SDRAM Memory Controller

- Static RAM Technology
 - 6T Memory Cell
 - Memory Access Timing
- Dynamic RAM Technology
 - 1T Memory Cell
 - Memory Access Timing

Tri-State Gates

Slick Multiplexer Implementation

Basic Memory Subsystem Block Diagram

Static RAM Cell

Typical SRAM Organization: 16-word x 4-bit
Write Enable is usually active low (WE_L)
- Din and Dout are combined to save pins:
 - A new control signal, output enable (OE_L) is needed
 - WE_L is asserted (Low), OE_L is disasserted (High)
 - D serves as the data input pin
 - WE_L is disasserted (High), OE_L is asserted (Low)
 - D is the data output pin
 - Both WE_L and OE_L are asserted:
 - Result is unknown. Don’t do that!!!

Typical SRAM Timing

Problems with SRAM
- Six transistors use up lots of area
- Consider a “Zero” is stored in the cell:
 - Transistor N1 will try to pull “bit” to 0
 - Transistor P2 will try to pull “bit bar” to 1
- Bit lines are already precharged high: Are P1 and P2 really necessary?

1-Transistor Memory Cell (DRAM)
- Write:
 1. Drive bit line
 2. Select row
- Read:
 1. Precharge bit line to Vdd/2
 2. Select row
 3. Cell and bit line share charges
 4. Sense (fancy sense amp)
 5. Write: restore the value
- Refresh:
 1. Just do a dummy read to every cell

Classical DRAM Organization (Square)
- Square keeps the wires short:
 - Power and speed advantages
 - Less RC, faster precharge and discharge is faster access time!

DRAM Logical Organization (4 Mbit)
- Square root of bits per RAS/CAS
 - Row selects 1 row of 2048 bits from 2048 rows
 - Col selects 1 bit out of 2048 bits in such a row
Control Signals (RAS_L, CAS_L, WE_L, OE_L) are all active low
Din and Dout are combined (D)
WE_L is asserted (Low), OE_L is disasserted (High)
D serves as the data input pin
WE_L is disasserted (High), OE_L is asserted (Low)
D is the data output pin
Row and column addresses share the same pins (A)
RAS_L goes low: Pins A are latched in as row address
CAS_L goes low: Pins A are latched in as column address
RAS/CAS edge-sensitive

Every DRAM access begins at:
1. Assertion of the RAS_L
2. 2 ways to read: early or late v. CAS

DRAM Read Cycle Time

Early Read Sequencing
1. Assert Row Address
2. Assert RAS_L
 1. Commence read cycle
 2. Meet Row Addr setup time before RAS/hold time after RAS
3. Assert OE_L
4. Assert Col Address
5. Assert CAS_L
 1. Meet Col Addr setup time before CAS/hold time after CAS
 2. Valid Data Out after access time
6. Disassert OE_L, CAS_L, RAS_L to end cycle

Late Read Sequencing
1. Assert Row Address
2. Assert RAS_L
 1. Commence read cycle
 2. Meet Row Addr setup time before RAS/hold time after RAS
3. Assert CAS_L
 1. Meet Col Addr setup time before CAS/hold time after CAS
4. Assert OE_L
 1. Valid Data Out after access time
 2. Disassert OE_L, CAS_L, RAS_L to end cycle
Key DRAM Timing Parameters

- t_{RAC}: minimum time from RAS line falling to the valid data output.
 - Quoted as the speed of a DRAM
 - A fast 4Mb DRAM $t_{RAC} = 60$ ns
- t_{RC}: minimum time from the start of one row access to the start of the next.
 - $t_{RC} = 110$ ns for a 4Mbit DRAM with a t_{RAC} of 60 ns
- t_{CAC}: minimum time from CAS line falling to valid data output.
 - 15 ns for a 4Mbit DRAM with a t_{CAC} of 60 ns
- t_{PC}: minimum time from the start of one column access to the start of the next.
 - 35 ns for a 4Mbit DRAM with a t_{PC} of 60 ns

SDRAM Memory Controller

- Static RAM Technology
 - 6T Memory Cell
 - Memory Access Timing
- Dynamic RAM Technology
 - 1T Memory Cell
 - Memory Access Timing