ML505/ML506/ML507 Evaluation Platform

User Guide

UG347 (v3.0) May 19, 2008

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU "AS-IS" WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© 2006-2008 Xilinx, Inc. All rights reserved.

XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. PCI, PCI-SIG, PCI EXPRESS, PCIE, PCI-X, PCI HOT PLUG, MINI PCI, EXPRESSMODULE, and the PCI, PCI-X, PCI HOT PLUG, and MINI PC design marks are trademarks, registered trademarks, and/or service marks of PCI-SIG. All other trademarks are the property of their respective owners.

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
11/29/06	1.0	Initial Xilinx release.
12/01/06	1.1	 Added "44. Soft Touch Landing Pad," page 45 Corrected Table 1-6, page 19 Added Table 1-13, page 24
01/09/06	1.2	 Added new paragraph to "36. VGA Input Video Codec," page 34 Enhanced Table 1-3, page 17 Corrected Table 1-31, page 44
02/16/07	2.0	 Updated document to include ML506 board Corrected Table 1-31, page 44 Enhanced Figure 1-5, page 31 Expanded "26. AC Adapter and Input Power Switch/Jack," page 31 Added Figure B-1, page 55
03/21/07	2.1	 Updated "Features," page 9 Swapped Table 1-3, page 17 with Table 1-24, page 39 for better placement of information Updated description for Table 1-25, page 40 Updated Table 1-31, page 44 (see table notes)
04/17/07	2.2	Corrected GTP/GTX tile location in Table 1-24, page 39
06/28/07	2.3	 Corrected J5 pin 28 in Table 1-11, page 23 Updated Table 1-31, page 44 for XAUI/SRIO support
10/30/07	2.4	 Update Appendix C, "References" Table 1-11, page 23 Added sections on "MIG Compliance," page 16 and "45. System Monitor," page 46
05/19/08	3.0	 Updated document to include ML507 board. Added notes for Figure 1-7, page 36 and Table 1-21, page 36. Updated Appendix C, "References."

Table of Contents

Preface: About This Guide

Guide Contents	5
Additional Documentation	5
Additional Support Resources	
Typographical Conventions	
Online Document	7
Overview	9
Features	
Package Contents	
Additional Information	11
Block Diagram	12
Related Xilinx Documents	12
Detailed Description	13
1. Virtex-5 FPGA	
Configuration	
I/O Voltage Rails	15
Digitally Controlled Impedance	
2. DDR2 SODIMM	
MIG Compliance	
DDR2 Memory Expansion	
DDR2 Clock Signal	
DDR2 Signaling	
3. Differential Clock Input and Output with SMA Connectors	
4. Oscillators	
6. GPIO DIP Switches (Active-High)	
7. User and Error LEDs (Active-High)	
8. User Pushbuttons (Active-High)	
9. CPU Reset Button (Active-Low)	
10. XGI Expansion Headers	
Differential Expansion I/O Connectors	20
Single-Ended Expansion I/O Connectors	
Other Expansion I/O Connectors	
11. Stereo AC97 Audio Codec	
12. RS-232 Serial Port	
13. 16-Character x 2-Line LCD	
14. IIC Bus with 8-Kb EEPROM	
15. DVI Connector	
17. System ACE and CompactFlash Connector	
18. ZBT Synchronous SRAM	
19. Linear Flash Chips	
20. Xilinx XC95144XL CPLD.	
21. 10/100/1000 Tri-Speed Ethernet PHY	
22. USB Controller with Host and Peripheral Ports	
23. Xilinx XCF32P Platform Flash Configuration Storage Devices	

24. JTAG Configuration Port	
25. Onboard Power Supplies	
26. AC Adapter and Input Power Switch/Jack	. 31
27. Power Indicator LED	. 31
28. DONE LED	. 32
29. INIT LED	. 32
30. Program Switch	
31. Configuration Address and Mode DIP Switches	. 32
32. Encryption Key Battery	. 33
33. SPI Flash	. 33
34. IIC Fan Controller and Temperature/Voltage Monitor	. 34
35. Piezo	. 34
36. VGA Input Video Codec	. 34
37. JTAG Trace/Debug	. 35
CPU Debug Description	. 35
CPU JTAG Header Pinout	
CPU JTAG Connection to FPGA	. 38
38. Rotary Encoder	. 39
39. Differential GTP/GTX Input and Output with SMA Connectors	
40. PCI Express Interface	
41. Serial-ATA Host Connectors	. 41
42. SFP Connector	. 41
43. GTP/GTX Clocking Circuitry	
Overview	
Frequency Synthesizer for SFP/SMA GTP/GTX Transceiver Clocking	
SATA GTP/GTX Transceiver Clock Generation	
SGMII / Loopback GTP/GTX Transceiver Clock Generation	
44. Soft Touch Landing Pad	
45. System Monitor	
IIC Buses	
Configuration Options	
JTAG (Xilinx Download Cable and System ACE Controller) Configuration	
Platform Flash Memory Configuration	
Linear Flash Memory Configuration	
SPI Flash Memory Configuration	. 51
Appendix A: Board Revisions	
Appendix B: Programming the IDT Clock Chip	
Overview	55
Downloading to the ML50x Board	. 55
Appendix C: References	

About This Guide

The ML50x evaluation platforms enable designers to investigate and experiment with features of VirtexTM-5 FPGAs. This user guide describes the features and operation of the ML505 (LXT), ML506 (SXT), and ML507 (FXT) Evaluation Platforms.

Guide Contents

This manual contains the following chapters:

- Chapter 1, "ML505/ML506/ML507 Evaluation Platform," provides details on the board components
- Appendix A, "Board Revisions," details the differences between board revisions
- Appendix B, "Programming the IDT Clock Chip," shows how to restore the default factory settings for the clock chip on the ML50x boards
- Appendix C, "References"

Additional Documentation

The following documents are also available for download at http://www.xilinx.com/virtex5.

- Virtex-5 Family Overview
 - The features and product selection of the Virtex-5 family are outlined in this overview.
- Virtex-5 Data Sheet: DC and Switching Characteristics
 - This data sheet contains the DC and Switching Characteristic specifications for the Virtex-5 family.
- Virtex-5 User Guide
 - This user guide includes chapters on:
 - Clocking Resources
 - Clock Management Technology (CMT)
 - Phase-Locked Loops (PLLs)
 - Block RAM and FIFO memory
 - Configurable Logic Blocks (CLBs)
 - ♦ SelectIOTM Resources
 - ♦ I/O Logic Resources
 - ♦ Advanced I/O Logic Resources
- Virtex-5 RocketIO GTP/GTX Transceiver User Guide

This guide describes the RocketIO™ GTP/GTX transceivers available in the Virtex-5 LXT and SXT platform devices.

- Virtex-5 Tri-Mode Ethernet Media Access Controller User Guide
 This user guide describes the dedicated Tri-Mode Ethernet Media Access Controller available in the Virtex-5 LXT and SXT platform devices.
- Virtex-5 Integrated Endpoint Block User Guide for PCI Express Designs
 This user guide describes the integrated Endpoint blocks in the Virtex-5 LXT and SXT platform devices for PCI Express® designs.
- XtremeDSP Design Considerations
 This guide describes the XtremeDSP. slice and includes reference designs for using the DSP48E.
- Virtex-5 Configuration User Guide
 This all-encompassing configuration guide includes chapters on configuration interfaces (serial and SelectMAP), bitstream encryption, Boundary-Scan and JTAG configuration, reconfiguration techniques, and readback through the SelectMAP and JTAG interfaces.
- Virtex-5 System Monitor User Guide
 The System Monitor functionality available in all the Virtex-5 devices is outlined in this guide.
- Virtex-5 Packaging and Pinout Specification
 This specification includes the tables for device/package combinations and maximum I/Os, pin definitions, pinout tables, pinout diagrams, mechanical drawings, and thermal specifications.

Additional Support Resources

To search the database of silicon and software questions and answers, or to create a technical support case in WebCase, see the Xilinx website at: http://www.xilinx.com/support.

Typographical Conventions

This document uses the following typographical conventions. An example illustrates each convention.

Convention Meaning or Use		Example	
Italic font	References to other documents	See the Virtex-5 <i>Configuration Guide</i> for more information.	
ituite joiti	Emphasis in text	The address (F) is asserted <i>after</i> clock event 2.	
<u>Underlined Text</u>	Indicates a link to a web page.	http://www.xilinx.com/virtex5	

Online Document

The following conventions are used in this document:

Convention	Meaning or Use	Example	
Blue text	Cross-reference link to a location in the current document	See the section "Additional Documentation" for details.	
Red text	Cross-reference link to a location in another document	See Figure 5 in the <i>Virtex-5 Data Sheet</i>	
Blue, underlined text	Hyperlink to a website (URL)	Go to http://www.xilinx.com for the latest documentation.	

ML505/ML506/ML507 Evaluation Platform

Overview

ML505, ML506, and ML507 Evaluation Platforms (referred to as ML50*x* in this guide) enable designers to investigate and experiment with features of the Virtex-5 LXT, SXT, and FXT FPGAs. This user guide describes the features and operation of these platforms. Although the ML50*x* platforms provide access to the Virtex-5 RocketIO[™] GTP and GTX transceivers, these boards are only intended for evaluation purposes, not for transceiver characterization.

The ML505, ML506, and ML507 platforms use the same printed-circuit board (PCB). See Appendix A, "Board Revisions" for distinguishing characteristics.

Features

- Xilinx Virtex-5 FPGA
 - XC5VLX50T-1FFG1136 (ML505)
 - ◆ XC5VSX50T-1FFG1136 (ML506)
 - ◆ XC5VFX70T-1FFG1136 (ML507)
- Two Xilinx XCF32P Platform Flash PROMs (32 Mb each) for storing large device configurations
- Xilinx System ACE[™] CompactFlash configuration controller with Type I CompactFlash connector
- Xilinx XC95144XL CPLD for glue logic
- 64-bit wide, 256-MB DDR2 small outline DIMM (SODIMM), compatible with EDK supported IP and software drivers
- Clocking
 - Programmable system clock generator chip
 - One open 3.3V clock oscillator socket
 - External clocking via SMAs (two differential pairs)
- General purpose DIP switches (8), LEDs (8), pushbuttons, and rotary encoder
- Expansion header with 32 single-ended I/O, 16 LVDS-capable differential pairs, 14 spare I/Os shared with buttons and LEDs, power, JTAG chain expansion capability, and IIC bus expansion
- Stereo AC97 audio codec with line-in, line-out, 50-mW headphone, microphone-in jacks, SPDIF digital audio jacks, and piezo audio transducer

- RS-232 serial port, DB9 and header for second serial port
- 16-character x 2-line LCD display
- One 8-Kb IIC EEPROM and other IIC capable devices
- PS/2 mouse and keyboard connectors
- Video input/output
 - Video input (VGA)
 - Video output DVI connector (VGA supported with included adapter)
- ZBT synchronous SRAM, 9 Mb on 32-bit data bus with four parity bits
- Intel P30 StrataFlash linear flash chip (32 MB)
- Serial Peripheral Interface (SPI) flash (2 MB)
- 10/100/1000 tri-speed Ethernet PHY transceiver and RJ-45 with support for MII, GMII, RGMII, and SGMII Ethernet PHY interfaces
- USB interface chip with host and peripheral ports
- Rechargeable lithium battery to hold FPGA encryption keys
- JTAG configuration port for use with Parallel Cable III, Parallel Cable IV, or Platform USB download cable
- Onboard power supplies for all necessary voltages
- Temperature and voltage monitoring chip with fan controller
- 5V @ 6A AC adapter
- Power indicator LED
- MII, GMII, RGMII, and SGMII Ethernet PHY Interfaces
- GTP/GTX: SFP (1000Base-X)
- GTP/GTX: SMA (RX and TX Differential Pairs)
- GTP/GTX: SGMII
- GTP/GTX: PCI Express® (PCIeTM) edge connector (x1 Endpoint)
- GTP/GTX: SATA (dual host connections) with loopback cable
- GTP/GTX: Clock synthesis ICs
- Mictor trace port
- BDM debug port
- Soft touch port
- System monitor

10

Package Contents

- Xilinx Virtex-5 ML50x Evaluation Platform
- System ACE CompactFlash card
- Power supply
- DVI to VGA adaptor

Additional Information

Additional information and support material is located at:

- ML505 http://www.xilinx.com/ml505
- ML506 http://www.xilinx.com/ml506
- ML507 http://www.xilinx.com/ml507

This information includes:

- Current version of this user guide in PDF format
- Example design files for demonstration of Virtex-5 features and technology
- Demonstration hardware and software configuration files for the System ACE controller, Platform Flash configuration storage device, CPLD, and linear flash chips
- MicroBlazeTM EDK reference design files
- Full schematics in PDF format and ViewDraw schematic format
- PC board layout in Allegro PCB format
- Gerber files for the PC board (Many free or shareware Gerber file viewers are available on the internet for viewing and printing these files.)
- Additional documentation, errata, frequently asked questions, and the latest news

For information about the Virtex-5 family of FPGA devices, including product highlights, data sheets, user guides, and application notes, see the Virtex-5 website at www.xilinx.com/virtex5. Additional information is available from the data sheets and application notes from the component manufacturers.

Block Diagram

Figure 1-1 shows a block diagram of the ML50x Evaluation Platform (board).

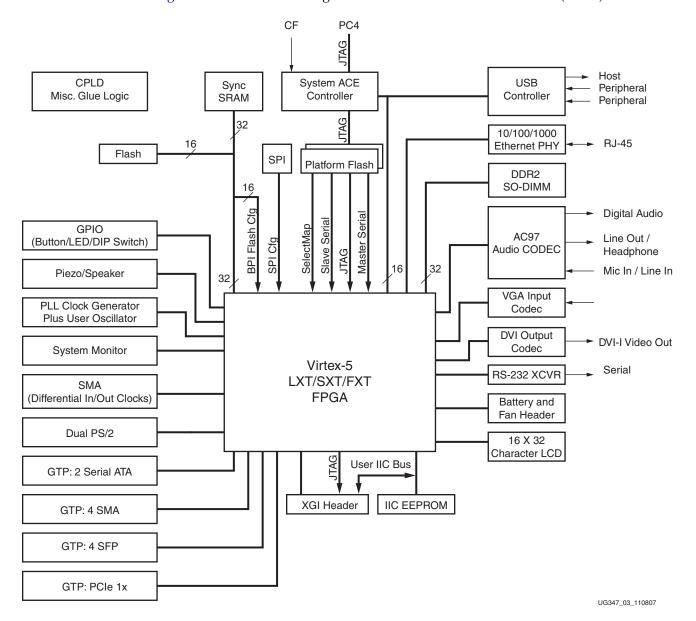


Figure 1-1: Virtex-5 ML50x Evaluation Platform Block Diagram

Related Xilinx Documents

Prior to using the ML50*x* Evaluation Platform, users should be familiar with Xilinx resources. See Appendix C, "References" for direct links to Xilinx documentation. See the following locations for additional documentation on Xilinx tools and solutions:

- EDK: www.xilinx.com/edk
- ISE: www.xilinx.com/ise
- Answer Browser: <u>www.xilinx.com/support</u>
- Intellectual Property: www.xilinx.com/ipcenter

Detailed Description

The ML505 Evaluation Platform is shown in Figure 1-2 (front) and Figure 1-3, page 14 (back). The numbered sections on the pages following the figures contain details on each feature.

Figure 1-2: Detailed Description of Virtex-5 ML505 Components (Front)

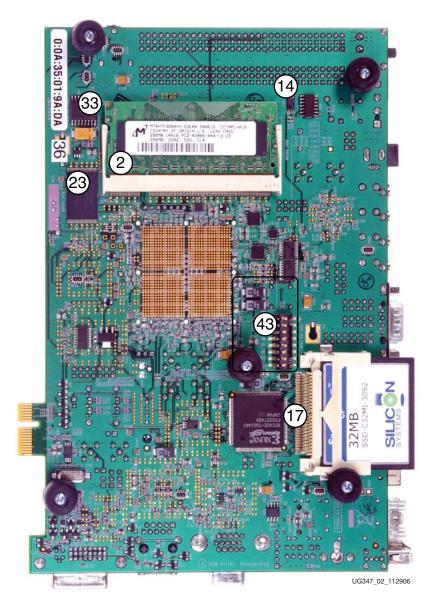


Figure 1-3: Detailed Description of Virtex-5 ML505 Components (Back)

Note: The label on the CompactFlash (CF) card shipped with your board might differ from the one shown.

1. Virtex-5 FPGA

A Xilinx Virtex-5 FPGA is installed on the board. See Appendix A, "Board Revisions" for device details.

Configuration

The board supports configuration in all modes: JTAG, Master Serial, Slave Serial, Master SelectMAP, Slave SelectMAP, Byte-wide Peripheral Interface (BPI) Up, BPI Down, and SPI modes. See the "Configuration Options," page 50 section for more information.

I/O Voltage Rails

Table 1-1 summarizes the FPGA I/O voltage rail and the voltages applied to each bank.

Table 1-1: I/O Voltage Rail of FPGA Banks

FPGA Bank	I/O Voltage Rail	
0	3.3V	
1	3.3V	
2	3.3V	
3	2.5V no DCI	
4	3.3V no DCI	
5(1)	$3.3V$ DCI with 49.9Ω resistors installed	
6	3.3V (unused)	
11	User selectable as 2.5V or 3.3V using jumper J20	
12	$3.3V$ DCI with 49.9Ω resistors installed	
13	User selectable as 2.5V or 3.3V using jumper J20	
15	$1.8 V$ DCI with 49.9Ω resistors installed	
17	$1.8 V$ DCI with 49.9Ω resistors installed	
18	3.3V no DCI	
19	$1.8 V$ DCI with 49.9Ω resistors installed	
20	$3.3V$ DCI with 49.9Ω resistors installed	
21	$1.8 V$ DCI with 49.9Ω resistors installed	
22	$3.3V$ DCI with 49.9Ω resistors installed	
23(1)	$3.3V$ DCI with 49.9Ω resistors installed	
25	3.3V (unused)	

Notes:

1. Banks 5 and 23 are available on the ML507 only.

Digitally Controlled Impedance

Some FPGA banks can support the digitally controlled impedance (DCI) feature in Virtex-5 FPGAs. Support for DCI is summarized in Table 1-2.

Table 1-2: DCI Capability of FPGA Bank

FPGA Bank	DCI Capability	
1	Not supported	
2	Not supported	
3	Not supported	
4	Not supported	
11	Yes, 49.9Ω resistors are installed	
12	Not supported	
13	Yes, 49.9Ω resistors are installed	
14	Yes, 49.9Ω resistors are installed	
15	Yes, 49.9Ω resistors are installed	
16	Yes, 49.9Ω resistors are installed	
17	Yes, 49.9Ω resistors are installed	
18	Not supported	
21	Yes, 49.9Ω resistors are installed	

2. DDR2 SODIMM

The ML50*x* platform is shipped with a single-rank unregistered 256 MB SODIMM. The DDR2 SODIMM used is generally a Micron MT4HTF3264HY-53E or similar module. Serial Presence Detect (SPD) using an IIC interface to the DDR DIMM is also supported with the FPGA.

Note: The board is only tested for DDR2 SDRAM operation at a 400 MHz data rate. Faster data rates might be possible but are not tested.

MIG Compliance

The ML50x DDR2 interface is MIG pinout compliant. The MIG DDR2 routing guidelines outlined in the *Xilinx Memory Interface Generator (MIG) User Guide* [Ref 17] have been achieved.

The board's DDR2 SODIMM memory interface is designed to the requirements defined by the *MIG User Guide* using the MIG tool. The MIG documentation requires that designers follow the MIG pinout and layout guidelines. The MIG tool generates and ensures that the proper FPGA I/O pin selections are made in support of the board's DDR2 interface. The initial pin selection for the board was modified and then re-verified to meet the MIG pinout requirements. To ensure a robust interface, the ML50x DDR2 layout incorporates matched trace lengths for data signals to the corresponding data strobe signal as defined in the MIG user guide. See Appendix C, "References" for links to additional information about MIG and Virtex-5 FPGAs in general.

DDR2 Memory Expansion

The DDR2 interface support user installation of SODIMM modules with more memory since higher order address and chip select signals are also routed from the SODIMM to the FPGA.

DDR2 Clock Signal

Two matched length pairs of DDR2 clock signals are broadcast from the FPGA to the SODIMM. The FPGA design is responsible for driving both clock pairs with low skew. The delay on the clock trace is designed to match the delay of the other DDR2 control signals.

DDR2 Signaling

All DDR2 SDRAM control signals are terminated through 47Ω resistors to a 0.9V VTT reference voltage. The FPGA DDR2 interface supports SSTL18 signaling and all DDR2 signals are controlled impedance. The DDR2 data, mask, and strobe signals are matched length within byte groups. The ODT functionality of the SODIMM should be utilized.

Differential Clock Input and Output with SMA Connectors

High-precision clock signals can be input to the FPGA using differential clock signals brought in through 50Ω SMA connectors. This allows an external function generator or other clock source to drive the differential clock inputs that directly feed the global clock input pins of the FPGA. The FPGA can be configured to present a 100Ω termination impedance.

A differential clock output from the FPGA is driven out through an LVDS clock multiplexer (U12) onto a second pair of SMA connectors (J12 and J13). This allows the FPGA to drive a precision clock to an external device such as a piece of test equipment.

Table 1-3 summarizes the differential SMA clock pin connections.

Connector	Clock Name	FPGA Pin	ML505/ML506	ML507
J10	SMA_DIFF_CLK_IN_P	H14	GTP1 of	GTX1 of
J11	SMA_DIFF_CLK_IN_N	H15		GTX_X0Y5 receive pair
J12 ⁽¹⁾	SMA_DIFF_CLK_OUT_P	J20	GTP1 of	GTX1 of
J13 ⁽¹⁾	SMA_DIFF_CLK_OUT_N	J21	GTP_X0Y4 transmit pair	GTX_X0Y5 transmit pair

Table 1-3: Differential SMA Clock Connections

Notes:

1. When jumper J54 (located near the battery) is not shunted (default), the FPGA differential clock output is selected on U12 and driven out to the SMA connectors, J12 and J13.

Oscillators

The board has one crystal oscillator socket (X1) wired for standard LVTTL-type oscillators. It connects to the FPGA clock pin as shown in Table 1-4, page 18. The X1 socket is populated with a 100-MHz oscillator and is powered by the 3.3V supply

The board also provides an IDT5V9885 (U8) EEPROM programmable clock generator device. This device is used to generate a variety of clocks to the board peripherals and

FPGA. The programmable clock generator provides the following factory default single-ended outputs:

- 25 MHz to the Ethernet PHY (U16)
- 24.5 MHz to the audio codec (U22)
- 27 MHz to the USB Controller (U23)
- 33 MHz to the Xilinx System ACE CF (U2)
- 33 MHz, 27 MHz, and a differential 200 MHz clock to the Xilinx FPGA

If users change the factory default configuration of the clock generator chip, the related reference design material might not work as designed. Instructions for returning the IDT5V9885 to the factory default configuration are provided in Appendix B, "Programming the IDT Clock Chip."

Table 1-4: Oscillator Socket Connections

Reference Designator	Clock Name	FPGA Pin	Description
X1	USER_CLK	AH15	100 MHz single-ended
U8	CLK_33MHZ_FPGA	AH17	33 MHz single-ended
U8	CLK_27MHZ_FPGA	AG18	27 MHz single-ended
U8	CLK_FPGA_P	L19	200 MHz differential pair (pos)
U8	CLK_FPGA_N	K19	200 MHz differential pair (neg)

5. LCD Brightness and Contrast Adjustment

Turning potentiometer R87 adjusts the image contrast of the character LCD. The potentiometer should be turned with a screwdriver.

6. GPIO DIP Switches (Active-High)

Eight general-purpose (active-High) DIP switches are connected to the user I/O pins of the FPGA. Table 1-5 summarizes these connections.

Table 1-5: DIP Switch Connections (SW4)

SW4	FPGA Pin
GPIO_DIP_SW1	U25
GPIO_DIP_SW2	AG27
GPIO_DIP_SW3	AF25
GPIO_DIP_SW4	AF26
GPIO_DIP_SW5	AE27
GPIO_DIP_SW6	AE26
GPIO_DIP_SW7	AC25
GPIO_DIP_SW8	AC24

7. User and Error LEDs (Active-High)

There are a total of 15 active-High LEDs directly controllable by the FPGA:

- Eight green LEDs are general purpose LEDs arranged in a row
- Five green LEDs are positioned next to the North-East-South-West-Center-oriented pushbuttons (only the *center* one is cited in Figure 1-2, page 13)
- Two red LEDs are intended to be used for signaling error conditions, such as bus errors, but can be used for any other purpose

Some LEDs are buffered through the CPLD to allow the LED signals to be used as higher-performance I/O by way of the XGI expansion connector. Table 1-6 summarizes the LED definitions and connections.

Table 1-6: User and Error LED Connections

Reference Designator	Label/Definition	Color	FPGA Pin	Buffered
DS20	LED North	Green	AF13	Yes
DS21	LED East	Green	AG23	Yes
DS22	LED South	Green	AG12	Yes
DS23	LED West	Green	AF23	Yes
DS24	LED Center	Green	E8	Yes
DS17	GPIO LED 0	Green	H18	Yes
DS16	GPIO LED 1	Green	L18	Yes
DS15	GPIO LED 2	Green	G15	Yes
DS14	GPIO LED 3	Green	AD26	No
DS13	GPIO LED 4	Green	G16	Yes
DS12	GPIO LED 5	Green	AD25	No
DS11	GPIO LED 6	Green	AD24	No
DS10	GPIO LED 7	Green	AE24	No
DS6	Error 1	Red	F6	No
DS6	Error 2	Red	T10	No

8. User Pushbuttons (Active-High)

Five active-High user pushbuttons are available for general purpose usage and are arranged in a North-East-South-West-Center orientation (only the *center* one is cited in Figure 1-2, page 13). Table 1-7 summarizes the user pushbutton connections.

Table 1-7: User Pushbutton Connections

Reference Designator	Label/Definition	FPGA Pin
SW10	N (GPIO North)	U8
SW11	S (GPIO South)	V8
SW12	E (GPIO East)	AK7
SW13	W (GPIO West)	AJ7
SW14	C (GPIO Center)	AJ6

9. CPU Reset Button (Active-Low)

The CPU reset button is an active-Low pushbutton and is used as a system or user reset button. This pushbutton switch is wired only to an FPGA I/O pin so it can also be used as a general-purpose pushbutton switch (Table 1-8).

Table 1-8: CPU Reset Connections

Reference Designator	Label/Definition	FPGA Pin
SW7	CPU RESET	E9

10. XGI Expansion Headers

The board contains expansion headers for easy expansion or adaptation of the board for other applications. The expansion connectors use standard 0.1-inch headers. The expansion connectors contain connections to single-ended and differential FPGA I/Os, ground, 2.5V/3.3V/5V power, JTAG chain, and the IIC bus. All signals on connectors J4 and J6 have matched length traces that are matched to each other.

Differential Expansion I/O Connectors

Header J4 contains 16 pairs of differential signal connections to the FPGA I/Os. This permits the signals on this connector to carry high-speed differential signals, such as LVDS data. All differential signals are routed with 100Ω differential trace impedance. Matched length traces are used across all differential signals on J5. Consequently, these signals connect to the FPGA I/O, and they can be used as independent single-ended nets. The V_{CCIO} of these signals can be set to 2.5V or 3.3V by setting jumper J20. Table 1-9, page 21 summarizes the differential connections on this expansion I/O connector.

Table 1-9: Expansion I/O Differential Connections (J4)					
J4 Differential Pin Pair		Schematic Net Name		FPGA Pin	
Pos	Neg	Pos	Neg	Pos	Neg
4	2	HDR2_4	HDR2_2	L34	K34
8	6	HDR2_8	HDR2_6	K33	K32
12	10	HDR2_12	HDR2_10	P32	N32
16	14	HDR2_16	HDR2_14	T33	R34
20	18	HDR2_20	HDR2_18	R33	R32
24	22	HDR2_24	HDR2_22	U33	T34
28	26	HDR2_28	HDR2_26	U32	U31
32	30	HDR2_32	HDR2_30	V32	V33
36	34	HDR2_36	HDR2_34	W34	V34
40	38	HDR2_40	HDR2_38	Y33	AA33
44	42	HDR2_44	HDR2_42	AF34	AE34
48	46	HDR2_48	HDR2_46	AF33	AE33
52	50	HDR2_52	HDR2_50	AC34	AD34
56	54	HDR2_56	HDR2_54	AC32	AB32

Table 1-9: Expansion I/O Differential Connections (J4)

Single-Ended Expansion I/O Connectors

58

62

60

64

Header J6 contains 32 single-ended signal connections to the FPGA I/Os. This permits the signals on this connector to carry high-speed, single-ended data. All single-ended signals on connector J6 are matched length traces. The V_{CCIO} of these signals can be set to 2.5V or 3.3V by setting jumper J20. Table 1-10 summarizes the single-ended connections on this expansion I/O connector.

HDR2_58

HDR2_62

AC33

AN32

AB33

AP32

HDR2_60

HDR2_64

J6 Pin	Schematic Net Name	FPGA Pin
2	HDR1_2	H33
4	HDR1_4	F34
6	HDR1_6	H34
8	HDR1_8	G33
10	HDR1_10	G32
12	HDR1_12	H32
14	HDR1_14	J32
16	HDR1_16	J34

Table 1-10: Expansion I/O Single-Ended Connections (J6) (Cont'd)

J6 Pin	Schematic Net Name	FPGA Pin
18	HDR1_18	L33
20	HDR1_20	M32
22	HDR1_22	P34
24	HDR1_24	N34
26	HDR1_26	AA34
28	HDR1_28	AD32
30	HDR1_30	Y34
32	HDR1_32	Y32
34	HDR1_34	W32
36	HDR1_36	AH34
38	HDR1_38	AE32
40	HDR1_40	AG32
42	HDR1_42	AH32
44	HDR1_44	AK34
46	HDR1_46	AK33
48	HDR1_48	AJ32
50	HDR1_50	AK32
52	HDR1_52	AL34
54	HDR1_54	AL33
56	HDR1_56	AM33
58	HDR1_58	AJ34
60	HDR1_60	AM32
62	HDR1_62	AN34
64	HDR1_64	AN33

Other Expansion I/O Connectors

In addition to the high-speed I/O paths, additional I/O signals and power connections are available to support expansion cards plugged into the ML50x board. Fourteen I/O pins from the general-purpose pushbutton switches and LEDs on the board are connected to expansion connector J5. This permits additional I/Os to connect to the expansion connector if the pushbutton switches and LEDs are not used. The connection also allows the expansion card to utilize the pushbutton switches and LEDs on the board.

The expansion connector also allows the board's JTAG chain to be extended onto the expansion card by setting jumper J21 accordingly.

The IIC bus on the board is also extended onto the expansion connector to allow additional IIC devices to be bused together. If the expansion IIC bus is to be utilized, the user must

have the IIC pull-up resistors present on the expansion card. Bidirectional level shifting transistors allow the expansion card to utilize 2.5V to 5V signaling on the IIC bus.

Power supply connections to the expansion connectors provide ground, 2.5V, 3.3V, and 5V power pins. If the expansion card draws significant power from the ML50x board, ensure that the total power draw can be supplied by the board.

The ML50x expansion connector is backward compatible with the expansion connectors on the ML40x, ML32x, and ML42x boards, thereby allowing their daughter cards to be used with the ML50x Evaluation Platform. Table 1-11 summarizes the additional expansion I/O connections.

Table 1-11: Additional Expansion I/O Connections (J5)

J5 Pin	Label	FPGA Pin	Description
1	VCC5	_	5V Power Supply
2	VCC5	_	5V Power Supply
3	VCC5	_	5V Power Supply
4	VCC5	_	5V Power Supply
5	NC	-	Not Connected
6	VCC3V3	_	3.3V Power Supply
7	VCC3V3	-	3.3V Power Supply
8	VCC3V3	-	3.3V Power Supply
9	VCC3V3	-	3.3V Power Supply
10	NC	_	Not Connected
11	FPGA_EXP_TMS	_	Expansion TMS
12	FPGA_EXP_TCK	-	Expansion TCK
13	FPGA_EXP_TDO	_	Expansion TDO
14	FPGA_EXP_TDI	_	Expansion TDI
15	GPIO_LED_N	AF13	LED North
16	SW3 (N)	U8	GPIO Switch North
17	GPIO_LED_C	E8	LED Center
18	SW14 (C)	AJ6	GPIO Switch Center
19	GPIO_LED_W	AF23	LED West
20	SW13 (W)	AJ7	GPIO Switch West
21	GPIO_LED_S	AG12	LED South
22	SW11 (S)	V8	GPIO Switch South
23	GPIO_LED_E	AG23	LED East
24	SW12 (E)	AK7	GPIO Switch East
25	GPIOLED 0	H18	GPIO LED 0

Table 1-11: Additional Expansion I/O Connections (J5) (Cont'd)

J5 Pin	Label	FPGA Pin	Description
26	GPIOLED 1	L18	GPIO LED 1
27	GPIOLED 2	G15	GPIO LED 2
28	GPIOLED 4	G16	GPIO LED 4
29	NC	-	Not Connected
30	NC	-	Not Connected
31	IIC_SCL_EXP	F9	Expansion IIC SCL
32	IIC_SDA_EXP	F8	Expansion IIC SDA

11. Stereo AC97 Audio Codec

The ML50*x* board has an AC97 audio codec (U22) to permit audio processing. The Analog Devices AD1981 Audio Codec supports stereo 16-bit audio with up to 48-kHz sampling. The sampling rate for record and playback can be different.

Note: The reset for the AC97 codec is shared with the reset signal for the flash memory chips and is designed to be asserted at power-on or at system reset.

Separate audio jacks are provided for Microphone, Line In, Line Out, and Headphone. All jacks are stereo except for Microphone. The Headphone jack is driven by the audio codec's internal 50-mW amplifier. The SPDIF jack supplies digital audio output from the codec. Table 1-12 summarizes the audio jacks.

Table 1-12: Audio Jacks

Reference Designator	Function	
P10	Microphone - In	
P11	Analog Line - In	
P12	Analog Line - Out	
P13	Headphone - Out	
P14	SPDIF - Out	

Table 1-13 shows the control pins for the AC 97 audio codec.

Table 1-13: Audio Codec Control Connections

Net Name	FPGA Pin
AUDIO_BIT_CLK	AF18
AUDIO_SDATA_IN	AE18
AUDIO_SDATA_OUT	AG16
AUDIO_SYNC	AF19
FLASH_AUDIO_RESET_B	AG17

12. RS-232 Serial Port

The ML50x board contains one male DB-9 RS-232 serial port, allowing the FPGA to communicate serial data with another device. The serial port is wired as a host (DCE) device. Therefore, a null modem cable is normally required to connect the board to the serial port on a computer. The serial port is designed to operate up to 115200 Bd. An interface chip is used to shift the voltage level between FPGA and RS-232 signals.

Note: The FPGA is connected only to the TX and RX data pins on the serial port. Therefore, other RS-232 signals, including hardware flow-control signals, are not used. Flow control should be disabled when communicating with a computer.

A secondary serial interface is available by using header J61 to support debug of the USB controller chip. Header J61 brings out RS-232 voltage level signals for ground, TX data, and RX data.

13. 16-Character x 2-Line LCD

The ML50x board has a 16-character x 2-line LCD (Tianma TM162VBA6) on the board to display text information. Potentiometer R87 adjusts the contrast of the LCD. The data interface to the LCD is connected to the FPGA to support 4-bit mode only. The CPLD is used to shift the voltage level between the FPGA and the LCD. The LCD module has a connector that allows the LCD to be removed from the board to access to the components below it.

Caution! Care should be taken not to scratch or damage the surface of the LCD window.

14. IIC Bus with 8-Kb EEPROM

An IIC EEPROM (STMicroelectronics M24C08) is provided on the board to store non-volatile data such as an Ethernet MAC address. The EEPROM write protect is disabled on the board. IIC bus pull-up resistors are provided on the board.

The IIC bus is extended to the expansion connector so that the user can add additional IIC devices and share the IIC controller in the FPGA. If the expansion IIC bus is to be utilized, the user must have additional IIC pull-up resistors present on the expansion card. Bidirectional level shifting transistors allow the expansion card to utilize 2.5V to 5V signaling on IIC.

15. DVI Connector

A DVI connector (P7) is present on the board to support an external video monitor. The DVI circuitry utilizes a Chrontel CH7301C capable of 1600 X 1200 resolution with 24-bit color. The video interface chip drives both the digital and analog signals to the DVI connector. A DVI monitor can be connected to the board directly. A VGA monitor can also be connected to the board using the supplied DVI-to-VGA adaptor. The Chrontel CH7301C is controlled by way of the video IIC bus.

The DVI connector (Table 1-14) supports the IIC protocol to allow the board to read the monitor's configuration parameters. These parameters can be read by the FPGA using the VGA IIC bus.

Table 1-14: DVI Controller Connections

Net Name	FPGA Pin
DVI_D[0]	AB8
DVI_D[1]	AC8
DVI_D[2]	AN12
DVI_D[3]	AP12
DVI_D[4]	AA9
DVI_D[5]	AA8
DVI_D[6]	AM13
DVI_D[7]	AN13
DVI_D[8]	AA10
DVI_D[9]	AB10
DVI_D[10]	AP14
DVI_D[11]	AN14
DVI_XCLK_P	AL11
DVI_XCLK_N	AL10
DVI_HSYNC	AM12
DVI_VSYNC	AM11
DVI_DE	AE8
DVI_RESET_B	AK6

16. PS/2 Mouse and Keyboard Ports

The board contains two PS/2 ports: one for a mouse (P5) and the other for a keyboard (P4). Bidirectional level shifting transistors allow the FPGA's 1.8V I/O to interface with the 5V I/O of the PS/2 ports. The PS/2 ports on the board are powered directly by the main 5V power jack, which also powers the rest of the board.

Caution! Care must be taken to ensure that the power load of any attached PS/2 devices does not overload the AC adapter.

17. System ACE and CompactFlash Connector

The Xilinx System ACE CompactFlash (CF) configuration controller allows a Type I CompactFlash card to program the FPGA through the JTAG port. Both hardware and software data can be downloaded through the JTAG port. The System ACE controller supports up to eight configuration images on a single CompactFlash card. The configuration address switches allow the user to choose which of the eight configuration images to use.

System ACE error and status LEDs indicate the operational state of the System ACE controller:

- A blinking red error LED indicates that no CompactFlash card is present
- A solid red error LED indicates an error condition during configuration
- A blinking green status LED indicates a configuration operation is ongoing
- A solid green status LED indicates a successful download

Every time a CompactFlash card is inserted into the System ACE socket, a configuration operation is initiated. Pressing the System ACE reset button re-programs the FPGA.

Note: System ACE configuration is enabled by way of a DIP switch. See "31. Configuration Address and Mode DIP Switches."

The board also features a System ACE *failsafe* mode. In this mode, if the System ACE controller detects a failed configuration attempt, it automatically reboots back to a predefined configuration image. The failsafe mode is enabled by inserting two jumpers across J18 and J19 (in horizontal or vertical orientation).

Caution! Use caution when inserting a CompactFlash card with exposed metallic surfaces. Improper insertion can cause a short with the traces or components on the board.

The System ACE MPU port is connected to the FPGA. This connection allows the FPGA to use the System ACE controller to reconfigure the system or access the CompactFlash card as a generic FAT file system. The data bus for the System ACE MPU port is shared with the USB controller.

18. ZBT Synchronous SRAM

The ZBT synchronous SRAM (ISSI IS61NLP25636A-200TQL) provides high-speed, low-latency external memory to the FPGA. The memory is organized as 256K x 36 bits. This organization provides for a 32-bit data bus with support for four parity bits. The ZBT SRAM is located under the removable LCD and is not visible in Figure 1-2, page 13.

Note: The SRAM and FLASH memory share the same data bus.

19. Linear Flash Chips

A NOR linear flash device (Intel JS28F256P30T95) is installed on the board to provide 32 MB of flash memory. This memory provides non-volatile storage of data, software, or bitstreams. The flash chip is 16 bits wide and shares its data bus with SRAM. The flash memory can also be used to program the FPGA.

Note: The reset for the AC97 Codec is shared with the reset signal for the flash memory chips and is designed to be asserted at power-on or at system reset.

20. Xilinx XC95144XL CPLD

A Xilinx XC95144XL CPLD provides general-purpose glue logic for the board. The CPLD is located under the removable LCD and is not visible in Figure 1-2, page 13. The CPLD is programmed from the main JTAG chain of the board. The CPLD is mainly used to implement level translators, simple gates, and buffers.

21. 10/100/1000 Tri-Speed Ethernet PHY

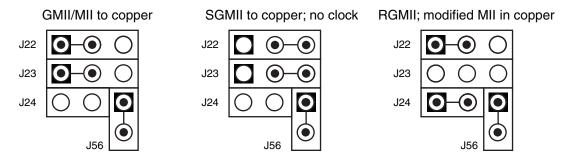

The board contains a Marvell Alaska PHY device (88E1111) operating at 10/100/1000 Mb/s. The board supports MII, GMII, RGMII, and SGMII interface modes with the FPGA. The PHY is connected to a Halo HFJ11-1G01E RJ-45 connector with built-in magnetics. The PHY is configured to default at power-on or reset to the settings shown in Table 1-15. These settings can be overwritten via software. All modes are selectable by the jumpers as shown in Table 1-15.

Table 1-15: Board Connections for PHY Configuration Pins

Config Pin	Connection on Board	Bit[2] Definition and Value	Bit[1] Definition and Value	Bit[0] Definition and Value
CONFIG0	V _{CC} 2.5V	PHYADR[2] = 1	PHYADR[1] = 1	PHYADR[0] = 1
CONFIG1	Ground	ENA_PAUSE = 0	PHYADR[4] = 0	PHYADR[3] = 0
CONFIG2	V _{CC} 2.5V	ANEG[3] = 1	ANEG[2] = 1	ANEG[1] = 1
CONFIG3	V _{CC} 2.5V	ANEG[0] = 1	ENA_XC = 1	DIS_125 = 1
CONFIG4	V _{CC} 2.5V or LED_DUPLEX or LED_LINK1000 (Set by J23 and J24)	HWCFG_MODE[2] = 0 or 1 (Set by J23 and J24)	HWCFG_MODE[1] = 1	HWCFG_MODE[0] = 1
CONFIG5	V _{CC} 2.5V or LED_LINK10 (Set by J22)	DIS_FC = 1	DIS_SLEEP = 1	HWCFG_MODE[3] = 1
CONFIG6	LED_RX	SEL_BDT = 0	INT_POL = 1	$75/50\Omega = 0$

Jumpers J22, J23, and J24 allow the user to select the default interface that the PHY uses (Figure 1-4 and Table 1-16). The interface can also be changed via MDIO commands.

Note: J56 = SATA Clock Select

UG347 05 112706

Figure 1-4: PHY Jumpers on the Board

Table 1-16: PHY Default Interface Mode

Mode	Jumper Settings			
wode	J22 J23		J24	
GMII/MII to copper (default)	Jumper over pins 1-2	Jumper over pins 1-2	No jumper	
SGMII to copper, no clock	Jumper over pins 2-3	Jumper over pins 2-3	No jumper	
RGMII	Jumper over pins 1-2	No jumper	Jumper on	

22. USB Controller with Host and Peripheral Ports

A Cypress CY7C67300 embedded USB host controller provides USB connectivity for the board. The USB controller supports host and peripheral modes of operation. The USB controller has two serial interface engines (SIE) that can be used independently. SIE1 is connected to the USB Host connector (P18). SIE2 is connected only to the USB Peripheral connector (P17).

The USB controller has an internal microprocessor to assist in processing USB commands. The firmware for this processor can be stored in its own dedicated IIC EEPROM (U28) or can be downloaded from a host computer via a peripheral connector. The USB controller's serial port is connected to J30 through an RS-232 transceiver to assist with debug. Jumper J50 can be installed to prevent the USB controller from executing firmware stored in the IIC EEPROM.

23. Xilinx XCF32P Platform Flash Configuration Storage Devices

The two onboard Xilinx XCF32P Platform Flash configuration storage devices offer a convenient and easy-to-use configuration solution for the FPGA. The Platform Flash memory holds up to two separate configuration images (up to four with compression) that can be accessed through the configuration address switches. To use the Platform Flash memory to configure the FPGA, the configuration DIP switch must be set to the correct position.

The Platform Flash memory can program the FPGA by using the master or slave configuration in serial or parallel (SelectMap) modes. The Platform Flash memory is programmed using Xilinx iMPACT software through the board's JTAG chain. See the "Configuration Options," page 50 section for more information.

24. JTAG Configuration Port

The JTAG configuration port for the board (J1) allows for device programming and FPGA debug. The JTAG port supports the Xilinx Parallel Cable III, Parallel Cable IV, or Platform USB cable products. Third-party configuration products might also be available. The JTAG chain can also be extended to an expansion board by setting jumper J21 accordingly. See the "Configuration Options," page 50 section for more information.

25. Onboard Power Supplies

Power supply circuitry on the board generates 0.9V, 1.0V, 1.8V, 2.5V, and 3.3V voltages to power the components on the board. The 1.0V, 1.8V, and 3.3V supplies are driven by Texas Instruments PTH08T2 switching power regulators. These regulators are driven with a 400 kHz clock so they run synchronous to each other, reducing noise caused by beat frequencies. The clocks sent to each regulator are also out of phase to reduce reflected noise at the input. In addition, the board utilizes the regulators' *turbo trans* feature to improve output transient response.

The diagram in Figure 1-5, page 31 shows the power supply architecture and maximum current handling on each supply. The typical operating currents are significantly below the maximum capable. The board is normally shipped with a 15W power supply, which should be sufficient for most applications.

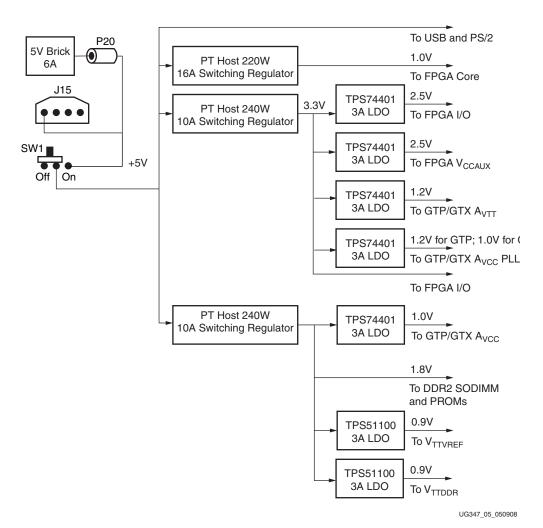


Figure 1-5: Power Supply Diagram

26. AC Adapter and Input Power Switch/Jack

The board can be powered by one of two 5V sources; P20, a 2.1 mm x 5.5 mm barrel type plug (center positive) and J15, a Personal Computer (PC) type disk drive connector. The barrel type plug connects to the 30W (5V @ 6A) power brick provided with the board while the PC disk drive connector is provided for users who want to power their board while it is installed inside a PC chassis. For applications requiring additional power, such as the use of expansion cards drawing significant power, a larger AC adapter might be required. If a different AC adapter is used, its load regulation should be less than 10% or better than $\pm 10\%$. The power switch, SW1, turns the board on and off by controlling the 5V supply to the board as shown in Figure 1-5, page 31.

Note: Never apply power to the power brick connector (P20) and the PC disk drive connector (J15) at the same time as this will result in damage to the board.

27. Power Indicator LED

The PWR Good LED lights when the 5V supply is applied.

28. DONE LED

The DONE LED indicates the status of the DONE pin on the FPGA. It should be lighted when the FPGA is successfully configured.

29. INIT LED

The INIT LED lights upon power-up to indicate that the FPGA has successfully powered up and completed its internal power-on process.

30. Program Switch

This switch grounds the FPGA's **Prog** pin when pressed. This action clears the FPGA.

31. Configuration Address and Mode DIP Switches

The 8-position DIP switch (SW3) sets the address and mode of configuration. It also enables fallback configuration of the platform flash and enables System ACE configuration. Table 1-17 lists the function of each switch.

Table 1-17: Configuration Address DIP Switch Settings

Switch (SW3)	Function		
1	Config Address [2].		
2	Config Address [1].		
3	Config Address [0].		
4	MODE [2].		
5	MODE [1].		
6	MODE [0].		
7	Platform Flash Fallback (On = Enable, Off = Disable). ⁽¹⁾		
8	System ACE Configuration (On = Enable, Off = Disable). When enabled, the System ACE controller configures the FPGA from the CF card whenever a card is inserted or the SYSACE RESET button is pressed.		

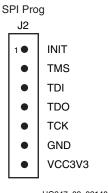
Notes:

1. Reserved for future use. Not currently implemented.

Configuration Address [2:0] allows the user to select among multiple configuration images. For System ACE configuration, up to eight possible configurations can be stored on a CF card. Platform Flash and Linear Flash can hold up to four separate bitstreams that can be chosen by Configuration Address [2:0].

Mode[2:0] selects the FPGA configuration mode according to Table 1-18.

Table 1-18: Configuration Mode DIP Switch Settings


Mode[2:0]	Mode		
000	Master Serial (Platform Flash, up to four configurations)		
001	SPI (One configuration)		
010	BPI Up (Parallel NOR Flash, up to four configurations)		
011	BPI Down (Parallel NOR Flash, up to four configurations)		
100	Master SelectMAP (Platform Flash, up to four configurations)		
101	JTAG (PC4, System ACE up to eight configurations)		
110	Slave SelectMAP (Platform Flash, up to four configurations)		
111	Slave Serial (Platform Flash, up to four configurations)		

32. Encryption Key Battery

An onboard rechargeable lithium battery is connected to the V_{BATT} pin of the FPGA to hold the encryption key for the FPGA.

33. SPI Flash

The ML50x board has a 32-Mb SPI Flash (ST Microelectronics M25P32). The SPI Flash can be used for FPGA configuration or to hold user data. The SPI Flash can be in-system programmed using a Xilinx download cable with flying leads attached to header J2 (Figure 1-6).

UG347_09_021407

Figure 1-6: J2 SPI Flash Programming Header

34. IIC Fan Controller and Temperature/Voltage Monitor

Onboard temperature and voltage monitoring and control is handled by an Analog Devices ADT7476A chip. This chip is controlled via IIC and can provide the following functions:

- Measure the voltage of 5V, 3.3V, 1.8V, and 1.0V supplies
- Measure FPGA temperature via DXP/DXN pins on the FPGA
- Measure ambient temperature
- Read power good status signals from 2.5V linear regulators
- PWM control of fan speed
- Fan Tachometer readings
- Generate interrupts/alarms based on readings

Connector J31 is a keyed three-pin fan header similar to those found in computers. It is designed to support a 5V DC fan. To bypass the fan controller chip and operate the fan at full speed, the user can populate connector J32.

For high-power operating conditions, a heatsink and/or fan for the FPGA can be accommodated on the board. The board does not ship with a heatsink/fan unit but can accommodate one (for example, Calgreg Electronics Smart-CLIP family of heatsink/fan assemblies).

35. Piezo

A piezo audio transducer (Table 1-19) is provided to allow simple beeps, tones, and songs to be played. The piezo is driven by a transistor controlled by the FPGA.

Table 1-19: Piezo Connection

Name	FPGA Pin	
piezo	G30	

36. VGA Input Video Codec

The DB15HD connector (P8) on the board supports connectivity to an external VGA source. The VGA input codec circuitry utilizes an Analog Devices AD9980 device (U19). The AD9980 is an 8-bit 95 MSPS interface optimized for capturing YPbPr video and RGB graphics signals. Its 95 MSPS encode rate supports HDTV video modes and graphics resolutions up to XGA (1024×768 at 85 Hz). The Analog Devices AD9980 device is controlled by way of the Video IIC bus.

Table 1-20 shows the connections for the VGA input video codec.

Table 1-20: VGA Interface Connections

Net Name	FPGA Pin	
VGA_IN_RED0	AG5	
VGA_IN_RED1	AF5	
VGA_IN_RED2	W7	
VGA_IN_RED3	V7	
VGA_IN_RED4	AH5	

Table 1-20: VGA Interface Connections (Cont'd)

Net Name	FPGA Pin	
VGA_IN_RED5	AG6	
VGA_IN_RED6	Y11	
VGA_IN_RED7	W11	
VGA_IN_GREEN0	Y8	
VGA_IN_GREEN1	Y9	
VGA_IN_GREEN2	AD4	
VGA_IN_GREEN3	AD5	
VGA_IN_GREEN4	AA6	
VGA_IN_GREEN5	Y7	
VGA_IN_GREEN6	AD6	
VGA_IN_GREEN7	AE6	
VGA_IN_BLUE0	AC4	
VGA_IN_BLUE1	AC5	
VGA_IN_BLUE2	AB6	
VGA_IN_BLUE3	AB7	
VGA_IN_BLUE4	AA5	
VGA_IN_BLUE5	AB5	
VGA_IN_BLUE6	AC7	
VGA_IN_BLUE7	AD7	
VGA_IN_CLAMP	AH7	
VGA_IN_COAST	AG7	
VGA_IN_EVEN_B	W6	
VGA_IN_VSOUT	Y6	
VGA_IN_HSOUT	AE7	
VGA_IN_SOGOUT	AF6	

37. JTAG Trace/Debug

CPU Debug Description

External-debug mode can be used to alter normal program execution. It provides the ability to debug both system hardware and software. External-debug mode supports setting of multiple breakpoints, as well as monitoring processor status. Access to processor debugging resources is available through the CPU JTAG port (J51) providing the appropriate connections to the FPGA fabric are in place.

The JTAG debug port supports the four required JTAG signals: TCK, TMS, TDI, and TDO. It also implements the optional TRST signal. The frequency of the JTAG clock signal can range from 0 MHz (DC) to one-half of the processor clock frequency. The JTAG debug port logic is reset at the same time the system is reset, using TRST. When TRST is asserted, the JTAG TAP controller returns to the test-logic reset state.

Figure 1-7 shows a 38-pin Mictor connector that combines the CPU Trace and the CPU Debug interfaces for high-speed, controlled-impedance signaling.

Note: MICTOR_* pins are only available on the ML507 board. These pins are not connected on the ML505 and ML506 boards.

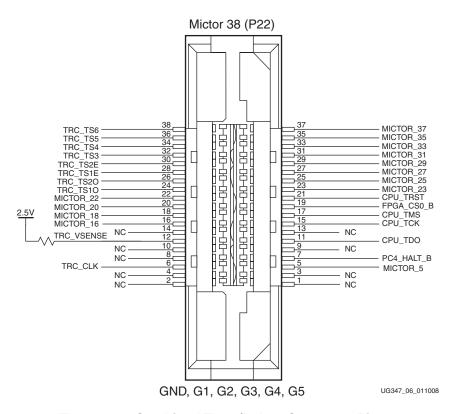


Figure 1-7: Combined Trace/Debug Connector Pinout

Table 1-21 shows the CPU trace/debug connections from P22 to the FPGA and BDM.

Table 1-21: CPU Trace/Debug Connection to FPGA

Pin Name ⁽¹⁾	FPGA Pin (U1)	Mictor Pin (P22)	BDM Pin (J51)
-	NC	1	
-	NC	2	
-		3	
-	NC	4	
MICTOR_5	A24	5	
TRC_CLK	AD9	6	
PC4_HALT_B (CPU_HALT_N)	W9	7	11
-	NC	8	

Table 1-21: CPU Trace/Debug Connection to FPGA (Cont'd)

Pin Name ⁽¹⁾	FPGA Pin (U1)	Mictor Pin (P22)	BDM Pin (J51)
-	NC	9	
-	NC	10	
CPU_TDO	E7	11	1
TRC_VSENSE	-	12	
-	NC	13	
-	NC	14	
CPU_TCK	E6	15	7
MICTOR_16	B18	16	
CPU_TMS	U10	17	9
MICTOR_18	B17	18	
FPGA_CS0_B (CPU_TDI)	AF21	19	3
MICTOR_20	B16	20	
CPU_TRST	V10	21	4
MICTOR_22	B15	22	
MICTOR_23	A23	23	
TRC_TS1O	AF10	24	
MICTOR_25	A21	25	
TRC_TS2O	AF9	26	
MICTOR_27	A20	27	
TRC_TS1E	AK9	28	
MICTOR_29	A19	29	
TRC_TS2E	AK8	30	
MICTOR_31	A18	31	
TRC_TS3	AJ11	32	
MICTOR_33	A16	33	
TRC_TS4	AK11	34	
MICTOR_35	A15	35	
TRC_TS5	AD11	36	
MICTOR_37	A14	37	
TRC_TS6	AD10	38	

Notes:

^{1.} MICTOR_* pins are only available on the ML507 board. These pins are not connected on the ML505 and ML506 boards.

CPU JTAG Header Pinout

Figure 1-8 shows J12, the 16-pin header that can be used to debug the software operating in the CPU with debug tools such as Parallel Cable IV or third party tools.

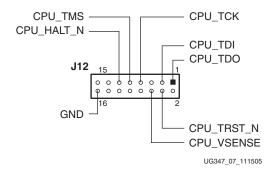


Figure 1-8: CPU JTAG Header (J12)

CPU JTAG Connection to FPGA

The connections between the CPU JTAG header (J12) and the FPGA are shown in Table 1-22. These are attached to the PPC405 JTAG debug resources using normal FPGA routing resources. The JTAG debug resources are not hard-wired to particular pins and are available for attachment in the FPGA fabric, making it possible to route these signals to the preferred FPGA pins.

Table 1-22: CPU JTAG Connection to FPGA

Pin Name	FPGA Pin (U1)	Connector Pin (J12)
CPU_TDO	E7	1
FPGA_SC0_B (CPU_TDI)	AF21	3
CPU_TRST_N	V10	4
CPU_TCK	E6	7
CPU_TMS	U10	9
PC4_HALT_B (CPU_HALT_N)	W9	11

38. Rotary Encoder

The board provides connectivity to a rotary encoder (Panasonic EVQWK4001) with 15 detents, pushbutton, and two phase output signals for direction of rotation interpretation. One complete revolution of the rotary wheel produces 15 pulses that are output on nets FPGA_ROTARY_INCA and FPGA_ROTARY_INCB. Pushing the rotary wheel laterally causes a momentary switch closure on the FPGA_ROTARY_PUSH output. The rotary encoder circuit is wired so that all switch closures result in an active-High output. Table 1-23 shows the connections for the rotary encoder.

Table 1-23: Rotary Encoder Connections

Name	FPGA Pin (U1)
FPGA_ROTARY_INCA	AH30
FPGA_ROTARY_INCB	AG30
FPGA_ROTARY_PUSH	AH29

39. Differential GTP/GTX Input and Output with SMA Connectors

Four SMA connectors (Rosenberger 32K153-400E3) provide a convenient and easily accessible method of interfacing to GTP/GTX transceivers s for general-purpose connectivity. The SMAs are designed and laid out to provide high-quality GTP/GTX connections for speeds up to 3.125 Gb/s. Although the ML50x provides access to the GTP/GTX transceivers, the board is not intended for transceiver characterization.

The transmit pair is connected directly from the FPGA to the SMA connectors while the receive pair is connected to the FPGA via series AC coupling capacitors. If a DC-coupled receive-side connection is desired, these capacitors can be replaced with 0Ω 0402-size resistors. Table 1-24 shows the GTP transceiver pairs available through the SMA connectors.

Table 1-24: GTP Pairs through SMA Connectors

Pin Name	FPGA Pin	Connector	ML505/ML506	ML507
SMA_RX_P	K1	J43	GTP1 of	GTX1 of
SMA_RX_N	J1	J42	GTP_X0Y4 receive pair	GTX_X0Y5 receive pair
SMA_TX_P	L2	J45	GTP1 of	GTX1 of
SMA_TX_N	K2	J44	GTP_X0Y4 receive pair	GTX_X0Y5 receive pair

40. PCI Express Interface

Table 1-25 shows the PCIe connector (P21) that provides single-lane access through the RocketIO transceivers to the Virtex-5 integrated Endpoint block for PCIe designs. See the *Virtex-5 Integrated Endpoint Block User Guide for PCI Express Designs* [Ref 11] for more information.

Table 1-25: PCle Connection to FPGA

Pin Name	FPGA Pin (U1)	Edge Connector Pin (P21)	Description
PCIE_RX_N	AF1	B15	Integrated Endpoint block receive pair
PCIE_RX_P	AE1	B14	integrated Endpoint block receive pair
PCIE_TX_N	AE2	A17	Integrated Endpoint block transmit pair
PCIE_TX_P	AD2	A16	nitegrated Endpoint block transmit pair
PCIE_CLK_N	AF3	A14	Integrated Endpoint block differential
PCIE_CLK_P	AF4	A13	clock pair from PCIe edge connector
PCIE_PRSNT_B	AF24	A1, B17	Integrated Endpoint block present signal
PCIE_PERST_B	-	A11	Integrated Endpoint block reset signal available on CPLD
PCIE_WAKE_B	-	B11	Integrated Endpoint block wake signal available on CPLD

Notes:

- 1. For ML505/ML506 platforms, access is through GTP0 of GTP_X0Y1.
- 2. For ML507 platforms, access is through GTX0 of GTX_X0Y2.

41. Serial-ATA Host Connectors

Serial-ATA (SATA) is the next generation of the ATA interface used for storage devices such as hard disks. The board contains two SATA host connectors that can be connected to a SATA device (such as a hard disk) using a standard SATA cable. The SATA connectors are connected to GTPs on the FPGA as shown in Table 1-26.

Table 1-26: SATA Connections

Pin Name	FPGA Pin (U1)	Connector Pin	ML505/ML506	ML507
SATA1_RX_P	W1	J40, pin 6	GTP0 of	GTX0 of
SATA1_RX_N	Y1	J40, pin 5	GTP_X0Y2 receive pair	GTX_X0Y3 receive pair
SATA1_TX_P	V2	J40, pin 2	GTP0 of	GTX0 of
SATA1_TX_N	W2	J40, pin 3	GTP_X0Y2 transmit pair	GTX_X0Y3 transmit pair
SATA2_RX_P	AB1	J41, pin 6	GTP1 of	GTX1 of
SATA2_RX_N	AA1	J41, pin 5	GTP_X0Y2 receive pair	GTX_X0Y3 receive pair
SATA2_TX_P	AC2	J41, pin 2	GTP1 of	GTX1 of
SATA2_TX_N	AB2	J41, pin 3	GTP_X0Y2 transmit pair	GTX_X0Y3 transmit pair

SATA can also be used as a convenient and low cost medium for connecting GTP/GTX transceivers. The SATA physical interface can carry GTP/GTX signals up to 1.5 Gb/s for general-purpose usage. The board ships with a special Xilinx SATA crossover cable that is used as a loopback connection between the two SATA host connectors for loopback testing and bit error rate testing (BERT). The SATA crossover cable can also be used to connect GTP/GTX transceivers between two boards. For GTP/GTX SATA clock jumpering, see Figure 1-4, page 29.

Note: The special SATA crossover cable cannot be used to connect a SATA host to a SATA device (that is, PC to hard disk). It is only intended for host-to-host loopback connections.

42. SFP Connector

The board contains a small form-factor pluggable (SFP) connector and cage assembly that accepts SFP modules. The SFP interface is connected to GTP0 of GTP_X0Y4 on the FPGA. The SFP module serial ID interface is connected to the IIC multiplexer on the board (See "14. IIC Bus with 8-Kb EEPROM," page 25 for more information). The control and status signals for the SFP module are connected to jumpers, test points, and LEDs as described in Table 1-27. The SFP module connections are shown in Table 1-28, page 42.

Table 1-27: Configuration for SFP Module Control and Status Signals

SFP Control/Status Signal	Board Connection
SFP TX FAULT	Test Point TP20 • High = Fault • Low = Normal Operation
SFP TX DISABLE	Jumper J82 • Jumper Off = SFP Enabled • Jumper On = SFP Disabled
SFP MOD DETECT	Test Point TP21 • High = Module Not Present • Low = Module Present
SFP RT SEL	Jumper J81 • Jumper Off = Full Bandwidth • Jumper On = Reduced Bandwidth
SFP LOS	Test Point TP22 • High = Loss of Receiver Signal • Low = Normal Operation LED DS40 • LED Off = Loss of Receiver Signal • LED On = Normal Operation

Table 1-28: SFP Module Connections

SFP Signal	FPGA Pin (U1)	Description			
CLKBUF_Q0_P	H4	AC-coupled, LVDS, GTP REFCLK pair.			
CLKBUF_Q0_N	Н3	AC-coupled, LVD3, GTT KETCLK pail.			
SFP_RX_P	G1	Receive pair.			
SFP_RX_N	H1	ML505/ML506: GTP0 of GTP_X0Y4ML507: GTX0 of GTX_X0Y5			
SFP_TX_P	F2	Transmit pair.			
SFP_TX_N	G2	ML505/ML506: GTP0 of GTP_X0Y4ML507: GTX0 of GTX_X0Y5			

43. GTP/GTX Clocking Circuitry

Overview

Low jitter LVDS clock sources on the board provide high-quality reference clocks for the GTP/GTX transceivers. Different clock sources are provided to support each of the transceiver interfaces on the board. Table 1-29 provides a summary of the GTP clock sources. Table 1-29 provides a summary of the GTX clock sources.

Table 1-29: GTP Clock Sources (ML505/ML506)

GTP	Pairs	Fraguanay	GTP Tile	GTP REFCLK Diff Pair			
GTP0	GTP1	Frequency	Location	Positive	Negative		
SFP	SMA	Variable	GTP_X0Y4	H4	НЗ		
SATA1	SATA2	75 or 150 MHz	GTP_X0Y2	Y4	Y3		
SGMII	Loopback	125 MHz	GTP_X0Y3	P4	Р3		
PCIe (1)	Loopback	100 MHz	GTP_X0Y1	AF4	AF3		

Notes:

Table 1-30: GTX Clock Sources (ML507)

GTX	Pairs	Frequency	GTX Tile	GTX REFCLK Diff Pair		
GTX0	GTX1	Frequency	Location	Positive	Negative	
SFP	SMA	Variable	GTX_X0Y5	H4	НЗ	
SATA1	SATA2	75 or 150 MHz	GTX_X0Y3	Y4	Y3	
SGMII	Loopback	125 MHz	GTX_X0Y4	P4	Р3	
PCIe (1)	Loopback	100 MHz	GTX_X0Y2	AF4	AF3	

Notes:

Frequency Synthesizer for SFP/SMA GTP/GTX Transceiver Clocking

An Integrated Circuit Systems ICS843001-21 frequency synthesizer chip offers flexible, low-jitter clock generation for the GTP/GTX pair connected to SFP and SMA interfaces. The ICS843001-21 is connected to a 19.44-MHz crystal and a socketed 25-MHz oscillator (X5).

DIP switches (SW6) enable the user to select clock source and frequency synthesis options to generate a number of commonly used frequencies for applications, such as Gigabit Ethernet and SONET (see Table 1-31, page 44). For other frequencies, consult the ICS843001-21 data sheet for more information. The 25-MHz oscillator is socketed to allow the user to change the oscillator frequency and use the entire range of possible synthesized frequency outputs.

^{1.} Driven by an external PCIe source through the PCIe edge connector (P21); not driven internally.

^{1.} Driven by an external PCIe source through the PCIe edge connector (P21); not driven internally.

Table 1-31: Configurations for Clock Source and Frequency Options

	DII	P Swi	tch S\	W6 [1:	8] Va	lue		Input Ref	M Divider	N Divider	v _{co}	Output	A
N0	N1	N2	МО	М1	M2	SEL1	SEL0	Clock (MHz)	Value	Value	(MHz)	Frequency (MHz)	Application
1	1	0	0	0	1	0	1	19.44	32	4	622.08	155.52	SONET
0	1	1	0	0	1	0	1	19.44	32	8	622.08	77.76	SONET
0	0	0	0	0	1	0	1	19.44	32	1	622.08	622.08	SONET
1	0	0	0	0	1	0	1	19.44	32	2	622.08	311.04	SONET
0	0	1	1	1	0	1	0	25	25	5	625	125	Gigabit Ethernet
1	1	1	1	1	0	1	0	25	25	10	625	62.5	Gigabit Ethernet
1	0	1	0	1	0	1	0	25	24	6	600	100	PCI Express
1	1	0	0	1	0	1	0	25	24	4	600	150(1)	SATA
0	1	1	0	1	0	1	0	25	24	8	600	75	SATA
1	1	0	1	1	0	1	0	25	25	4	625	156.25	XAUI/SRIO

Notes:

- 1. Factory default setting.
- 2. A 1 equates to the DIP switch in the on position.
- 3. For Fibre Channel support, see Answer Record 24918.

The native output of the ICS843001-21 is LVPECL, so a resistor network is present to change the voltage swing to LVDS levels. The LVDS output is then multiplexed out through Series AC coupling capacitors to allow the clock input of the FPGA to set the common mode voltage.

SATA GTP/GTX Transceiver Clock Generation

An Integrated Circuit Systems ICS844051-1 chip generates a high-quality, low-jitter, 75-MHz or 150-MHz LVDS clock from an inexpensive 25-MHz crystal oscillator. This clock is sent to the GTP/GTX transceiver driving the SATA connectors. Jumper J56 sets the SATA GTP/GTX transceiver clock frequency (see Table 1-32). Series AC coupling capacitors are also present to allow the clock input of the FPGA to set the common mode voltage.

Table 1-32: Configuration for SATA GTP/GTX Clock Signals

SATA Clock Signal	Board Connection		
SATA Clock Frequency	Jumper J56 • Jumper Off = 75 MHz • Jumper On = 150 MHz		

SGMII / Loopback GTP/GTX Transceiver Clock Generation

An Integrated Circuit Systems ICS844021I chip generates a high-quality, low-jitter, 125-MHz LVDS clock from an inexpensive 25-MHz crystal oscillator. This clock is sent to the GTPs driving the SGMII or onboard loopback interfaces. Series AC coupling capacitors are also present to allow the clock input of the FPGA to set the common mode voltage.

44. Soft Touch Landing Pad

An Agilent Pro Series soft touch landing pad is available for use with a logic analyzer. The landing pad is designed for use with the Agilent E5404/06A 34-channel single-ended probe. The soft touch landing pad shares some pins with the XGI header. Signals that the user wants to probe can be connected to header pin signals specified in Table 1-33. For more information about soft touch connectors, see www.agilent.com/find/softtouch.

Table 1-33: Landing Pad Signals on XGI Header

Pad Number	Header Pin	FPGA Pin	
A1	HDR1_2	H33	
A2	HDR1_4	F34	
A3	GND	N/A	
A4	HDR1_10	G32	
A5	HDR1_12	H32	
A6	GND	N/A	
A7	HDR2_36_SM_15_P	W34	
A8	HDR2_34_SM_15_N	V34	
A9	GND	N/A	
A10	HDR1_22	P34	
A11	HDR1_24	N34	
A12	GND	N/A	
A13	HDR1_30	Y34	
A14	HDR1_32	Y32	
A15	GND	N/A	
A16	HDR1_38	AE32	
A17	HDR1_40	AG32	
A18	GND	N/A	
A19	HDR1_46	AK33	
A20	HDR1_48	AJ32	
A21	GND	N/A	
A22	HDR1_50	AK32	
A23	HDR1_52	AL34	
A24	GND	N/A	
A25	HDR1_58	AJ34	
A26	HDR1_60 AM32		
A27	GND	N/A	
B1	GND	N/A	

Table 1-33: Landing Pad Signals on XGI Header (Cont'd)

Pad Number	Header Pin	FPGA Pin
B2	HDR1_6	H34
В3	HDR1_8	G33
B4	GND	N/A
B5	HDR1_14	J32
B6	HDR1_16	J34
B7	GND	N/A
B8	HDR1_18	L33
B9	HDR1_20	M32
B10	GND	N/A
B11	HDR1_26	AA34
B12	HDR1_28	AD32
B13	GND	N/A
B14	HDR1_34	W32
B15	HDR1_36	AH34
B16	GND	N/A
B17	HDR1_42	AH32
B18	HDR1_44	AK34
B19	GND	N/A
B20	HDR2_42_SM_14_N	AE34
B21	HDR2_44_SM_14_P	AF34
B22	GND	N/A
B23	HDR1_54	AL33
B24	HDR1_56	AM33
B25	GND	N/A
B26	HDR1_62	AN34
B27	HDR1_64	AN33

45. System Monitor

The ML50x supports both the dedicated and the auxiliary analog inputs to the Virtex-5 System Monitor block. The VP and VN pins shown in Table 1-34, page 47 are the dedicated pins, whereas the VAUXP[x], VAUXN[x] represent the 16 user-selectable auxiliary analog input channels. The ML50x PCB layout for the VP and VN pins is designed using differential pairs and anti-alias filtering in close proximity to the FPGA as recommended in the *Virtex-5 System Monitor User Guide* [Ref 14]. Please note that the circuitry connected to the 16 AUX channels on the ML50x are connected in a non-optimal fashion as they are implemented without anti-alias filtering at the FPGA. This tradeoff was made as the AUX

channels are also used as general-purpose I/O on the XGI connectors (see "10. XGI Expansion Headers," page 20 for additional details). The AUX channels are still available for use with the System Monitor functions, but they will not attain the performance level of the dedicated analog input as noted in the *Virtex-5 System Monitor User Guide*. Access to the dedicated analog input pairs (VP/VN) is provided through pins 9 and 10 of the System Monitor Header (J9). See Table 1-34.

The Virtex-5 System Monitor function is built around a 10-bit, 200-kSPS (kilosamples per second) Analog-to-Digital Converter (ADC). When combined with a number of on-chip sensors, the ADC is used to measure FPGA physical operating parameters like on-chip power supply voltages and die temperatures. Access to external voltages is provided through a dedicated analog-input pair (VP/VN) and 16 user selectable analog inputs, known as auxiliary analog inputs (VAUXP[15:0], VAUXN[15:0]).

The System Monitor is fully functional on power up, and measurement data can be accessed via the JTAG port pre-configuration. The Xilinx ChipScope™ Pro tool [Ref 24] provides access to the System Monitor over the JTAG port. The System Monitor control logic implements some common monitoring features. For example, an automatic channel sequencer allows a user-defined selection of parameters to be automatically monitored, and user-programmable averaging is enabled to ensure robust noise-free measurements.

The System Monitor also provides user-programmable alarm thresholds for the on-chip sensors. Thus, if an on-chip monitored parameter moves outside the user-specified operating range, an alarm logic output becomes active. In addition to monitoring the on-chip temperature for user-defined applications, the System Monitor issues a special alarm called Over-Temperature (OT) if the FPGA temperature becomes critical (> 125°C). The over-temperature signal is deactivated when the device temperature falls below a user-specified lower limit. If the FPGA power-down feature is enabled, the FPGA enters power down when the OT signal becomes active. The FPGA powers up again when the alarm is deactivated.

For additional information about the System Monitor, see http://www.xilinx.com/systemmonitor and consult the *Virtex-5 System Monitor User Guide* [Ref 14]. Table 1-34 shows the System Monitor connections.

Table 1-34: System Monitor Connections

External Input	FPGA Pin	Header Pin	Schematic Net Name
VN	V17	J9-10	FPGA_V_N
VP	U18	J9-9	FPGA_V_P
VAUXN[0]	AE34	J4-42	HDR2_42_SM_14_N
VAUXP[0]	AF34	J4-44	HDR2_44_SM_14_P
VAUXN[1]	AE33	J4-46	HDR2_46_SM_12_N
VAUXP[1]	AF33	J4-48	HDR2_48_SM_12_P
VAUXN[2]	AB33	J4-58	HDR2_58_SM_4_N
VAUXP[2]	AC33	J4-60	HDR2_60_SM_4_P
VAUXN[3]	AB32	J4-54	HDR2_54_SM_13_N
VAUXP[3]	AC32	J4-56	HDR2_56_SM_13_P
VAUXN[4]	AD34	J4-50	HDR2_50_SM_5_N
VAUXP[4]	AC34	J4-52	HDR2_52_SM_5_P

Table 1-34: System Monitor Connections (Cont'd)

External Input	FPGA Pin	Header Pin	Schematic Net Name
VAUXN[5]	Y34	J6-30	HDR1_30
VAUXP[5]	AA34	J6-26	HDR1_26
VAUXN[6]	AA33	J4-38	HDR2_38_SM_6_N
VAUXP[6]	Y33	J4-40	HDR2_40_SM_6_P
VAUXN[7]	V34	J4-34	HDR2_34_SM_15_N
VAUXP[7]	W34	J4-36	HDR2_36_SM_15_P
VAUXN[8]	V33	J4-30	HDR2_30_DIFF_3_N
VAUXP[8]	V32	J4-32	HDR2_32_DIFF_3_P
VAUXN[9]	U31	J4-26	HDR2_26_SM_11_N
VAUXP[9]	U32	J4-28	HDR2_28_SM_11_P
VAUXN[10]	T34	J4-22	HDR2_22_SM_10_N
VAUXP[10]	U33	J4-24	HDR2_24_SM_10_P
VAUXN[11]	R32	J4-18	HDR2_18_DIFF_2_N
VAUXP[11]	R33	J4-20	HDR2_20_DIFF_2_P
VAUXN[12]	R34	J4-14	HDR2_14_DIFF_1_N
VAUXP[12]	T33	J4-16	HDR2_16_DIFF_1_P
VAUXN[13]	N32	J4-10	HDR2_10_DIFF_0_N
VAUXP[13]	P32	J4-12	HDR2_12_DIFF_0_P
VAUXN[14]	K32	J4-6	HDR2_6_SM_7_N
VAUXP[14]	K33	J4-8	HDR2_8_SM_7_P
VAUXN[15]	K34	J4-2	HDR2_2_SM_8_N
VAUXP[15]	L34	J4-4	HDR2_4_SM_8_P

IIC Buses

The board supports four IIC buses; Main, Video, SFP, and DDR2. Each of the IIC buses has 1K pull-ups on its SCL and SDA signals. Table 1-35 describes the IIC devices attached to each of the four buses.

Table 1-35: IIC Bus Connections

IIC			FPGA Pins	
Device	Bus Name	Address	SCL	SDA
EEPROM IC		0x50		
Fan Controller IC		0x2C		
Clock Gen IC	Main	0x6A	F9	F8
Clock Gen IC		0x6A		
Expansion Hdr		N/A		
SFP Cage	SFP	N/A	R26	U28
DVI Output: Codec IC		0x76		
DVI Output: Connector	Video	N/A	U27	T29
VGA Input: Codec IC		0x4C		
DDR2	DDR2 SPD	0x50	E29	F29

Configuration Options

The FPGA on the ML50*x* Evaluation Platform can be configured by the following major devices:

- Xilinx download cable (JTAG)
- System ACE controller (JTAG)
- Two Platform Flash memories
- Linear Flash memory
- SPI Flash memory

The following section provides an overview of the possible ways the FPGA can be configured.

JTAG (Xilinx Download Cable and System ACE Controller) Configuration

The FPGA, two Platform Flash memories, and CPLD can be configured through the JTAG port. The JTAG chain of the board is illustrated in Figure 1-9.

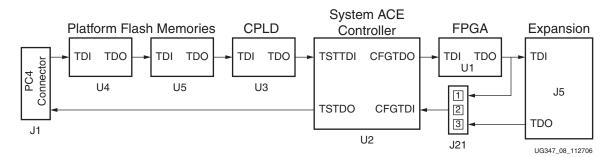


Figure 1-9: JTAG Chain

The chain starts at the PC4 connector and goes through the Platform Flash memories, the CPLD, the System ACE controller, the FPGA, and an optional extension of the chain to the expansion card. Jumper J21 determines if the JTAG chain should be extended to the expansion card.

The JTAG chain can be used to program the FPGA and access the FPGA for hardware and software debug. The JTAG chain is also used to program the Platform Flash memory and the CPLD.

The PC4 JTAG connection to the JTAG chain allows a host computer to download bitstreams to the FPGA using the iMPACT software tool. PC4 also allows debug tools such as the ChipScope Pro Analyzer or a software debugger to access the FPGA.

The System ACE controller can also program the FPGA through the JTAG port. Using an inserted CompactFlash card, configuration information can be stored and played out to the FPGA. The System ACE controller supports up to eight configuration images that can selected using the three configuration address DIP switches. Under FPGA control, the System ACE chip can be instructed to reconfigure to any of the eight configuration images.

The configuration mode should be set to **101** and switch SW15, pin 8 should be ON to use System ACE configuration. When set correctly, the System ACE controller programs the FPGA upon power-up if a CompactFlash card is present or whenever a CompactFlash card is inserted. Pressing the System ACE reset button also causes the System ACE controller to program the FPGA if a CompactFlash card is present.

Platform Flash Memory Configuration

The Platform Flash memories can also be used to program the FPGA. A Platform Flash memory can hold up to two configuration images (up to four with compression), which are selectable by the two least significant bits of the configuration address DIP switches.

The board is wired so the Platform Flash memory can download bitstreams in Master Serial, Slave Serial, Master SelectMAP (parallel), or Slave SelectMAP (parallel) modes. Using the iMPACT tool to program the Platform Flash memory, the user has the option to select which of the four modes to use for programming the FPGA. The configuration mode DIP switches on the board must be set to match the programming method being used by the Platform Flash memory.

When set correctly, the Platform Flash memory programs the FPGA upon power-up or whenever the **Prog** button is pressed.

Linear Flash Memory Configuration

Data stored in the linear flash can be used to program the FPGA (BPI mode). Up to four configuration images can theoretically be supported.

The configuration mode DIP switches on the board must be set to **010** for BPI_up or **011** for BPI_down.

When set correctly, the FPGA is programmed upon power-up or whenever the **Prog** button is pressed.

SPI Flash Memory Configuration

Data stored in SPI can be used to program the FPGA. The configuration mode DIP switches must be set to **001** for SPI configuration.

When set correctly, the FPGA is programmed upon power-up or whenever the **Prog** button is pressed.

Board Revisions

This appendix describes the major differences in the ML50x platforms. Table A-1 shows the features unique to each platform.

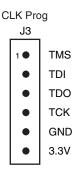
Table A-1: ML50x Platform Details

Platform	Device	Package	Description
ML505	XC5VLX50T	1FFG1136	ML505 is an LXT platform that supports RocketIO GTP transceivers. (1)
ML506	XC5VSX50T	1FFG1136	ML506 is an SXT platform that supports RocketIO GTP transceivers. (1)
ML507	XC5VFX70T	1FFG1136	ML507 is an FXT platform that supports RocketIO GTX transceivers. (2)

Notes:

- 1. Where AVCC_PLL voltage is set to 1.2V. (R176 = 2.43K 1%; R177 = 4.99K 1%)
- 2. Where AVCC_PLL voltage is set to 1.0V. (R176 = $1.13K\ 1\%$; R177 = $4.53K\ 1\%$)

Programming the IDT Clock Chip


Overview

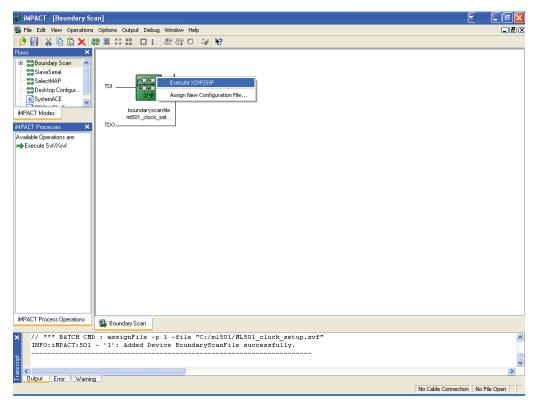
The ML50x evaluation boards feature an Integrated Device Technology (IDT) 3.3V EEPROM Programmable Clock Generator that is pre-programmed at the factory. In the event the chip programming is changed, the instructions in this appendix show how to return the clock chip to its factory default settings using the following equipment:

- Xilinx download cable
- JTAG flying wires

Downloading to the ML50x Board

1. Connect a Xilinx download cable to the board using flying leads connected to jumper J3 (Figure B-1).

UG347_apdx_a_02_020807


Figure B-1: J3 IDT5V9885 JTAG Connector

- 2. Click **Start** \rightarrow **iMPACT**.
- 3. Click Boundary Scan.
- 4. Right-click Add Xilinx Device...
- 5. Locate the SVF file (ML50X_clock_setup.svf in the example shown in Figure B-2, page 56) and click **Open**.

Note: The ML50X_clock_setup.svf file is available on the ML50x product page.

6. Right-click on the device and select Execute XSVF/SVF.

UG347_apdx_a_01_112706

Figure B-2: Programming the IDT5V9885 on the ML50x Using iMPACT

- 7. To finish programming the chip, cycle the power by turning off the board power switch.
- 8. After turning the board back on, verify that the clock frequencies are correct.

References

Documents specific to the ML50*x* Evaluation Platform:

- 1. <u>UG348</u>, ML505/ML506/ML507 Getting Started Tutorial.
- 2. UG349, ML505/ML506/ML507 Reference Design User Guide.
- 3. Lab Resources: ML505, ML506, ML507.

Documents supporting Virtex-5 FPGAs:

- 4. DS100, Virtex-5 Family Overview.
- 5. <u>DS202</u>, Virtex-5 Data Sheet: DC and Switching Characteristics.
- 6. <u>UG190</u>, Virtex-5 User Guide.
- 7. UG200, Embedded Processor Block in Virtex-5 FPGAs Reference Guide.
- 8. UG196, Virtex-5 FPGA RocketIO GTP Transceiver User Guide.
- 9. UG198, Virtex-5 FPGA RocketIO GTX Transceiver User Guide.
- 10. <u>UG194</u>, Virtex-5 Tri-Mode Ethernet Media Access Controller User Guide.
- 11. UG197, Virtex-5 Integrated Endpoint Block User Guide for PCI Express Designs.
- 12. <u>UG193</u>, XtremeDSP Design Considerations.
- 13. UG191, Virtex-5 Configuration User Guide.
- 14. UG192, Virtex-5 System Monitor User Guide.
- 15. UG195, Virtex-5 Packaging and Pinout Specification.

The Xilinx Memory Solutions Web page offers the following material supporting the Memory Interface Generator (MIG) tool:

- 16. WP260, Memory Interfaces Made Easy with Xilinx FPGAs and the Memory Interface Generator.
- 17. UG086, Xilinx Memory Interface Generator (MIG) User Guide (for registered users).
- 18. Demos on Demand, Memory Interface Solutions with Xilinx FPGAs.
- 19. Xilinx Support Memory Interface Resources (for registered users).

Resources for PCB Design:

- 20. UG203, Virtex-5 PCB Designer's Guide.
- 21. UG112, Device Package User Guide.
- 22. UG195, Virtex-5 FPGA Package and Pinout Specification.
- 23. Xilinx <u>Technology Solutions Web page</u> for PCB design considerations:
 - ♦ Memory Solutions
 - Signal Integrity
 - Power Solutions

The Xilinx <u>ChipScope Pro Tool Web page</u> offers the following material supporting the ChipScope Pro Analyzer:

- 24. <u>UG029</u>, ChipScope Pro Software and Cores User Guide.
- 25. <u>UG213</u>, ChipScope Pro Serial I/O Toolkit User Guide.