University of California at Berkeley

College of Engineering

Department of Electrical Engineering and Computer Sciences
Lab 2

FPGA CAD Tool Flow
1. Motivation

In this lab you will take a simple design through the FPGA Computer Aided Design (CAD) tool-flow, starting from design entry all the way to programming the hardware. This lab will give you experience with the software that you’ll be using for the rest of the semester.

2. Introduction to the Design Tool Flow

Refer to the below illustration for the steps involved in the CAD tool flow we will use.
2.1. Design Entry

The first step in logic design is to conceptualize your design. Once you have a good idea

about the function and structure of your circuit and maybe drawn a block diagram or two, you can start the implementation process by specifying your circuit. In this class we will use a Hardware Description Language (HDL) called Verilog. HDLs have several advantages over other methods of circuit specification: ease of editing (files can be written using any text editor), ease of management when dealing with large designs, and the ability to use a high-level behavioral description of a circuit. If you are familiar with emacs, you may find it convenient for writing and editing Verilog code. In Lab 3 you will write Verilog; for lab 2 this week, we will provide you the appropriate Verilog descriptions.

2.2. Synthesis

Once your design is entered, the next step in the implementation path is synthesis. In our case, the function of the synthesis program is to translate the Verilog description of the circuit into an equivalent circuit comprising a set of primitive circuit components that can be directly implemented on an FPGA. In a way, the synthesis tool is almost like a compiler. Where a compiler translates to a sequence of primitive commands that can be directly executed on a processor, synthesis translates to primitive circuit components that can be directly implemented in FPGA. The final product of a synthesis tool is a netlist file, a text file that contains a list of all the instances of primitive components in the translated circuit and a description of how they are interconnected.

[image: image1.png]Debug
Hardware
Logic Analyzer

HDL Simulator
Modelsim

v (verilog testbench file)

rogrammed

Any text editor.
Synthesis
Synplify Pro.

Design Entry
Manager

Placement, Routing
Xilinx Design

.v (verilog designifiles)
.edf (netlist files)

2.3. Placement, Routing

The next step in the implementation flow is to take the netlist of components generated by the synthesis tool and turn it into bits that are need to configure the LUTs, Switchboxes, Flip-flops, and other configurable resources in the FPGA. To do that, first the primitive circuit components in the netlist need to be assigned to a specific place on the FPGA. For example, a 4LUT implementing the function of a 4 input NAND gate in a netlist could be implemented with any of the about 40,000 4LUTs in a Xilinx Virtex 2000E FPGA chip. Clever choice of placement will make the subsequent routing easier and result in a faster overall circuit.

Once the components are placed, the proper connections must be made according to the netlist description. That step is called routing. Unlike synthesis, which only requires a set of primitive components to translate to; placement and routing are dependent upon the specific size and structure of the target FPGA chip. Due to this reliance, the FPGA vendor usually provides the placement and routing programs. The end product after placement and routing is a bit file containing the stream of bits used to configure the FPGA. Note: placement and routing are NP hard optimization problems and the provided software uses heuristics to solve them. There are cases where humans can do a better job by hand.

2.4. Program Hardware

The last step in the implementation flow is the simple act of transporting the configuration bits to the FPGA. There are also many ways of doing this. For this class we will be mostly using the Parallel Cable IV along with the iMPACT software to program the board. In a finalized working product, the program will be loaded onto the FPGA probably at boot time from an onboard prom.

2.5. Verification

As you should have learned from experience, a significant part of the time and effort used on any sizable project will be spent on debugging, and logic design is no exception. There are two ways to verify the correctness of a design: to program the FPGA with the design and check if the circuit is behaving correctly, or to run simulations of the design in software. To program the FPGA and physically check the functionality sounds simple and is in fact the final testing that a design must pass. However, the whole tool flow takes a while to run and repeatedly tweaking the input design to fix errors would require running the flow repeatedly. In addition it can be difficult to physically observe the causes for an error on a FPGA. For these reasons, software simulation is also needed in the verification process. There are many places along the tool flow where you can use simulation to verify the correctness of your design. For this class we will use an HDL simulator for all the different simulations. The first place to simulate your design is right after design entry. At this point you can only test functionality. Because there is no information available about the actual implementation on the FPGA, there is no way to accurately predict delay. As you progress down the tool flow and more information about the physical implementation on the FPGA becomes available, more accurate timing simulations can be performed. The CAD tool at each step along the implementation flow is capable of producing Verilog files annotated with timing values that can be used in simulation.

3. Prelab

1. Read and understand the introduction to Design Tool Flow (above).

2. Take a look at the provided Verilog files to see if you can decipher them. (If you have not had experience with Verilog in the past, you will probably not understand everything in these files, but should be able to understand the basic function of the specified circuit and the operation of the tester.)

3. Read section 1,3,7,11 of the Modelsim tutorial.

4. Procedure

4.1. Functional simulation

1. Download lab2_cir.v and lab2_cir_testbench.v from the course website.

2. Start the Modelsim simulator.

3. Create a new project and add the two provided files as existing files.

4. Compile both files.

5. Start a simulation of the lab2_cir_testbench module.

6. Select view->all windows in the menu bar.

7. Add the signals IN, E, R, CLK, OUT in the wave window by dragging them from the signals window.

8. Advance the simulation time by 1u sec by typing, “run 1us”. Look at the waveform from the wave window. Can you tell what the function of this circuit is from here? (You can change the display from binary to hex on a group of signals by right clicking the signal then choosing Radix->Hexadecimal.)

Question 1: What is the clock to output delay in this simulation? Why?

4.2. Synthesis

Now we start to map the design to an FPGA. For synthesis we add an additional top level module FPGA_top.v that will tie board IO pins to FPGA IO pins and will also allow us to test our circuit. We also add a file common_mods.v that has some utility modules needed for hardware testing of this design. You can optionally test the whole system including FPGA_top by making up a new test bench file:

1. Start the synthesis program Synplify Pro.

2. Start a new project from File->New, project file. IMPORTANT: change the file location so that is in your local user directory. Do not save it in the Synplify directory and do not save it on the network drive.

3. Add the source file lab2_cir.v and FPGA_top.v and common_mods.v to the project. Note: Don’t add the testbench file because it is there only to provide input for the design in simulation.

4. Change target device in the implementation option to technology: Xilinx Virtex-E, part: XCV2000E, speed grade: -6, package: FG680

5. Set the frequency to 30 MHz

6. Turn on Implementation Results->Write Mapped Verilog netlist. This saves the synthesized result to a file that can be imported by the place and route tool.
7. Click RUN

8. Click and examine RTL view and Gate View

Question 2 Can you now figure out the function of this circuit?

Question 3 What are the exact module names of the different types of primitive components this circuit maps to? What are their functionalities? Goto the Xilinx website

http://toolbox.xilinx.com/docsan/xilinx5/manuals.htm
And look for their functionality in the Libraries Guide.

4.3. Place & Route

Start the Xilinx Design manager. You can do this from within Synplify Pro, or as a separate application (double click Project Navigator Icon). If you choose the easier first option, simply select the following:

1. Options->Xilinx->Start Design Manager.

In the second case do as follows:

1.
i. Select File->New Project

ii. Fill the form with
a. Project Name: Lab2
b. Project Location: Path to project
c. Device Family : VirtexE
d. Device: xcv2000e
e. Package: fg680
f. Speed Grad: -6
g. Design Flow: EDIF

And then hit OK

iii. Select Project -> Add Source : Specify the edif source file

2. In the Process View window, right click on Implement Design -> Place & Route -> Generate Post-Place & Route Simulation Model. Change the value of Simulation Model Target to Modelsim_Verilog
3. Double click on Implement Design. This performs the placement and routing steps.
Question 4 Choose the report browser and find the number of slices, 4Luts, and Flipflops used in this design, and the minimum clock period for this design.

#Slices________ #4LUTS_________ #Flops___________ Min Period_________

4.4. Floor planner, FPGA editor

The floor planner is a program that lets the designer do some manual placement. Run the floor planner by double clicking in the Process View window on Implement Design -> Place & Route -> View/Edit Placed Design (FloorPlanner). The floor planner should open some windows. The window on the left shows the pieces of components that need to be placed. The gray window shows the result of the automatic placer algorithm. And the white window is an area for the designer to do his own placement.

Optional: Can you come up with a better placement than the automatic placer? Note: you can start out with the result of the auto placer by choosing Floorplan -> Replace all with placement.

After you are done with the floor planner, run the FPGA editor from Project Navigator by double clicking in the Process View window on Implement Design -> Place & Route -> View/Edit Routed Design (FPGA Editor). This tool shows you an even more detailed view of the FPGA. You can see all the occupied slices and even the detailed routing from this tool. You could also make changes to the design with this tool, however this is not recommended as it is essentially equivalent to modifying the bit stream directly, and thus very prone to errors.

4.5. Timing Simulation

The last thing we will do is to simulate the design after it has been placed and routed. This process is a little tricky since it involves the output Verilog file of the Project Navigator, a Xilinx library that contains primitive module delays, and a .sdf file that contains the wire delay between the different components.

1. Start Modelsim (use version 5.7d)

2. Add the provided file lab2_cir_timesim.v to the project. This is the same testbench except modified so that it interfaces with the files generated by the Xilinx tool.
3. Find FPGA_TOP_timesim.v, FPGA_TOP_time_sim.sdf in your project directory from Synplicity and Xilinx and add them to your project. Make sure you check the Copy to project box for the .sdf file.
4. Remove the two lines from FPGA_TOP_timesim.v:

wire GSR = glbl.GSR;

wire GTS = glbl.GTS;

and delete the ports GSR and GTS if they appear in the module FPGA_TOP portlist

5. Compile the two Verilog files

6. Choose Simulate.

7. Under the tab libraries, add the C:\Modeltech_5.7d/xilinx/verilog/simprims_ver directory. Under the tab SDF add the copy of the sdf file that has been placed into the Modelsim project directory, and in the box that appears enter /lib2_cir_timesim/fpga_top in the field titled Apply to Region.
8. Finally, under design tab select the lab2_cir_timesim.v file.

9. Repeat the rest of the simulation steps from earlier.

Question 5 What is the clock to output delay of the circuit in this simulation? What part of the circuit is associated with the delay you observed? Is this the critical path? Why or why not?

Question 6 Modify the lab2_cir_timesim.v file so that the clock period is 2ps shorter than the minimum clock period indicated by the report from design manager and repeat the simulation. Does the circuit still function? Why?

4.6. Hardware Verification

Our final step is to do the actual hardware verification of the design:

1. In your Project Navigator GUI, double click on Generate Programming File.

2. In the same GUI, start impact by double clicking on Configure Device
· Select ‘Configure Devices’, Next

· Select ‘Slave Serial Mode’, Finish

· Select the newly generated bit stream file (fpga_top.bit)

· Right click on the device icon and select ‘Program’

3. Once the device is loaded successfully you should:

· Select the addend value with SW9. You should see the selected value in two of the seven segments LED (in Hex)

· Press SW1 to single step through the design

· Press SW4 to reset the design

4. Show the working system to your TA

A. Hurst, Fall 2003

5. Checkoffs

Name: _______________________________Name: ____________________________

Prelab Questions:

none
Functional Simulation:

__________ (10%)
_______(05%)

Timing Simulation:

__________ (20%)
_______(10%)

Hardware Demonstration:

__________ (30%)
_______(15%)

Questions:

__________ (40%)
_______(20%)
