Error Correction Codes (ECC)

- Memory systems generate errors (accidentally flipped-bits)
 - DRAMs store very little charge per bit
 - "Soft" errors occur occasionally when cells are struck by alpha particles or other environmental upsets.
 - Less frequently, "hard" errors can occur when chips permanently fail.
- Where "perfect" memory is required
 - servers, spacecraft/military computers, …
- Memories are protected against failures with ECCs
- Extra bits are added to each data-word
 - extra bits are used to detect and/or correct faults in the memory system
 - in general, each possible data word value is mapped to a unique "code word". A fault changes a valid code word to an invalid one - which can be detected.

Simple Error Detection Coding

Parity Bit

- Each data value, before it is written to memory is "tagged" with an extra bit to force the stored word to have even parity:
- Each word, as it is read from memory is "checked" by finding its parity (including the parity bit).
- A non-zero parity indicates an error occurred:
 - two errors (on different bits) is not detected (nor any even number of errors)
 - odd numbers of errors are detected.
Hamming Error Correcting Code

- **Use more parity bits to pinpoint bit(s) in error, so they can be corrected.**
 - Example: Single error correction (SEC) on 4-bit data
 - Use 3 parity bits, with 4-data bits resulting in 7-bit code word
 - 3 parity bits sufficient to identify any one of 7 code word bits
 - Overlap the assignment of parity bits so that a single error in the 7-bit work can be corrected
 - Group parity bits so they correspond to subsets of the 7 bits:
 - p_1 protects bits 1, 3, 5, 7
 - p_2 protects bits 2, 3, 6, 7
 - p_3 protects bits 4, 5, 6, 7

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
p_1 & p_2 & d_1 & p_3 & d_2 & d_3 & d_4 \\
\end{array}
\]

Hamming Code Example

- **Example:** $c = c_3c_2c_1 = 101$
 - Error in 4, 5, 6, or 7 (by $c_3 = 1$)
 - Error in 1, 3, 5, or 7 (by $c_1 = 1$)
 - No error in 2, 3, 6, or 7 (by $c_2 = 0$)
 - Therefore error must be in bit 5.
 - Note the check bits point to 5.
 - By our clever positioning and assignment of parity bits, the check bits always address the position of the error!

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & p & \\
001 & 011 & 101 & 111 & 010 & 011 & 110 & 111 & \\
\end{array}
\]

Overhead involved in single error correction code:

- Let p be the total number of parity bits and d the number of data bits in a $p + d$ bit word.
- If p error correction bits are to point to the error bit ($p + d$ cases) plus indicate that no error exists (1 case), we need:
 \[2^p \geq p + d + 1,\]
 thus $p \geq \log(p + d + 1)$
for large d, p approaches $\log(d)$

Typical modern codes in DRAM memory systems:

- 64-bit data blocks (8 bytes) with 72-bit code words (9 bytes).

Linear Feedback Shift Registers (LFSRs)

- These are n-bit counters exhibiting pseudo-random behavior.
- Built from simple shift-registers with a small number of xor gates.
- Used for:
 - pseudo-random number generation
 - counters
 - error checking and correction
- Advantages:
 - very little hardware
 - high speed operation
- Example 4-bit LFSR:

\[
\begin{array}{cccc}
Q_4 & Q_3 & Q_2 & Q_1 \\
\end{array}
\]
4-bit LFSR

- Circuit counts through \(2^4-1\) different non-zero bit patterns.
- Leftmost bit decides whether the "10011" xor pattern is used to compute the next value or if the register just shifts left.
- Can build a similar circuit with any number of FFs, may need more xor gates.
- In general, with \(n\) flip-flops, \(2^{n-1}\) different non-zero bit patterns.
- (Intuitively, this is a counter that wraps around many times and in a strange way.)

Applications of LFSRs

- Performance:
 - In general, xors are only ever 2-input and never connect in series.
 - Therefore the minimum clock period for these circuits is:
 \[T > T_{2\text{-input-xor}} + \text{clock overhead} \]
 - Very little latency, and independent of \(n!\)
- This can be used as a fast counter, if the particular sequence of count values is not important.
 - Example: micro-code micro-pc
- Can be used as a random number generator:
 - Sequence is a pseudo-random sequence:
 - numbers appear in a random sequence
 - repeats every \(2^{n-1}\) patterns
 - Random numbers useful in:
 - computer graphics
 - cryptography
 - automatic testing
- Used for error detection and correction
 - CRC (cyclic redundancy codes)
 - ethernet uses them

Galois Fields - The theory behind LFSRs

- LFSR circuits performs multiplication on a field.
- A field is defined as a set with the following:
 - two operations defined on it:
 - "addition" and "multiplication"
 - closed under these operations
 - associative and distributive laws hold
 - additive and multiplicative identity elements
 - additive inverse for every element
 - multiplicative inverse for every non-zero element
- Example fields:
 - set of rational numbers
 - set of real numbers
 - set of integers is not a field
- Finite fields are called Galois fields.
- Example:
 - Binary numbers 0,1 with XOR as "addition" and AND as "multiplication".
 - Called GF(2).

- Consider polynomials whose coefficients come from GF(2).
- Each term of the form \(x^i\) is either present or absent.
- Examples: \(0, 1, x, x^2, x^5 + x\)
- With addition and multiplication these form a field:
 - "Add": XOR each element individually with no carry:
 \[
 x^i + x^j + x + 1
 \]
 - "Multiply": multiplying by \(x^i\) is like shifting to the left.
 \[
 x^i + x^j + x + 1
 \]
Galois Fields - The theory behind LFSRs

- These polynomials form a Galois (finite) field if we take the results of this multiplication modulo a prime polynomial \(p(x) \).
 - A prime polynomial is one that cannot be written as the product of two non-trivial polynomials \(q(x)r(x) \).
 - Perform modulo operation by subtracting a (polynomial) multiple of \(p(x) \) from the result.
 - If the multiple is 1 this corresponds to XOR-ing the result with \(p(x) \).
- For any degree, there exists at least one prime polynomial.
- With it we can form \(GF(2^n) \).
- Additionally, …
- Every Galois field has a primitive element, \(\alpha \), such that all non-zero elements of the field can be expressed as a power of \(\alpha \). By raising \(\alpha \) to powers (modulo \(p(x) \)), all non-zero field elements can be formed.
- Certain choices of \(p(x) \) make the simple polynomial \(x \) the primitive element. These polynomials are called primitive, and one exists for every degree.
- For example, \(x^4 + x + 1 \) is primitive.
 - So \(\alpha = x \) is a primitive element and successive powers of \(\alpha \) will generate all non-zero elements of \(GF(16) \).
 - Example on next slide.

Primitive Polynomials

\(x^2 + x + 1 \)	\(x^{12} + x^6 + x^4 + x + 1 \)	\(x^{22} + x + 1 \)
\(x^3 + x + 1 \)	\(x^{13} + x^4 + x^3 + x + 1 \)	\(x^{23} + x + 1 \)
\(x^4 + x + 1 \)	\(x^{14} + x^{10} + x^6 + x + 1 \)	\(x^{24} + x^2 + x^2 + x + 1 \)
\(x^5 + x + 1 \)	\(x^{15} + x + 1 \)	\(x^{25} + x^3 + x + 1 \)
\(x^6 + x^2 + 1 \)	\(x^{16} + x^{12} + x^4 + x + 1 \)	\(x^{26} + x^2 + x^2 + x + 1 \)
\(x^7 + x^4 + x^3 + x^2 + 1 \)	\(x^{17} + x^4 + 1 \)	\(x^{27} + x^2 + x^2 + x + 1 \)
\(x^8 + x^4 + 1 \)	\(x^{18} + x^7 + 1 \)	\(x^{28} + x^4 + 1 \)
\(x^{10} + x^2 + 1 \)	\(x^{19} + x^3 + x^2 + x + 1 \)	\(x^{29} + x + 1 \)
\(x^{11} + x^4 + x + 1 \)	\(x^{20} + x^4 + 1 \)	\(x^{30} + x + 1 \)
\(x^{21} + x^2 + 1 \)	\(x^{22} + x^4 + x + 1 \)	\(x^{31} + x^2 + x^2 + x^2 + x + 1 \)

Galois Field

- Multiplication by \(x \) ⇔ shift left
- Taking the result mod \(p(x) \) ⇔ XOR-ing with the coefficients of \(p(x) \)
- Obtaining all \(2^n - 1 \) non-zero elements by evaluating \(x^k \) for \(k = 1, \ldots, 2^n - 1 \)

Galois Field Hardware

- Note this pattern of coefficients matches the bits from our 4-bit LFSR example.
- In general finding primitive polynomials is difficult. Most people just look them up in a table, such as:

```plaintext
ν0 = \( x^4 \mod x^4 + x + 1 \)
ν1 = \( x^4 \oplus x^4 + x + 1 \)
ν2 = \( x \)
```

Building an LFSR from a Primitive Polynomial

- For \(k \)-bit LFSR number the flip-flops with FF1 on the right.
- The feedback path comes from the Q output of the leftmost FF.
- Find the primitive polynomial of the form \(x^{n+1} + 1 \).
- The \(x^i \) term corresponds to connecting the feedback directly to the D input of FF1.
- Each term of the form \(x^i \) corresponds to connecting an xor between FF \(n \) and \(n+i \).
- 4-bit example, uses \(x^4 + x + 1 \)
 - \(x^4 \) ⇔ FF4’s Q output
 - \(x \) ⇔ xor between FF1 and FF2
 - \(i \) ⇔ FF1’s D input
- To build an 8-bit LFSR, use the primitive polynomial \(x^8 + x^4 + x^3 + x^2 + 1 \) and connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.
Error Correction with LFSRs

11 message bits 4 check bits

bit sequence: 1 1 0 0 1 0 0 0 1 1 1 0 0 0

• XOR Q4 with incoming bit sequence. Now values of shift-register don't follow a
 fixed pattern. Dependent on input sequence.
• Look at the value of the register after 15 cycles: “1010”
• Note the length of the input sequence is $2^4 - 1 = 15$ (same as the number of
different nonzero patterns for the original LFSR)
• Binary message occupies only 11 bits, the remaining 4 bits are “0000”.
 – They would be replaced by the final result of our LFSR: “1010”
 – If we run the sequence back through the LFSR with the replaced bits, we would get
 “0000” for the final result.
 – 4 parity bits, “neutralize” the sequence with respect to the LFSR.
• If parity bits not all zero, an error occurred in transmission.
• If number of parity bits = log total number of bits, then single bit errors can be
corrected.
• Using more parity bits allows more errors to be detected.
• Ethernet uses 32 parity bits per frame (packet) with 16-bit LFSR.