Sequential Logic Implementation

- Models for representing sequential circuits
 - Finite-state machines (Moore and Mealy)
 - Representation of memory (states)
 - Changes in state (transitions)
- Design procedure
 - State diagrams
 - State transition table
 - Next state functions

Abstraction of State Elements

- Divide circuit into combinational logic and state
- Localize feedback loops and make it easy to break cycles
- Implementation of storage elements leads to various forms of sequential logic

Forms of Sequential Logic

- Asynchronous sequential logic - state changes occur whenever state inputs change (elements may be simple wires or delay elements)
- Synchronous sequential logic - state changes occur in lock step across all storage elements (using a periodic waveform - the clock)

Finite State Machine Representations

- States: determined by possible values in sequential storage elements
- Transitions: change of state
- Clock: controls when state can change by controlling storage elements

Sequential Logic
 - Sequences through a series of states
 - Based on sequence of values on input signals
 - Clock period defines elements of sequence

Example Finite State Machine Diagram

- Combination lock from first lecture

Can Any Sequential System be Represented with a State Diagram?

- Shift Register
 - Input value shown on transition arcs
 - Output values shown within state node
Counters are Simple Finite State Machines

- **Counters**
 - Proceed thru well-defined state sequence in response to enable
 - Many types of counters: binary, BCD, Gray-code
 - 3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, ...
 - 3-bit down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...

How Do We Turn a State Diagram into Logic?

- **Counter**
 - Three flip-flops to hold state
 - Logic to compute next state
 - Clock signal controls when flip-flop memory can change
 - Wait long enough for combinational logic to compute new value
 - Don’t wait too long as that is low performance

FSM Design Procedure

- **Start with counters**
 - Simple because output is just state
 - Simple because no choice of next state based on input
- **State diagram to state transition table**
 - Tabular form of state diagram
 - Like a truth-table
- **State encoding**
 - Decide on representation of states
 - For counters it is simple: just its value
- **Implementation**
 - Flip-flop for each state bit
 - Combinational logic based on encoding

FSM Design Procedure: State Diagram to Encoded State Transition Table

- **Tabular form of state diagram**
 - Like a truth-table (specify output for all input combinations)
- **Encoding of states: easy for counters – just use value**

Verilog Implementation

```verilog
module binary_cntr (q, clk)
    inputs clk;
    outputs [2:0] q;
    reg [2:0] p;
    always @(posedge clk) //next becomes current state
        case (q)
            3'b000: p = 3'b001;
            3'b010: p = 3'b011;
            ... 3'b111: p = 3'b000;
        endcase
    always @(posedge clk) //next becomes current state
        q <= p;
    endcase
endmodule
```

Implementation

- **D flip-flop for each state bit**
- **Combinational logic based on encoding**

![State Transition Table](image)

![Verilog Code](image)
Implementation (cont’d)

- Programmable Logic Building Block for Sequential Logic
- Macro-cell: FF + logic
 - D-FF
 - Two-level logic capability like PAL (e.g., 8 product terms)

More Complex Counter Example

- Complex Counter
 - Repeats five states in sequence
 - Not a binary number representation
- Step 1: Derive the state transition diagram
- Count sequence: 000, 010, 011, 101, 110
- Step 2: Derive the state transition table from the state transition diagram

Self-Starting Counters (cont’d)

- Re-deriving state transition table from don’t care assignment

Another Example

- Shift Register
 - Input determines next state

More Complex Counter Example (cont’d)

- Step 3: K-maps for Next State Functions

Self-Starting Counters

- Start-up States
 - At power-up, counter may be in an unused or invalid state
 - Designer must guarantee it (eventually) enters a valid state
- Self-starting Solution
 - Design counter so that invalid states eventually transition to a valid state
 - May limit exploitation of don’t cares

Example Counters

- Counter may limit exploitation of don’t cares
- May limit exploitation of don’t cares
- May limit exploitation of don’t cares
State Machine Model

- Values stored in registers represent the **state** of the circuit.
- Combinational logic computes:
 - Next state: Function of current state and inputs
 - Outputs: Function of current state and inputs (Mealy machine)
 - Outputs: Function of current state only (Moore machine)

State Machine Model (cont’d)

- States: \(S_1, S_2, \ldots, S_k \)
- Inputs: \(I_1, I_2, \ldots, I_m \)
- Outputs: \(O_1, O_2, \ldots, O_n \)
- Transition function: \(F_s(S_i, I_j) \)
- Output function: \(F_o(S_i) \) or \(F_o(S_i, I_j) \)

First Midterm Exam—28 September 2005

- Topics to be covered:
 - Combinational logic design
 - From spec to truth table to K-map to Boolean Expression
 - Canonical forms of Boolean Expressions
 - Conversions of AND-OR logic to NAND or NOR logic
 - Two level logic implementations using gates, PLA, MUX, DEC, ROM, Xilinx CLB FPGA structures
 - Comparing implementation complexities/figures of merit
 - Sequential logic
 - Flip flop behavior, analysis, and timing diagrams
 - Using flip flops to design registers, shifters, counters
 - From spec to state diagram to Sequential Verilog
 - Amount of FSM implementation through end of today

Example: Ant Brain (Ward, MIT)

- Sensors: L and R antennae, 1 if in touching wall
- Actuators: F - forward step, TL/TR - turn left/right slightly
- Goal: Find way out of maze
- Strategy: Keep the wall on the right
Synthesizing the Ant Brain Circuit

- Encode States Using a Set of State Variables
 - Arbitrary choice - may affect cost, speed
- Use Transition Truth Table
 - Define next state function for each state variable
 - Define output function for each output
- Implement next state and output functions using combinational logic
 - 2-level logic (ROM/PLA/PAL)
 - Multi-level logic
- State assignment (in this case, arbitrarily chosen)

Transition Truth Table

- Using symbolic states and outputs

Synthesis of Next State and Output Functions

<table>
<thead>
<tr>
<th>state</th>
<th>input</th>
<th>next state</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>R</td>
<td>X, Y, Z</td>
<td>TR</td>
</tr>
<tr>
<td>000</td>
<td>000</td>
<td>000</td>
<td>100</td>
</tr>
<tr>
<td>000</td>
<td>001</td>
<td>100</td>
<td>000</td>
</tr>
<tr>
<td>010</td>
<td>010</td>
<td>010</td>
<td>010</td>
</tr>
<tr>
<td>010</td>
<td>011</td>
<td>011</td>
<td>011</td>
</tr>
<tr>
<td>010</td>
<td>000</td>
<td>001</td>
<td>001</td>
</tr>
<tr>
<td>010</td>
<td>111</td>
<td>111</td>
<td>111</td>
</tr>
<tr>
<td>010</td>
<td>010</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>010</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>010</td>
<td>110</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>010</td>
<td>101</td>
<td>110</td>
<td>110</td>
</tr>
</tbody>
</table>

Use Transition Truth Table

- Define next state function for each state variable
- Define output function for each output
- Implement next state and output functions using combinational logic
- 2-level logic (ROM/PLA/PAL)
- Multi-level logic
- State assignment (in this case, arbitrarily chosen)
Circuit Implementation

- Outputs are a function of the current state only - Moore machine

\[
\begin{array}{c}
\text{Output logic} \\
\text{Next state logic} \\
\text{Current State}
\end{array}
\]

Verilog Sketch

```verilog
module ant_brain (F, TR, TL, L, R)
inputs  L, R;
outputs  F, TR, TL;
reg   X, Y, Z;
assign F = function(X, Y, Z, L, R);
assign TR = function(X, Y, Z, L, R);
assign TL = function(X, Y, Z, L, R);
always @(posedge clk)
begin
  X <= function(X, Y, Z, L, R);
  Y <= function(X, Y, Z, L, R);
  Z <= function(X, Y, Z, L, R);
end
endmodule
```

Don’t Cares in FSM Synthesis

- What happens to the "unused" states (101, 110, 111)?
- Exploited as don’t cares to minimize the logic
 - If states can’t happen, then don’t care what the functions do
 - If states do happen, we may be in trouble

State Minimization

- Fewer states may mean fewer state variables
- High-level synthesis may generate many redundant states
- Two states are equivalent if they are impossible to distinguish from the outputs of the FSM, i.e., for any input sequence the outputs are the same

- Two conditions for two states to be equivalent:
 1) Output must be the same in both states
 2) Must transition to equivalent states for all input combinations

Ant Brain Revisited

- Any equivalent states?

New Improved Brain

- Merge equivalent B and C states
- Behavior is exactly the same as the 5-state brain
- We now need only 2 state variables rather than 3
New Brain Implementation

<table>
<thead>
<tr>
<th>state</th>
<th>inputs</th>
<th>next state outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X, Y, L</td>
<td>X', Y', TR, TL</td>
</tr>
<tr>
<td>0 0</td>
<td>0 1 0 0</td>
<td>1 0 0 1</td>
</tr>
<tr>
<td>0 1</td>
<td>0 1 0 0</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>0 0</td>
<td>1 1 0 1</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>0 1</td>
<td>0 1 0 1</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>0 1</td>
<td>0 1 0 1</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>1 0</td>
<td>0 1 0 1</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>1 0</td>
<td>0 1 0 1</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>1 0</td>
<td>1 1 1 0</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>1 1</td>
<td>1 0 1 0</td>
<td>0 0 1 0</td>
</tr>
</tbody>
</table>

Sequential Logic Implementation Summary

- Models for representing sequential circuits
 - Abstraction of sequential elements
 - Finite state machines and their state diagrams
 - Inputs/outputs
- Mealy, Moore, and synchronous Mealy machines
- Finite state machine design procedure
 - Deriving state diagram
 - Deriving state transition table
 - Determining next state and output functions
 - Implementing combinational logic