
EECS150 Fall 2003 Checkpoint2

UCB 1 2003

UNIVERSITY OF CALIFORNIA AT BERKELEY
COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Fall 2003 Project
Checkpoint 2, Video Encoder

1. Motivation

This is the second checkpoint for the Fall 2003 project.

• You will familiarize yourself with digital video encoding and decoding standards
• You will familiarize yourself with NTSC standard
• You will become familiar with Xilinx’s internal BlockRam
• You will use an asynchronous FIFO

2. Objective

Use an asynchronous FIFO and a small piece of SRAM to take a single line of video from the ADV7185
decoder and display it repeatedly on the monitor using the ADV7194.

3. Methodology

�
�
�
��
�
��
�
	

��
�
�

�
�
	�
��
�
�
��
�
�

�
�
�
��
�
��
�
	

��
�
�

�
�
	�
��
�
�
��
�
�

Given Modules:

• SRAM module, “linememory” which can hold a single line of 320 pixels in full color
• An asynchronous FIFO “async_fifo” with 32bit I/O for use in crossing clock domains
• A Video Decoder “vid_dec” module which will decode video from the ADV7185 and output

valid 32bit blocks of data and separate sync signals.

EECS150 Fall 2003 Checkpoint2

UCB 2 2003

• A skeleton FPGA_TOP, you must add to this module
• A skeleton Video Encoder, “vid_enc” which will initialize the ADV7194, you must add the main

functionality

Using these modules you will continuously read the first line of active video from the camera into the line
memory. You will also continuously read data from the line memory into the aynchronous FIFO which
will make it possible to cross from the VD_CLOCK domain to the VE_CLOCK domain. Your video
encoder must read data from this asynchronous FIFO and display it on EVERY line of the outgoing. Thus
the first line of video from the camera will be replicated to every line of video on the monitor. This should
result in recognizable vertical bars on the monitor which should change as you wave in front of the camera.

3.1 Video Encoder

Most of the work for this checkpoint will be in creating the video encoder module. The ports you will be
concerned with are:

output [9:0] P
output PAL_NTSC;
output RST_OUT_;
output HSYNC_;
output VSYNC_;
output BLANK_;
output SCRESET;
input CLK;

CLK will be VE_CLOCK will be the 27MHz clock from the encoder, which will be provided to you to
work with. P is the 10bits output on which you have to send your video and control data in the upper 8. It
doesn’t matter what you send in the lowest 2 bits. Ignore them.

Name Description
P 10 bits for 8-bit parallel ITU 601/656 stream
PAL_NTSC keep it to 0 for NTSC transmissions
RST_OUT_ use it to RESET the encoder
HSYNC_ not needed for our mode of operation. Tie to logic 1
VSYNC_ not needed for our mode of operation. Tie to logic 1
BLANK_ not needed for our mode of operation. Tie to logic 1
SCRESET not needed. Tie to 0

3.2 Video Memory

You are provided a file called linememory.v which instantiates a module called linememory. This is a
piece of SRAM. You will need to instantiate this memory and use it to store the first active line of video
coming from the vid_dec module.

linememory has the following IO ports:

input [8:0] addra;
input [8:0] addrb;
input clka;
input clkb;
input [7:0] dina;
output [7:0] doutb;
input wea;

addra: is a 9 bit address bus for the write port. Values should range from 0-319. This will correspond to
320 pixels. (Remember each 8 bit value contains 1 pixel)

dina: is a 8bit data bus. This is the data to write to addra. This should come from the video decoder.
wea: is the write enable for the write port. When this is active (high) data will be written to the line

memory.
addrb: is an 9 bit address bus for the read port. Values should range from 0-319. This will correspond to

EECS150 Fall 2003 Checkpoint2

UCB 3 2003

320 pixels. (Remember each 8 bit value contains 1 pixel)
dina: is a 8bit data bus. This is the data read from addrb. This should go to the asynchronous FIFO.

NOTE: THE RAM HAS SYNCHRONOUS READ! This means that if the address is valid on
clock cycle 1, the data will appear on clock cycle 2. Remember to account for this delay. Almost
all memory is like this.

clka, clkb: these are the clocks. The SRAM on the VirtexE part is dual ported, the a and b ports are
separate and can be used simultaneously. In fact they can be clocked separately which is the
reason for the separate clocks. In this lab clka and clkb MUST BE THE SAME!

Keep in mind that this linememory module will soon be replaced with your SDRAM module from
checkpoint 1. Why do we need the SDRAM? Why can’t we just use the simpler SRAM on the Xilinx
chip? (Hint: There are 160 block RAMs each of which can store 4096bits of data)

3.3 Asynchronous FIFO

The asynchronous FIFO is very similar to the synchronous FIFOs of Checkpoint1. The main difference is
that the read and write clocks are now separate.
Reads and writes to this FIFO are completely independent. The clocks do not even need to be at the same
frequency (though the data rates in and out can’t be very different). This means that we can read and write
when we’re ready to. It also means that you must be VERY careful not to fill or empty the FIFO. A full or
empty FIFO will almost always result in lost video data and major headaches. Why?

3.4 Video Output

Once the I2C data is sent, you can start sending the video date to the encoder. See the class information and
the data sheets (page 22) and the VideoNutshell.doc for specific details on the 8-bit parallel bit stream to
send.

The circuit has two main states – one when it is sending the I2C data, and one when transmitting video
data. While transmitting video, we have to send a new byte every clock cycle, so it would be convenient to
just have a couple of counters (HCOUNT and VCOUNT for example) running and let various operations
like sending EAV, blanking data, SAV, video data take place depending on the value of the counter. Since
counters are expensive, think of a way to share your video counters with the I2C logic (we’ve pretty much
given this to you)

Whenever GRST (switch 1) is pressed, restart from the beginning, resending the I2C data and then start
transmitting video data.

Notes

• It’s not necessary to start transmitting your EAV immediately after you finish transmitting the I2C
sequence. The video encoder will wait until it gets an EAV (ff, 00, 00, code) before it begins
decoding your data. Just make sure you have your sequence exactly the way it should be. Once
you begin sending, you have to maintain the sequence of EAV, HB, SAV, Video exactly with the
correct number of cycles.

• If you get a shaky picture, then you probably have too few or too many cycles somewhere (wrong
number of pixels per line, wrong number of lines per field, etc). Check your state machine/counter
logic. An easy way to check you are doing the right thing is to write the output of your 656/601
stream to a file and actually count pixels and check the sync codes.

• If you are getting weird colors, you probably are not reading the memory in the correct order (i.e.,
Cb first, Y next, Cr, and then Y).

• Wrong values of Y,Cb and Cr could also result in the monitor losing sync! Therefore, if you want
to play around with values start with black (0x80 for Chroma and 0x10 for Luma)

• We will always use 0x80 for chroma to keep things in black and white

EECS150 Fall 2003 Checkpoint2

UCB 4 2003

4 Acknowledgements

Original Lab by Greg Gibeling
Based on labs by Prof.John Wawryznek and N. Vinay Krishnan
Video Expertise – Tom Oberheim

Checkpoint 2 Check-offs

Name: ___________________________

Name:___________________________

Lab Section: _____________________

1. Answers to memory and FIFO questions ______________ (25%)

2. Testbench and Simulation (VideoEncoder) ______________ (25%)

3. Demo ______________ (50%)

Total _________ (%)

