Carry Look-ahead Adders

• In general, for n-bit addition best we can achieve is delay $\alpha \log(n)$

• How do we arrange this? (think trees)

• First, reformulate basic adder stage:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c_i</td>
<td>c_{i+1}</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$\begin{align*}
c_{i+1} &= g_i + p_i c_i \\
s_i &= p_i \oplus c_i \end{align*}$
Carry Look-ahead Adders

• “Group” propagate and generate signals:

\[P = p_i \cdot p_{i+1} \ldots p_{i+k} \]
\[G = g_{i+k} + p_{i+k} \cdot g_{i+k-1} + \ldots + (p_{i+1} \cdot p_{i+2} \ldots p_{i+k}) \cdot g_i \]

- P true if the group as a whole propagates a carry to \(c_{\text{out}} \)
- G true if the group as a whole generates a carry

• Group P and G can be generated hierarchically.

\[C_{\text{out}} = G + PC_{\text{in}} \]
Carry Look-ahead Adders

9-bit Example of hierarchically generated P and G signals:

\[P = P_a P_b P_c \]

\[G = G_c + P_c G_b + P_b P_c G_a \]

\[c_9 = G + P c_0 \]
\[p = a \oplus b \]
\[g = ab \]
\[s = p \oplus c_i \]
\[c_{i+1} = g + c_ip \]

8-bit Carry Look-ahead Adder

\[P = P_aP_b \]
\[G = G_b + G_aP_b \]
\[C_{\text{out}} = G + c_{\text{in}}P \]
8-bit Carry Look-ahead Adder with 2-input gates.
Carry look-ahead Wrap-up

• Adder delay $\alpha \log_2 N$ (up then down the tree).
• Cost?
• Can be applied with other techniques. Group P & G signals can be generated for sub-adders, but another carry propagation technique (for instance ripple) used within the group.
• Other more complex techniques exist that can bring the delay down below $O(\log N)$, but are only efficient for very wide adders.
Bit-serial Adder

- Addition of 2 n-bit numbers:
 - takes n clock cycles,
 - uses 1 FF, 1 FA cell, plus registers
 - the bit streams may come from or go to other circuits, therefore the registers may be optional.

- A, B, and R held in shift-registers. Shift right once per clock cycle.
- Reset is asserted by controller.
Adders on the Xilinx Virtex

- Dedicated carry logic provides fast arithmetic carry capability for high-speed arithmetic functions. The Virtex-E CLB supports two separate carry chains, one per Slice. The height of the carry chains is two bits per CLB.
- The arithmetic logic includes an XOR gate and AND gate that allows a 2-bit full adder to be implemented within a slice.
- Cin to Cout delay = 0.1ns, versus 0.4ns for F to X delay.

How do we map a 2-bit adder to one slice?
Many different circuits exist for multiplication. Each one has a different balance between speed (performance) and amount of logic (cost).
“Shift and Add” Multiplier

- Sums each partial product, one at a time.
- In binary, each partial product is shifted versions of A or 0.

Control Algorithm:
1. \(P \leftarrow 0, A \leftarrow \) multiplicand,
 \(B \leftarrow \) multiplier
2. If LSB of B==1 then add A to P else add 0
3. Shift \([P][B]\) right 1
4. Repeat steps 2 and 3 \(n-1 \) times.
5. \([P][B]\) has product.

- Cost \(\alpha n, T = n \) clock cycles.
- What is the critical path for determining the min clock period?
“Shift and Add” Multiplier

Signed Multiplication:

Remember for 2’s complement numbers MSB has negative weight:

\[X = \sum_{i=0}^{N-2} x_i 2^i - x_{n-1} 2^{n-1} \]

ex: -6 = 11010₂ = 0•2⁰ + 1•2¹ + 0•2² + 1•2³ - 1•2⁴

\[= 0 + 2 + 0 + 8 - 16 = -6 \]

• Therefore for multiplication:
 a) subtract final partial product
 b) sign-extend partial products

• Modifications to shift & add circuit:
 a) adder/subtractor
 b) sign-extender on P shifter register
Array Multiplier

Generates all n partial products simultaneously.

Each row: n-bit adder with AND gates

What is the critical path?
Carry-save Addition

• Speeding up multiplication is a matter of speeding up the summing of the partial products.
• “Carry-save” addition can help.
• Carry-save addition passes (saves) the carries to the output, rather than propagating them.

Example: sum three numbers, $3_{10} = 0011$, $2_{10} = 0010$, $3_{10} = 0011$

\[
\begin{align*}
3_{10} &\quad 0011 \\
+ \quad 2_{10} &\quad 0010 \\
\downarrow &\quad 0100 = 4_{10} \\
\uparrow &\quad 0001 = 1_{10}
\end{align*}
\]

• In general, \textit{carry-save} addition takes in 3 numbers and produces 2.
• Whereas, \textit{carry-propagate} takes 2 and produces 1.
• With this technique, we can avoid carry propagation until final addition.
Carry-save Circuits

- When adding sets of numbers, carry-save can be used on all but the final sum.
- Standard adder (carry propagate) is used for final sum.
Array Multiplier using Carry-save Addition

Fast carry-propagate adder
Carry-save Addition

CSA is associative and commutitive. For example:

$$(((X_0 + X_1) + X_2) + X_3) = ((X_0 + X_1) + (X_2 + X_3))$$

- A balanced tree can be used to reduce the logic delay.
- This structure is the basis of the **Wallace Tree Multiplier**.
- Partial products are summed with the CSA tree. Fast CPA (ex: CLA) is used for final sum.
- Multiplier delay $\alpha \log_{3/2} N + \log_2 N$