CHECKERS SOLVED!
A 19-year project led by Prof Jonathan Schaeffer, he used dozens (sometimes hundreds) of computers and AI to prove it is, in perfect play, a ... draw! This means that if two Gods were to play, nobody would ever win!

www.cs.ualberta.ca/~chinook/

Computer Science ... A UCB view

- CS research areas:
 - Artificial Intelligence
 - Biosystems & Computational Biology
 - Computer Architecture & Engineering
 - Database Management Systems
 - Graphics
 - Human-Computer Interaction
 - Operating Systems & Networking
 - Programming Systems
 - Scientific Computing
 - Security
 - Theory
 - ...

Claude Shannon’s Paper (1950)

- “Father of Information Theory”
 - Digital computer and digital circuit design theory
 - Defined fundamental limits on compressing/storing data
 - Wrote “Programming a Computer for Playing Chess” paper in (1950)
 - All chess programs today have his theories at their core
 - His estimate of # of Chess positions called "Shannon #" 😇
 - Now proved < 2^64 😇

Computational Game Theory

- History
- Definitions
 - Game Theory
 - What Games We Mean
 - Win, Lose, Tie, Draw
 - Weakly / Strongly Solving
- Gamesman
 - Dan’s Undergraduate R&D Group
 - Demo!!
- Future

The Turk (1770)

- A Hoax!
- Built by Wolfgang von Kempelen
 - To impress the Empress
- Could play a strong game of Chess
 - thanks to Master inside
- Toured Europe
 - Defeated Benjamin Franklin
 - Defeated Napoleon
 - Burned in an 1854 fire
 - Chessboard saved.

Deep Blue vs Garry Kasparov (1997)

- Kasparov World Champ
- 1996 Tournament – Deep Blue
 - First game DB wins a classic!
 - But DB loses 3 and draws 2 to lose the 6-game match 4-2
 - In 1997 Deep Blue upgraded, renamed "Deeper Blue"
- 1997 Tournament – Deeper Blue
 - GK wins game 1
 - GK wins game 2
 - even though it was draw!
 - DB & GK draw games 3-5
 - Game 6: 1997-05-11 (May 11th)
 - Kasparov makes move 7, black in 10 moves.
 - Loses Tournament: 6-4... 2-2
 - GK accuses DB of cheating. No remark.
- Defining moment in AI history

www.eecs.berkeley.edu/Research/Areas/

What is “Game Theory”?

- **Combinatorial**
 - Sprague and Grundy's 1939 Mathematics and Games
 - Nim, Domineering, dots and boxes
 - Film: Last Year in Marienbad
 - Complete info, alternating moves
 - Goal: Last move

- **Computational**
 - P. C. Bells 1998 Board and Table Games from many Civilizations
 - Board games
 - Tic-Tac-Toe, Chess, Connect 4, Othello
 - Film: Searching for Bobby Fischer
 - Complete info, alternating moves
 - Goal: Varies

- **Economic**
 - von Neumann and Morgenstern's 1944 Theory of Games and Economic Behavior
 - Matrix games
 - Prisoner's dilemma, auctions
 - Film: A Beautiful Mind (about John Nash)
 - Incomplete info, simultaneous moves
 - Goal: Maximize payoff

- **Matrix games**
 - Prisoner's dilemma
 - Auctions

- **Simultaneous moves**
 - Goal: Maximize payoff

- **Game Theory**
 - A subfield of Mathematics

- **Board and Table Games**
 - Nim
 - Chess
 - Connect 4
 - Othello
 - Film: Searching for Bobby Fischer

- **Combinatorial**
 - Nim
 - Chess
 - Connect 4
 - Othello
 - Film: Searching for Bobby Fischer

- **Goal**
 - Maximizing payoff

What “Board Games” do you mean?

- No chance, such as dice or shuffled cards
- Both players have complete information
 - No hidden information, as in Stratego or Magic
- Two players (Left & Right) usually alternate moves
 - Repeat & skip moves ok
 - Simultaneous moves not ok
- The game can end in a pattern, capture, by the absence of moves, or ...

What's in a Strong Solution

- For every position
 - Assuming alternating play
 - Value
 - for player whose turn it is
 - Winning (3 losing child)
 - Losing (all children winning)
 - Losing (3 losing child, but 3 losing child)
 - Drawing (can't force a win or be forced to lose)
 - Remoteness
 - How long before game ends?

GamesCrafters

- A group that strongly solves abstract strategy games and puzzles
 - 70 games / puzzles in our system
 - Allows perfect play against an opponent
 - Ability to do a post-game analysis

Weakly Solving A Game (Checkers)

- Master: main line of play to consider
- Workers: positions to search
- Endgame databases (solved)

Log of Search Space Size

- Thanks to Jonathan Schaeffer @ U Alberta for this slide...
Strong Solving Example: 1,2,…,10

- Rules (on your turn):
 - Running total = 0
- Rules (on your turn):
 - Add 1 or 2 to running total
- Goal
 - Be the FIRST to get to 10
- Example
 - Ana: “2 to make it 2”
 - Bob: “1 to make it 3”
 - Ana: “2 to make it 5”
 - Bob: “2 to make it 7” → photo
 - Ana: “1 to make it 8”
 - Bob: “2 to make it 10” WIN!

Example: Tic-Tac-Toe

- Rules (on your turn):
 - Place your X or O in an empty slot on 3x3 board
- Goal
 - If your make 3-in-a-row first in any row / column / diag, win
 - Else if board is full with no 3-in-a-row, tie
- Mise is tricky
 - 3-in-row LOSES
 - Pair up and play now, then swap who goes 1st

Tic-Tac-Toe Answer Visualized!

- Recursive Values Visualization Image
- Misère Tic-tac-toe
 - Outer rim is position
 - Inner levels moves
 - Legend
 - lose
 - Te
 - Win

GamesCrafters (revisited)

- Undergraduate Computational Game Theory Research Group
- 300 students since 2001
 - They work in teams of 2
 - Most return, take more senior roles (sub-group team leads)
 - Minimax bottom-up search
 - DeepBlue (parallelization)
 - GUI (graphical interface work)
 - Beta (GUI refactoring)
 - Architecture (core)
 - New/ice Games (add / refactor)
 - Documentation (games & code)

Connect 4 Solved, Online!

- Just finished a solve of Connect 4!!
- It took 30 Machines x 8 Cores x 1 weeks
- Win for the first player (go in the middle!)
 - 3,5 = tie
 - 1,2,6,7 = lose
- Come play online!

Future

- Board games are exponential
 - So has been the progress of the speed / capacity of computers
 - Therefore, every few years, we only get to solve more "ply"
- One by one, we're going to solve them and/or beat humans
 - E.g., checkers, Go
- Strongly solving (GamesCrafters)
 - We visit EVERY position, and know value of EVERY position
 - E.g., Connect 4
- Weakly solving (Univ Alberta)
 - We know game's value by only visiting SOME positions, so we only know value of SOME positions
 - E.g., Checkers