
EECS150: Interfaces: “FIFO” (a.k.a. Ready/Valid)

UC Berkeley College of Engineering
Department of Electrical Engineering and Computer Science

1 Overview

Perhaps the most important part of creating a large design is how well you connect the different pieces
that comprise the design. Specifically, you are concerned with how the outputs of one component connect
to the inputs of another component.

This document will discuss a general handshake-based interface (input/output port specification)
that modules in your design can conform to. By following this interface specification, you will be able to
connect different modules with no complexity or combinational logic stuck in between them. By following
this interface specification, you will also avoid designing around your own timing assumptions of when
different components need data. As the interface is handshake-based, modules will instead talk to one
another with regards to when they need data.

2 The FIFO Interface

This document’s interface specification, which we will the FIFO Interface1 as it works especially well
with units that pass data in a single direction, such as FIFOs, is shown in Figure 1.

Figure 1 The FIFO Interface

Valid

Ready

DataModule A

(Source)

Module B

(Sink)

In Figure 1, two modules (called the source and the sink) are connected to one another. When data
is being passed from module to module, the source is the module that is outputting data. The sink is
the module that is receiving that data.

In addition to showing the source and the sink, Figure 1 also shows three signals between the two:
Data, Valid, and Ready. Data is the wire that actually passes data from the source to the sink. Valid and
Ready are known as handshaking signals which allow the source and the sink to communicate with
regards to when it is time to pass the data.

The Valid signal (output from the source and input to the sink) indicates that the source has put
valid data on the Data line this cycle. Valid is what is called a state signal: it is high only when data
is valid. If data is not valid on the Data line during a particular cycle, Valid should be low during that
cycle.

The Ready signal (output from the sink and input to the source) indicates that the sink is ready to
receive new data. Ready can be asserted as soon as the sink is ready to receive new data. Whenever the
sink is not ready to receive new data, Ready should be low.

1The “FIFO Interface” is also known as the “Ready/Valid” interface due to the names of its handshake signals: Ready
and Valid.

1

3 The Handshake and Data Transfer

The FIFO Interface handshake ensures that data passes from the source to the sink only when the source
has valid data to pass and when the sink is ready to receive that data. In other words, when Valid and
Ready are both high, data on Data will be latched into the sink on the next rising edge. This is an
important point: since EECS150 is concerned with synchronous design, data will only be transferred at
the rising edge. This handshake, and when it passes data, is shown in Figure 2.

Figure 2 Data transfer at the rising edge

Clock

Valid

Ready

tra
ns

fe
r

This transfer of data happens on every rising edge where Valid and Ready are both asserted. For each
rising edge, however, only one piece of data is transferred. For example, if Valid and Ready are both high
for two consecutive cycles, we transfer two data words (on consecutive clock cycles; see Figure 3).

Note that data transfer only occurs when both Valid and Ready are high. For example, in Figure 4,
neither Valid nor Ready are high. Thus, no data is transferred. Likewise in Figure 5 and Figure 6: if
only one of the two handshaking signals is high, no data is transferred. Figure 7 shows another example:
if the two handshaking signals are both high at some point, but are out of phase, no data is transferred.

4 Advantages of the FIFO Interface

The FIFO Interface eliminates timing assumptions in your design and removes intermediate combina-
tional logic between modules.

Modules that interface with different pieces of hardware must follow the rules laid out by that hard-
ware down to the cycle. To keep track of when every piece of data must be sent / every control signal
must be asserted, students will often construct external counters that count time to determine when
different events should happen. This type of design is crippled by the fact that students are making
large timing assumptions about when each of their modules requires data X or control signal Y. Each
module doesn??t give feedback on these counters: they are either right or wrong, but are not based on
the actual state of the module. If a counter gets misaligned, the circuit will fail horribly.

By basing data transfer on handshaking, each module that is handling the data has input as to when
the data should and can be passed along. After designing each module, you as the student can forget
about the timing of that module, and trust that it will keep track of when it is done processing data
and when it is ready to receive more data. The second benefit of the FIFO interface is that it provides
a 2-wire standard for connecting modules. To connect to modules that follow the FIFO interface, all

2

Figure 3 Two data transfers at two consecutive rising edges

Clock

Valid

Ready

tra
ns

fe
r

tra
ns

fe
r

Figure 4 Both handshaking signals are low: no data is transferred

Clock

Valid

Ready

Figure 5 Valid is high and Ready is low: no data is transferred

Clock

Valid

Ready

3

Figure 6 Valid is low and Ready is high: no data is transferred

Clock

Valid

Ready

Figure 7 Both handshaking signals are high at some point, but are out of phase: no data is transferred

Clock

Valid

Ready

you have to do is connect the Data port from the source to the sink, the Valid port from the source to
the sink, and the Ready port from the sink to the source. When students don’t follow this standard,
they typically substitute in large and complex messes of combinational logic in between each of their
modules to connect them together. If you design by the FIFO interface, and internalize the
logic that generates Valid and Ready, when it comes time to connect modules, you can do so
by just connecting ports together. Down the road of the project, this will save you many hours
of frustration.

5 When to use the FIFO Interface

The FIFO Interface coordinates data transfer. Hence, whenever a module you write passes data to
another module, that data should have accompanying Valid and Ready signals. For each Data line that
you write these handshaking signals for, you eliminate your own timing assumptions about when that
data is supposed to be passed from source to sink, and eliminate a potentially nasty bed of combinational
logic between the source and sink.

Some modules will have more than one Data port. Such modules should have more than one pair of
handshaking signals. For example, the standard FIFO, for which this interface is named, takes data in
and passes data out again. A typical FIFO is shown in Figure 8. Notice that the FIFO serves as both a
source and sink. This is perfectly fine: the FIFO passes and receives data.

4

Figure 8 A FIFO functioning as both a source and sink

Valid

Ready

DataModule A

(Source)

FIFO

Sink Source
Module B

(Sink)

Valid

Ready

Data

6 A Danger: Combinational Loops

When you design using the FIFO Interface, you must be sure that the Valid and Ready signals are not
combinationally linked at either end. In other words, you should not be able to trace a path from:

1. The output of the Valid signal (in the source)

2. Through the combinational logic that generates the Ready signal (in the sink)

3. Back to the combinational logic that generates the Valid signal (again, in the source)

and visa versa when tracing a path starting at the Ready signal. This path is illustrated in Figure 9.

Figure 9 A combinational loop: avoid this at all costs

Combinational Logic Combinational Logic

Valid

Source

Ready

Sink

If you don’t heed this advice, your design will contain a combinational loop. Treat combinational
loops as you would latches: if you have one in your design, your circuit will fail miserably.

Rev. Name Date Description
B Chris Fletcher 2/24/09 Added references to the “Ready/Valid” interface.

A Chris Fletcher 10/9/08 Wrote new document; based on Greg Gibeling’s publications

on the FIFO Interface

5

http://cwfletcher.net/
http://cwfletcher.net/

	Overview
	The FIFO Interface
	The Handshake and Data Transfer
	Advantages of the FIFO Interface
	When to use the FIFO Interface
	A Danger: RedCombinational Loops

