Lab Lecture 11

Tips and Tricks

11/7/2003

Greg Gibeling

Today

- Debugging
- Reset & Debouncing
- Announcements
- Signal Conditioning
- Timing Analyzer
 - Constraints
 - Kramnik

Debugging (1)

- Debugging Algorithm
 - Hypothesis: What’s broken?
 - Control: Give it controlled test inputs
 - Expected Output: What SHOULD it do?
 - Observe: Did it work right?
 - If it broke: THAT’S GREAT!
 - If we can’t break anything like this then the project must be working...

Debugging (2)

- Don’t debug randomly
 - Just changing things at random often makes things look fixed
 - It won’t really help
 - Debug systematically
 - Your first design may be the best
 - “1000 CS150 students at a 1000 typewriters...”
 - What can you do?

Debugging (3)

- High Level Debugging
- Localize the problem
 - Is it the decoder? The sync fifo? SDRAM? Async? Encoder?
 - Test Patterns
 - Lets you easily isolate the broken component
 - Freeze Frame
 - Divides project in half and lets you check both halves

Debugging (4)

- Simulate the broken component(s)
 - Writing test benches takes less time than sitting around wondering why its broken
 - Everyone hates writing testbenches
 - (Even me)
 - Get used to it
 - What if the simulation works?
 - LOGIC ANALYZER!
Debugging (5)
- Using the logic analyzer
 - The most reliable tool you have
 - When used properly
 - Use the triggers effectively
 - Trigger on recurring sequences
 - Trigger on errors
 - An unstable display is useless
 - Compare logic analyzer to simulation

Debugging (6)
- Your best debugging tool is logic
 - If your decoder, FIFOs and SDRAM work then what's probably broken?
- Question all your assumptions!
 - Just because you think it's true doesn't mean it is
 - 90% of debugging time is wasted debugging the wrong problem otherwise
 - Given solutions and modules may not work the way you expect!

Debugging (7)
- Before you change anything
 - Understand exactly what the problem is
 - Find an efficient solution
 - Evaluate alternative solutions
- After the change
 - Fixes may make things worse sometimes
 - May uncover a second bug
 - May be an incorrect fix
 - Repeat the debugging process

Debugging (8)
- Ask around
 - Someone else may have had the same bug
 - They'll probably at least know about where the problem is
 - Different bugs may produce the same results
- TAs
 - The TAs know common problems
 - We've also made a lot of the mistakes

Reset & Debouncing (1)
- A lot of people have reset problems
 - Is it debounced?
 - Why isn't debouncing enough?
 - What's the solution?
 - Make it longer!

Reset & Debouncing (2)
- Picture sync problems...
 - Why does this happen?
 - Decoder, SDRAM and Encoder must be synced on reset
Reset & Debouncing (2)
- How do we sync everything?
 - SDRAM doesn't write when Sync FIFO is over half empty (data_count)
 - SDRAM reads can start before the first write. Why?
 - Encoder doesn't start until Async FIFO is half full for the first time
- Questions?

Announcements
- Checkpoint3 Due 11/4 @ 8pm
 - You may checkoff through 4pm Today 11/7 for 50% credit
- Checkpoint4 Due Monday 11/10
 - We'd be happy to check you off early
- NO CHECKPOINT5!
- Project Due Wed 11/26
 - +5 Bonus for Early Completion on 11/21

Signal Conditioning (1)
- Off-by-a-cycle Errors
 - Shorten a Pulse
 - Lengthen a Pulse
 - Shift a Pulse
 - Remember the Edge Detector?
 - It's something like that...

Signal Conditioning (2)
- Shorten a Pulse
 - 5 Cycles -> 4 Cycles
 - Input
 - ![Diagram](image1)
 - Output
 - Any guesses?
 - What if we delayed the input?

Signal Conditioning (3)
- Shorten a Pulse
 - Input
 - ![Diagram](image2)
 - Output = In & In_Delayed

Signal Conditioning (4)
- Lengthen a Pulse
 - Input
 - ![Diagram](image3)
 - Output = In | In_Delayed
Timing Analyzer (1)
- Timing Constraints in Synplify
 - Xilinx will attempt to match them
 - Will tell you if it fails
 - They make PAR run slower
 - A constraint will not make your circuit faster
- Better to just let things PAR
- Check the timing when we’re done

Timing Analyzer (2)
- “Analyze Post Place and Route Static Timing (Timing Analyzer)”
- Implement Design -> Place & Route -> Generate Post Place and Route Static Timing
- This will tell you your minimum period
- If its too big then what?
 - Simplify your circuit
 - Constraints probably won’t do it

Kramnik
- Allow log in from off campus
- You can run ModelSim from home
- Not much point to Synplify/Xilinx
 - https://iesg.eecs.berkeley.edu/remote
- Log into kramnik.eecs.berkeley.edu
- Demo...

And now...
- We will check off Checkpoint4
 - You have till Monday for full credit
- Checkpoint3 for 50% credit
- Questions?
 - Stick around and ask
 - Stick around and listen, you might hear something very useful.