University of California at Berkeley

College of Engineering

Department of Electrical Engineering and Computer Science

EECS 150

R. H. Katz

Fall 2005

Problem Set # 7 (Assigned 19 October, Due 28 October)

1.
You are to implement a MOORE MACHINE controller that does the following. It “swaps” the values in two registers within a register file. That is, the high level operation SWAP (REGX, REGY) places the contents of REGX into REGY and REGY into REGX, where REGX and REGY are two registers within a register file. The contents of a register can be swapped with itself. The register file can read one register or write one register during any clock period, but not both (this is a single port read/single port write register file). The signals RD and WR control reading from and writing to the register file respectively. REG ADDRESS indicates the register number within the register file. The RD signal is asynchronous. Reading begins as soon as the signal is asserted. You may assume that data will be available at Data Out well before the rising edge of the clock after RD is asserted and REG ADDRESS becomes stable (i.e., propagation delay through the register file is short compared with the clock period). The WR signal is synchronous, and writing takes place on the rising edge of the clock whenever WR is true. You may assume that the set-up time for REG Address and Data In is much shorter than the clock period and that the hold time is 0.

There are two buffer registers, A and B, with synchronous LD control inputs outside the register file. They provide the A-side and B-side inputs to an arithmetic/logic unit (ALU). The ALU can perform the four operations A PLUS B (OP=100) (sum A and B inputs), A MINUS B (OP=000) (subtract B from A), PASS A (OP=010) (pass through the A input), or PASS B (OP=001) (pass through the B input). You may assume that any of the ALU operations take place with a propagation delay much less than the clock period.

The datapath fragment is the following. Thick lines are multi-bit busses; thin lines are single bit:

(i) Draw a state diagram fragment that implements the SWAP(REGA, REGB) sequence. Indicate which control signals are asserted in each state (assume a global RESET signal puts the controller into an initial state named S0).

[image: image1.emf]S0

ReadX

[Sel=0, Rd=1,

LDA=1]

ReadY

[Sel=1, Rd=1,

LDB=1]

WriteY

[Sel=1, Wr=1,

PassA=1]

WriteX

[Sel=0, Wr=1,

PassB=1]

All Other Outputs = 0

Reset

(ii) Write a Verilog fragment that implements this state machine behavior.

Module swap(RD, WR, REGX, REGY, SEL, LDA, LDB, ADDSUB, PASSA, PASSB, CLK, Reset);

Input CLK, Reset;

Output RD, WR, SEL, LDA, LDB, ADDSUB, PASSA, PASSB;

Output [width-1:0] RegX, RegY;

Reg [2:0]
NS, CS;

Localparam
S_S0

= 3’b000,

S_ReadX
= 3’b001,

S_ReadY
= 3’b010,

S_WriteY
= 3’b011,

S_WriteX
= 3’b100;

Assign RD = (CS == S_ReadX || CS == S_ReadY);

Assign WR = (CS == S_WriteX || CS == S_WriteY);

Assign SEL = (CS == S_ReadY || CS == S_WriteY);

Assign LDA = (CS == S_ReadX);

Assign LDB = (CS == S_ReadY);

Assign ADDSUB = 1’b0;

Assign PASSA = (CS == S_WriteY);

Assign PASSB = (CS == S_WriteX);

Always @ (*) begin

Case (CS)

S_S0:

NS = S_ReadX;

S_ReadX:
NS = S_ReadY;

S_ReadY:
NS = S_WriteY;

S_WriteY:
NS = S_WriteX;

S_WriteX:
NS = S_S0;

Default:

NS = S_S0;

Endcase

End

Always @ (posedge Clock) begin

If (Reset)

CS <= NS;

Else

CS<=S_S0;

end

Endmodule

(iii) Complete a timing diagram such as the figure below, indicating in detail when control signals are asserted and unasserted with respect to the clock.

[image: image2.png]SEL

REG ADDR

LDA

LDB

PASS A

PASSB

SUB

CLOCK

i S_ReadX

S_ReadY

S_WriteY

S_WriteX

A

B

QB

LDA

CLK

CLK

LDB

DA

CLK

S

01

M

U

X

Data In

Data Out

Control FSM

RD

WR

REG Address

RD

WR

REGX

REGY

SEL

LDA

LDB

ADD/SUB

PASS A

PASS B

CLK

DB

QA

Arithmetic

Logic Unit

OP[2:0]

_1192255814.vsd
S0

ReadX
[Sel=0, Rd=1, LDA=1]

ReadY
[Sel=1, Rd=1, LDB=1]

WriteY
[Sel=1, Wr=1, PassA=1]

WriteX
[Sel=0, Wr=1, PassB=1]

All Other Outputs = 0

Reset

