EECS 150 Fall 2003

Lab Lecture 8
Checkpoint2
10/17/2003

Greg Gibeling
Adapted from lecture by Santor Pinto

Today
- Checkpoint 2 Goals
 - Block Diagram
 - Components
 - Announcements
 - Video Decoder
 - Digital Video
 - Video Encoder

Checkpoint2 (1)
- You will get video running on the board
 - We're starting small
 - Just one line of video displayed many times

Checkpoint2 (2)

Checkpoint2 (3)
- We will give you almost everything
 - SRAM Block
 - Asynchronous FIFO
 - Decoder
- You must build the encoder
 - We'll get you started
 - Build it well, it's a big part of your project

SRAM Block (1)
- This is a very simple piece of memory
 - SDRAM would be nice, but it's hard to use
 - For now we'll make our lives a little easier
 - Checkpoint3 will be integrating SDRAM into this checkpoint
SRAM Block (2)
- “linememory”
- Will contain one line of video: the first ACTIVE line
- Dual ported synchronous memory
 - Separate read and write ports
 - COULD be separately clocked, but we’ll use a FIFO
 - Synchronous read and write!

SRAM Block (3)
- 8 bits of address
 - Video is normally 720 pixels, you’ll only use 320.
 - Drop every other pixel until you have 320, then ignore the rest.
- 8 bits of data
 - Ignore Chroma, we want black and white
 - Set Chroma to 0x80 on output

Async FIFO (1)
- Similar to a Synchronous FIFO
- In and out ports are clocked separately
- These are very hard to make!
 - Gray Code for the Counters
 - All kinds of sync issues
 - Dual Ported SRAM
- AINIT instead of SINIT for Reset

Async FIFO (2)
- FIFO must never be empty or full
 - Full -> You will lose data
 - Empty -> You will create garbage data
- How do we know when to read/write?
 - Remember that it doesn't matter when we read the data from the SRAM!
 - It does matter when the encoder needs data

Announcements
- Checkpoint2 is relatively easy
 - We want you to think about the project (Design Review)
 - You will need to do this one well, bugs will cost you lots of time later so SIMULATE
- Due 10/24
- Sign up for Design Review
- Checkpoint1 Checkoffs...

Decoder (1)
- Decoder
 - Takes in raw ITU-R BT.656 video
 - Extracts sync signals
 - Outputs video in two pixel pairs
 - Remember the chroma subsampling?
 - This is a relatively simple module please read the verilog
Decoder (2)

<table>
<thead>
<tr>
<th>General Inputs</th>
<th>Clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>RST</td>
<td>Reset</td>
</tr>
<tr>
<td>EN</td>
<td>Enable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Video Data In</th>
<th>F: Raw Data Input</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Decoder Control Outputs</th>
<th>RST_OUT: Reset Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO</td>
<td>Sync</td>
</tr>
<tr>
<td>SDA</td>
<td>PC Config Data Line</td>
</tr>
<tr>
<td>SCLK</td>
<td>PC Config Clock Line</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decoded Signals</th>
<th>CIF: Start Even Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAV</td>
<td>End Active Video</td>
</tr>
<tr>
<td>SAV</td>
<td>Start Active Video</td>
</tr>
<tr>
<td>VALID</td>
<td>Data Out Valid</td>
</tr>
<tr>
<td>DATA_OUT</td>
<td>Video, samples of video</td>
</tr>
</tbody>
</table>

ITU-R BT.656 Details

- Control is provided through "End of Video" (EAV) and "Start of Video" (SAV) timing references.
- Each reference is a block of four words: FF, 00, 00, <code>
- The <code> word encodes the following bits:
 - F = field select (even or odd)
 - V = indicates vertical blanking
 - H = 1 if EAV else 0 for SAV
- Horizontal blanking section consists of repeating pattern 80 10 80 10 ...

Video Synch State Machine (1)

Video Capture State Machine (2)

Encoder (1)

- You must generate all sync signals
- The SRAM and FIFO must only contain valid, active video data
 - Bandwidth and memory requirements
 - FIFO/Clock Problems?
- We've given you a shell for your encoder
Encoder (2)
- Two Basic States
 - SENDI2C
 - SENDVIDEO (stay for ever)
- Everything else can be counter based
 - Vertical Counter
 - Horizontal Counter

Encoder (3)
- ADV7194 Initialization using I²C
 - Requires only 2 wires
 - Serial Data (Bidirectional)
 - Clock (Driven by master)
 - Runs at up to 400kHz
 - Bidirectional
 - Too complicated for the time you have, so we'll give it to you
 - Read datasheet for more

Where to Start
- Reread “Video in a Nutshell”
 - Useful Documents section on website
- Read the Verilog
 - Vid_Dec.V
 - FPGA_TOP.V (You will modify this)
 - Vid_Enc.V (You will modify this)

And now...
- We will check off Checkpoint1
 - You have till 4pm to be checked off
 - Its due today
- Partners – Come see me after lecture
- Questions?
 - Stick around and ask
 - Stick around and listen, you might hear something very useful.