Motivation

- Learn to configure external SDRAM
- Write and read from external SDRAM
- To use FIFOs as buffers
- Design a memory controller
 - You will need this for the project
- Analyze retention time of SDRAMs

Methodology (1)

- Initialize and configure SDRAM
- Generate 32-bit pseudo random numbers into the FIFO
- After first 16 words start reading of FIFO and writing to SDRAM and start programmable timing ...
- Fill SDRAM and stop write operation

Methodology (2)

- ... after programmable delay expires, start reading SDRAM and filling read FIFO
- Use identical pn-generator to compare data from read FIFO with written data
- Count the errors and display on LEDs

Theory of SDRAM (1)

- SDRAM: Synchronous Dynamic RAM
- Dynamic RAM is large but slow
- Synchronous interface allows more bandwidth
- SDRAM Control can be tricky
Theory of SDRAM (2)
- DRAM is BIG so we time mux address
 - Row Address
 - Column Address
- Steps to Read/Write
 - Send Row Address
 - Send Column Address
 - Send/Get Data

Theory of SDRAM (3)
- SDRAM Steps to Read/Write
 - Send Row Address
 - Send Start Column Address
 - Send/Get Data
 - Send/Get Data
 - Send/Get Data

Theory of SDRAM (4)
- SDRAM is a large FSM
 - Send it a command
 - Get a response
- SDRAM Controllers Job:
 - Send the right command signals
 - Ensure command sequences are timed right

SDRAM Initialization

SDRAM Commands

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>BUS Width</th>
<th>CAS/CR</th>
<th>OP CMD</th>
<th>ADDR</th>
<th>CYC</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRITE REG WRITE</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRITE REG READ</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRITE REG WRITE</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRITE REG READ</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRITE REG WRITE</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRITE REG READ</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRITE REG WRITE</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRITE REG READ</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRITE REG WRITE</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRITE REG READ</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Read Operation
Write Operation

Write Timing

Block Diagram

SDRAM

Controller (1)

SDRAM Controller (2)

FIFOs
LFSR
- Pseudo Random Sequences
- Signature Generation/Checking
- Built in Self Test (BIST)
- Pattern can be exactly repeated

The Checkpoint
- You have two weeks
 - First Week: Simulation
 - Second Week: Demo circuit on board
- START EARLY