

UC Berkeley EECS Sr Lecturer SOE Dan Garcia

The Beauty and Joy of Computing

Lecture #24
Future of Computing

Amazon Prime Air!

Good: Deliver to your home in 30

minutes after click

Bad: Drones all over the air? Seriously?

http://www.washingtonpost.com/blogs/theswitch/wp/2013/12/01/amazon-wants-to-deliverpackages-in-30-minutes-with-drones/

bjc

Lecture Overview

- Where will today's computers go?
- Quantum Computing
- DNA Computing
- Biological Machines

Computer Technology - Growth!

•	Processor	<u>Ki</u> lo (10 ³) & <u>Ki</u> bi (2 ¹⁰)
	Speed 2x / 2 years (since '71)	₩ Mega (10 ⁶) & Mebi (2 ²⁰)
	 100X performance last decade 	
	When you graduate: 3 GHz, 32 Cores	<u>Gig</u> a (10°) & <u>Gi</u> bi (2 ³⁰)
	Memory (DRAM)	¥ <u>Te</u> ra (10 ¹²) & <u>Te</u> bi (2 ⁴⁰)
	Capacity: 2x / 2 years (since '96)	<u>ie</u> ra (10) & <u>ie</u> bi (2) ↓
	 64x size last decade. 	<u>Pe</u> ta (10¹⁵) & <u>Pe</u> bi (2⁵°) ↓
	When you graduate: 128 GibiBytes	<u>Ex</u> a (10 ¹⁸) & <u>Ex</u> bi (2 ⁶⁰)
•	Disk	•
	 Capacity: 2x / 1 year (since '97) 	<u>Ze</u> tta (10 ²¹) & <u>Ze</u> bi (2 ⁷⁰)
	 250X size last decade. 	<u>Yo</u> tta (10 ²⁴) & <u>Yo</u> bi (2 ⁸⁰)

250X size last decade.

When you graduate: 16 TeraBytes

UC Berkeley "The Beauty and Joy of Computing" : Future of Computing (3)

Peer Instruction

What was recently proposed to go after Yotta? (i.e., 10²⁷)

- a) Lotta
- b) Lotsa
- c) Wholelotta
- d) Hella
- e) Zillion

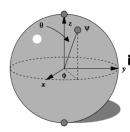
Both Google's and WolframAlpha's calculator can understand and use "Hella" in their calculations!

www.makehellaofficial.blogspot.com

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta

- Kid meets giant Texas people exercising zen-like yoga. Rolf O
- Kind men give ten percent extra, zestfully, youthfully. Hava E
- Kissing Mentors Gives Testy Persistent Extremists Zealous Youthfulness. Gary M
- Kindness means giving, teaching, permeating excess zeal yourself. Hava E
- Killing messengers gives terrible people exactly zero, yo
- Kindergarten means giving teachers perfect examples (of) zeal (&) youth
- Kissing mediocre girls/guys teaches people (to) expect zero (from) you
- Kinky Mean Girls Teach Penis-Extending Zen Yoga
- Kissing Mel Gibson, Teddy Pendergrass exclaimed: "Zesty, yo!" Dan G
- Kissing me gives ten percent extra zeal & youth! Dan G (borrowing parts)

UC Berkeley "The Beauty and Joy of Computing" : Future of Computing (5)



Quantum Computing (1)

- Proposed computing device using quantum mechanics
 - This field in its infancy...
- Normally: bits, which are either 0 or 1
- Quantum: qubits, either 0, 1 or "quantum superposition" of these
 - This is the key idea

- If you have 2 bits, they're in exactly one of these:
 - 00, 01, 10 or 11
- If you have 2 qubits, they're in ALL these states with varying probabilities

A Bloch sphere is the geometric representation of 1 qubit

en.wikipedia.org/wiki/Quantum computer

<u>@</u>090

Quantum Computing (2)

- Imagine a problem with these four properties:
 - The only way to solve it is to guess answers repeatedly and check them,
 - There are n possible answers to check,
 - Every possible answer takes the same amount of time to check, and
 - There are no clues about which answers might be better: generating possibilities randomly is just as good as checking them in some special order.

- ...like trying to crack a password from an encrypted file
- A normal computer
 - would take (in the worst case) n steps
- A quantum computer
 - can solve the problem in steps proportional to √n
- Why does this matter?

UC Berkeley "The Beauty and Joy of Computing" : Future of Computing (7)

Quantum Computing (3)

- Say the password is exactly 72 bits (0/1)
- That's 2⁷² possibilities
- Let's say our Mac lab attacked the problem
 - 30 machines/lab * 8 cores/machine * 3 GHz (say 3 billion checks per second/core)
 - = 720,000,000,000 checks/sec/lab
 - = 720 Gchecks/sec/lab

- Regular computers
 - 2⁷² checks needed / 720 Gchecks/sec/lab
 - ≈ 6.6 billion sec/lab
 - ≈ 208 <u>years</u>/lab
- 72-qubit quantum computers in time α to

$$\sqrt{2^{72}} = 2^{36}$$

- 2³⁶ checks needed / 720 Gchecks/sec/lab
- ≈ 0.1 <u>sec</u>/lab

© 080

Quantum Computing Explained by Physicists

http://www.youtube.com/watch?v=T2DXrs0OpHUs

UC Berkeley "The Beauty and Joy of Computing" : Future of Computing (9)

DNA Computing

- Proposed computing device using DNA to do the work
 - Take advantage of the different molecules of DNA to try many possibilities at once
 - Ala parallel computing
 - Also in its infancy
- In 2004, researchers claimed they built one

Paper in "Nature"

en.wikipedia.org/wiki/DNA_computing

www.eecs.berkeley.edu/~maharbiz/Cyborg.html

Biological Machines

- Michel Maharbiz and his team at Cal have wired insects (here a giant flower beetle) and can control flight
 - Implated as Pupa
- Vision
 - Imagine devices that can collect, manipulate, store and act on info from environment

UC Berkeley "The Beauty and Joy of Computing" : Future of Computing (11)

Peer Instruction

What is the most exciting future for computing?

- a) Incremental improvements in computing architectures
- b) Quantum computing
- c) DNA computing
- d) Biological Machines
- e) Something completely different

© 0 0 0 EY NC 5A

Summary

- What a wonderful time we live in; we're far from done
 - What about privacy?
- Find out the problem you want to solve
 - Computing can and will help us solve it
- We probably can't even imagine future software + hardware breakthroughs

Garcia

UC Berkeley "The Beauty and Joy of Computing" : Future of Computing (13)

