Electronic Etch-a-Sketch Project

Project Concept and Background
Checkpoint Structure
Bells and Whistles

Objectives
- Broad "brush" overview of the project
- Details will be covered in the lab lectures
- NOTE: anything discussed in the lab lectures and project checkpoint write-ups supercedes what I describe here!
 - The TAs know the project better than I do!

Electronic Etch-a-Sketch

AKA an electronic "paint" machine...
Recent CS 150 projects: network streaming audio, network digital "telephone", pong, video image processing, audio and/or video a common theme
This is a good CS 150 project because...
 - It is NOT a processor architecture (take CS 152 for that!)
 - Vast majority of digital designs involve interfacing with the real world, with real world timing constraints!
 - Hardware Systems: Input, Processing, Output
 - Pen/brush position/size (and special effects) inputs
 - State of the screen in frame buffer in SDRAM
 - Modified by drawing semantics
 - Refresh LCD screen from frame buffer in SDRAM

Electronic Etch-a-Sketch

Implement this...
with this...

One possible way to do it...
Calinx Board

- Video & Audio Ports
- PC/104 connector & Power Amp
- Flash Card & Microdrive Port
- Prototipo Area
- Serial Segment LED Display

Checkpoint #1: N64 Interface

- This week in lab!
- Continuously poll N64 and report state of buttons and analog joystick
- Issue 8-bit command
- Receive 32-bit response
- Each button response is 32-bit value containing button state and 8-bit signed horizontal and vertical velocities
- Serial interface protocol
 - Multiple cycles to perform each transaction
- Bits obtained serially--UART-like functionality
 - Framing (packet start/stop)
 - Bit encoding: start | data | data | stop

Checkpoint #2: Video Encoding

- Video details fairly complex and involve many choices:
 - NTSC vs. PAL, HDTV
 - Interleaved even-odd frames (TV) vs. progress scan (computer and digital displays)
 - Frame size, frame rate
 - Pixel encoding: R6B, YUV/YCB (Luminance, Chrominance -- brightness plus color difference signals)
 - Subsampling to reduce data demands (compression trick)
 - Input: ITU-R BT.601 Format (Digital Broadcast NTSC)
 - Output: Component video, S-video to drive LCDs in lab
 - Fortunately, Calinx board has a chip on-board that deals with much of the gruntwork details

Checkpoint #2: Video Encoding

- Pixel Array:
 - Digital image represented by matrix of values, where each is a function of the information surrounding it in the image. pixels are elements in image matrix. each element or pixel (includes info for all color components).
 - Array size varies for different apps and some apps use common class
- Frames:
 - Sequence of motion created by successively flashing #31 picture called frames

ITU-R BT.656 Details

- Details for ITU-601
 - Pixels per line: 525
 - Lines per frame: 29.97
 - Frame/field: 525 lines
 - Framerate: 29.97
 - Visible pixels/line: 720
 - Visible lines/frame: 486

- With 4:2:2 chroma subsampling, and 2 words/pixel (Cr/Y/Cb/Y)
- Words per second: 2.75M
- Encoder rate of a 27MHz clock
- Control input (horizontal & vertical sync) is multiplexed on data lines
- Encoder data stream sends to right
- See video tutorial documents on course documentation website
Checkpoint #2: Video Encoder

- Point engine processes pixels within frame buffer
- Drive ADV7194 video encoder device to output correct NTSC video
- Gain lots of experience reading data sheets
- Dictates the 27 MHz operation rate
- Used throughout graphics subsystem

Calinx On-Board Video Encoder

- Analog Devices ADV7194: ITU 601/656 in, Composite Video Out
- Supports:
 - Multiple input formats and outputs
 - Operational modes, slave/master
- Used in default mode: ITU-601 as slave s-video output
- Digital input side connected to Virtex pins
- Analog output side wired to on board connectors or headers
- I2C interface for initialization
 - Wired to Virtex

Checkpoint #3: SDRAM Interface

- Memory protocols
 - Bus arbitration
 - Address phase
 - Data phase
- SDRAM is large, but few address lines and slow
 - Row & col address
 - Wait states
- Synchronous SDRAM provides fast synchronous access current block
 - Little like a cache in the SDRAM
 - Fast burst of data
- Arbitration for shared resource

SDRAM READ Burst Timing

Checkpoint #4: Paint Engine

- Fed a series of "brush" strokes and effects
 - Defined by color (including erase), brush shape (height, width), etc.
 - Current brush positions
 - All from N64 Controller interface
 - NOTE: lots of buttons, and lots of opportunity for extra credit brush effects
- Renders "paint" into frame buffer within range of pixels at current cursor position
 - Must arbitrate for SDRAM and carry out bus protocol
- Paint engine overlaps writing SDRAM with video interfacing reading SDRAM to drive LCD display
 - Continuously feeding video interface from SDRAM subject to timing specifications

Checkpoint Structure and Schedule

- Checkpoint #1: Game Controller Interface (Week 7)
- Checkpoint #2: LCD Interface (Week 8)
- Checkpoint #3: Memory Interface (Week 9, 10 -- Spans Midterm II)
- Checkpoint #4: Paint Engine/Integration (Week 11, 12, 13+)
- Early Check-off: Wednesday before Thanksgivings (November 23)
- Standard Check-off: Wednesday, November 30
- Project Final Report: December 7
Possible Bells and Whistles

- Sound effects
- Brush effects, like spray paint, splashes, etc.
- Brush shapes, like square, oval, triangle, etc.
- Brush physics, soft vs hard brush, brush angle, etc. (e.g., Japanese calligraphy)
- Color mixing rather than overwrite
- Your good idea here

NOTE: We don’t necessarily have to implement these ourselves!
NOTE: extra credit will be limited to 20% extra points and no extra credit unless the standard functionality works.