The Project & Digital Video

EECS150 Fall2008 - Lab Lecture #7

Arjun Singh
Adopted from slides designed by
Greg Gibeling and Chris Fletcher

Today

- Project Introduction
- Good Design (Part 2)
 - Interfaces and Handshaking
- Video Encoder
 - Digital Video
 - ITU-R BT.601/ITU-R BT.656
 - Video Encoder
 - I2C Bus
 - More Information

The Project (1)

- Digital Storage Oscilloscope
 - Display audio as waveforms
 - Stream audio from network audio or from a microphone
 - Store audio stream
 - Playback audio stream
 - Trigger and freeze under different conditions
- Extra Credit
 - A major part of this project
 - Will augment checkpoints 3, 4 and 5
The Project (2)

- Checkpoints
 - Require more design work than labs
 - We’re not telling you exactly what to do
 - Part of your project
 - Design them well
 - Test them thoroughly!
 - Don’t lose your code
 - Require more time

The Project (3)

- Checkpoint Roadmap
 - Video Encoder
 - SDRAM in Simulation
 - SDRAM in Hardware + SDRAM Arbiter
 - Waveform Generator + OScope features
 - AC97 Audio
 - Extra Credit
 - Check calendar page and project spec for dates

Interfaces & Handshaking (1)

- Connect two modules with just wires
- No combinational logic
- Unidirectional Data-flow
 - Source → Sink
Interfaces & Handshaking (2)
- Handshaking Signals
 - Valid (from Source)
 - Ready (from Sink)
- Don’t rely on timing assumptions

Interfaces & Handshaking (3)
- Data Transfer
 - Synchronous
 - When Ready and Valid are both high

Checkpoint #1: Video Encoder
- Video Encoder
 - Sets up NTSC framing
 - Blanking, SAV, EAV
 - Request Data & Display it
Digital Video (1)

- **Pixel Array**
 - A digital image is represented by a matrix of pixels which include color information.

- **Frames**
 - Motion is created by flashing a series of still frames

Digital Video (2)

- **Scanning**
 - Images are generated on the screen by scanning pixel lines, left to right, top to bottom
 - Early CRTs required time to get from the end of a line to the beginning of the next. Therefore each line of video consists of active video portion and a horizontal blanking interval
 - To reduce flicker, each frame is divided into two fields: odd and even

Digital Video (3)

- **Colors**
 - Usually represented as red, green and blue
 - In the digital domain we could transmit 8 bits each for RGB.
 - Transition from B&W
 - Didn’t want to break old TVs
 - Added separate color or “Chroma” signals
 - Y: Luma (Black and White)
 - Cr: Chroma Red (New color signal)
 - Cb: Chroma Blue (New color signal)
Digital Video (4)

- Chroma Subsampling
 - Human eye is sensitive to Luma more than Chroma

Administrative Info (1)

- Project Partners
 - Talk to us ASAP if you don't have one
- SVN Repositories
 - Chris will give introduction next Tuesday, 3:30-5:00pm (his OH time)
 - Introduction will be audio-cast
 - (Audio-cast guaranteed this time)

Administrative Info (2)

- Design Reviews
 - Grading
 - You have it or you don't
 - Bring diagrams
 - Schematic
 - "On a napkin"
 - Bubble-and-arc
 - Block Diagrams
 - NO VERILOG
NO DESIGN
→ NO HELP

ITU-R BT.601

- Formerly, CCIR-601.
 - Designed for digitizing broadcast NTSC.
 - National Television System Committee.
- Variations:
 - 4:2:0 Chroma Subsampling
 - PAL (European) version
- Component streaming:
 - line i: C_{Y} Y C_{Y} Y C_{Y} Y
 - line i+1: C_{C_{R}} Y C_{C_{B}} Y C_{C_{B}} Y
- Effective Bits/Pixel:
 - 4 components / 2 pixels = 32/2 = 16 bits/pixel

ITU-R BT.656 (1)

- Details
 - Pixels/Line: 858
 - Lines/Frame: 525
 - Frames/S: 29.97
 - Pixels/S: 13.5M
- Active
 - Pixels/Line: 720
 - Lines/Frame: 487
- Blanking
 - SAV/EAV: 48/48
 - Black filter

FIGURE 1
Composition of interface data stream

Active Frame

Size

720 x 507

Frame Rate

29.97/sec

Scan

Interlaced

Chroma subsampling

4:2:2

2:1 in X only

Coincident

Bits per component

8

Effective bits/pixel

16
ITU-R BT.656 (2)

- Odd Field (262 Lines)
 - Total: 262 Lines
 - 16 Vertical Blanking
 - 244 Active
 - 2 Vertical Blanking
- Even Field
 - Total: 263 Lines
 - 17 Vertical Blanking
 - 243 Active
 - 3 Vertical Blanking

ITU-R BT.656 (3)

<table>
<thead>
<tr>
<th>P9</th>
<th>P8</th>
<th>P7</th>
<th>P6</th>
<th>P5</th>
<th>P4</th>
<th>P3</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1'b1</td>
<td>1'b1</td>
<td>1'b1</td>
<td>1'b1</td>
<td>1'b1</td>
<td>1'b1</td>
<td>1'b1</td>
<td>1'b1</td>
</tr>
<tr>
<td>1'b0</td>
<td>1'b0</td>
<td>1'b0</td>
<td>1'b0</td>
<td>1'b0</td>
<td>1'b0</td>
<td>1'b0</td>
<td>1'b0</td>
</tr>
<tr>
<td>1'b0</td>
<td>1'b0</td>
<td>1'b0</td>
<td>1'b0</td>
<td>1'b0</td>
<td>1'b0</td>
<td>1'b0</td>
<td>1'b0</td>
</tr>
</tbody>
</table>

- F: Field Select (0: Odd, 1: Even)
- V: Vertical Blanking Flag
- H: EAV/SAV Flag (0: SAV, 1: EAV)

Video Encoder (1)

- Analog Devices ADV7194
 - Supports ITU-R BT.601/656
 - S-Video and Composite Outputs
 - I²C Control (We will give this to you)
Video Encoder (2)

<table>
<thead>
<tr>
<th>Signal</th>
<th>Width</th>
<th>Dir</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VE_P</td>
<td>10</td>
<td>O</td>
<td>Outgoing NTSC Video (Use {Data, 2'b00})</td>
</tr>
<tr>
<td>VE_SCLK</td>
<td>1</td>
<td>O</td>
<td>I2C Clock (For Initialization)</td>
</tr>
<tr>
<td>VE_SDA</td>
<td>1</td>
<td>O</td>
<td>I2C Data (For Initialization)</td>
</tr>
<tr>
<td>VE_PAL_NTSC</td>
<td>1</td>
<td>O</td>
<td>PAL/NTSC Mode Select (Always 1'b0)</td>
</tr>
<tr>
<td>VE_RESET_B_</td>
<td>1</td>
<td>O</td>
<td>Active low reset (~Reset)</td>
</tr>
<tr>
<td>VE_HSYNC_B_</td>
<td>1</td>
<td>O</td>
<td>Manual Control (Always 1'b1)</td>
</tr>
<tr>
<td>VE_VSYNC_B_</td>
<td>1</td>
<td>O</td>
<td>Manual Control (Always 1'b1)</td>
</tr>
<tr>
<td>VE_BLANK_B_</td>
<td>1</td>
<td>O</td>
<td>Manual Control (Always 1'b1)</td>
</tr>
<tr>
<td>VE_SCRESET</td>
<td>1</td>
<td>O</td>
<td>Manual Control (Always 1'b0)</td>
</tr>
<tr>
<td>VE_CLKIN</td>
<td>1</td>
<td>O</td>
<td>Clock (27MHz, Just send Clock)</td>
</tr>
</tbody>
</table>

Video Encoder (3)

<table>
<thead>
<tr>
<th>Signal</th>
<th>Width</th>
<th>Dir</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock</td>
<td>1</td>
<td>I</td>
<td>Clock input (27MHz)</td>
</tr>
<tr>
<td>Reset</td>
<td>1</td>
<td>I</td>
<td>Reset input</td>
</tr>
<tr>
<td>Data</td>
<td>32</td>
<td>I</td>
<td>Requested Data from ROM</td>
</tr>
<tr>
<td>Captured</td>
<td>1</td>
<td>I</td>
<td>Data is valid this cycle</td>
</tr>
<tr>
<td>DataReady</td>
<td>1</td>
<td>O</td>
<td>The Video Encoder is ready to receive more data. & DataReady and DataValid are both high, the VideoEncoder should latch in data on the next rising edge.</td>
</tr>
<tr>
<td>AddressLine</td>
<td>9</td>
<td>O</td>
<td>Line of Video (Line[7:0], Field) The ROM will return a pixel pair from this line.</td>
</tr>
<tr>
<td>AddressPair</td>
<td>9</td>
<td>O</td>
<td>Pair of Pixels. The line will return data for this pixel pair.</td>
</tr>
<tr>
<td>AddressValid</td>
<td>1</td>
<td>O</td>
<td>AddressLine and AddressPair are valid this cycle.</td>
</tr>
<tr>
<td>AddressReady</td>
<td>2</td>
<td>O</td>
<td>The sink connected to AddressLine/AddressPair is ready to receive those signals.</td>
</tr>
</tbody>
</table>

Video Encoder (4)

General Video Encoder Block Diagram

- Address Counter
- H FSM
- V FSM
- PC Control
- Blank Gen
- Data Clip
- Test ROM
- Video Encoder
Video Encoder (5)

- Basic Design
 - Stream EAV, Blank, SAV, Active Lines
 - Generate EAV/SAV/Blank using a mux
 - Register output data (Timing reasons)
 - Request Incoming Data
 - Request it the cycle before you need it
 - Must be clipped
 - Minimum data is 0x10
 - Maximum data is 0xF0
 - Otherwise it will appear to be blanking signals

Video Encoder (6)

- Testing
 - Test thoroughly
 - Simulation is difficult with test ROM
 - Try using values which count, so you can see it
 - Design your testbench early
 - Perhaps one partner should design the module, one should design the testbench
 - Ensure that you test corner cases
 - First and last lines
 - Off-by-one errors in counters

I2C

- ADV7194 Initialization using I2C
 - Requires only 2 wires
 - Serial Data (Bidirectional)
 - Clock (Driven by master)
 - Runs at up to 400kHz
 - Bidirectional Communication
- Given to you
 - Complicated to get right
 - Hard to debug
I²C (2)

- **Physical Protocol**
 - **Data**
 - Open collector bidirectional bus
 - Driven by sender
 - **Clock**
 - Open collector unidirectional bus
 - Driven by master
 - May be pulled low to stall transmission

Bidirectional Open Collector Bus

10/10/2008

I²C (3)

- **Protocol**
 - Start Condition
 - Address
 - Address Acknowledge
 - Data Transfer
 - Data Acknowledge
 - Stop Condition

I²C (4)

- **Arbitration**
 - Anyone can drive bus at any time
 - No central arbiter
 - No short circuits (Impossible in open collector)
 - Decentralized Arbitration
 - Check data bus against value you’re sending
 - Mismatch means someone else is transmitting
 - So let them finish, and then try again
 - Inherently gives preferences to accesses with more 1'b1s in them

10/10/2008
More Information

- Checkpoint Writeup
- Documents Page of the Website
 - Video in a Nutshell
 - ADV7194 Datasheet
 - Complete ADV7194 reference
 - ITU-R BT.656 & ITU-R BT.601 Standards
 - Complete video standards
 - I²C Bus Specification

- READ THE DATASHEETS!