling Salesman Problem 

Input: cities with road connections between pairs of cities, 
roads have lengths 

Output: find a route that goes through all the cities, returns 
to the origin, and minimizes the overall traveled length 

PEER INSTRUCTION: 

For this input, what is the shortest                                                      
possible length ? 

(a)  total length 7 

(b)  total length 8 

(c)  total length 9 

(d)  total length 10 
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Traveling Salesman Problem 

Input: cities with road connections between pairs of cities, 
roads have lengths 

Output: find a route that goes through all the cities, returns 
to the origin, and minimizes the overall traveled length 

Not a decision problem… 

But we can ask:                                                                        
Is there a route shorter than x ? 1 2
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Traveling Salesman Problem 

Bob Bosch (TSP Art) David Applegate, Robert Bixby, Vašek Chvátal, William Cook 



-  suppose we have a magic device that solves the Traveling 
Salesman Problem 

-  can we use it to solve the Hamiltonian Cycle ? 

This is called a reduction. Find a solution to one problem, then 
all others that reduce to it can be solved! 

Hamiltonian Cycle vs Traveling Salesman 



Recall: P = problems with polynomial-time algorithms 

We do not know how to solve Hamiltonian Cycle or Traveling 
Salesman in polynomial time! (No efficient solution known.) 

But… 

If we “guess” a permutation of the cities, we can easily verify 
whether they form a cycle of length shorter than x. 

NP = problems whose solutions can be efficiently verified 

(N stands for non-deterministic [guessing]; P is for polynomial) 

P vs NP 



P = problems with polynomial-time algorithms 

NP = problems whose solutions can be efficiently verified 

The BIG OPEN PROBLEM in CS:  Is P = NP ???    

A problem is NP-hard if all problems in NP reduce to it. 

I.e., efficiently solving an NP-hard problem gives efficient 
algorithms for all problems in NP! 

An NP-hard problem is NP-complete if it is in NP. 

Examples: Hamiltonian Cycle, Traveling Salesman Problem, … 

P vs NP 

$1,000,000 reward 
http://www.claymath.org/millennium-problems 



NP-complete problem: what to do ? 

What to tell your boss if they ask you to solve an NP-complete problem:   
“I can’t find an efficient solution but neither can all these famous people.” 

http://max.cs.kzoo.edu/~kschultz/CS510/ClassPresentations/NPCartoons.html 



NP-complete problem: what to do ? 

Another option: approximate the solution 

-  Seems unlikely to solve exactly but sometimes can get “close” 
to the optimum 

-  For example, traveling salesman: 

-  If the input is a metric (satisfies the triangle inequality), 
then we can efficiently find a solution that is not worse 
than 1.5x optimum 



Beyond NP: Unsolvable problems 

Are there problems that, no matter how much time we use, we 
cannot solve ? 

Some terminology: 

-  Decision problems: YES/NO answer 

-  Algorithm is a solution if it produces                                       
the correct answer in a finite amount of                                 
time 

-  Problem is decidable if it has a solution 
Alan Turing 

proved that not all 
problems are decidable! 



Review: Proof by Contradiction 

How many primes are there ? 



Input: a program and its input 

Output: does the program                                                 
eventually stop ? 

Turing’s proof, by contradiction: 

-  Suppose somebody can solve it 

-  Write Stops on Self 

-  Write Weird 

-  Call Weird on itself… 

Beyond NP: The Halting Problem 



-  Complexity theory: important part of CS 

-  If given an important problem, rather than try to solve it 
yourself, see if others have tried similar problems 

-  If you do not need an exact solution, approximation 
algorithms might help 

-  Some problems are not solvable! 

Conclusions 

http://www.win.tue.nl/~gwoegi/P-versus-NP.htm 



P = NP ? 

Pavel Pudlák 


