

CS150

Week 2, Lecture 2

Covers:

1) Combinational vs sequential

2) What’s a Clock?

3) Latches and flip-flops

4) Registers

5) Moore machines

6) Mealy machines

7) One more Moore machine example

1) Combinational vs sequential

Combinational:

a>b circuit

 Example 1: Find the greater of two 2-bit numbers.

 a

 a1, a0
 & b1, b0

 b

 _ ______ _

a_bigger

a_bigger (2 bits only) = a1b1 + (a1(b1) a0b0
If a and b are 8 bits, the logic is more difficult but still doable.

Combinational:

 MAX(a,b,c) circuit

 Example 2: Find the greater of three 2-bit numbers.

 a

a_bigger

 a2, a1, a0 & b2, b1, b0 & c2, c1, c0

 b

 b_bigger

 c

c_bigger

Hierarchy could be used.

a>b circuit

a

 a_bigger

b

a>c circuit

a

 a_bigger

c

b>c circuit

b

 b_bigger

c

Sequential:

 Example 3: Find the greater of 1024 8-bit numbers.

Trade-off between time and space (chip area).

Parallel: Fast but takes a lot of space.

…

…

In series: Slower but uses less space:

Next = 0;

Spot = 0;

for (i = 0 ; i < 1024 ; i++)

if (input(i) > max) {

max = input(i);

spot = i;

input(i)

}

Other sequential examples:

 Example 4: ATM machine. 4 digit PIN number. Four key pads or memory to remember what’s been entered… (Like a cash register).

Lab next week: 2 digit input, 4 digit code. Could implement as combinational with (possibly less) gates but shows concept of trading time for space.

2)
What’s a clock?

Digital signal that provides a sense of time so that operations can be synchronized. Sometimes there’s specific “time” information in the clock (e.g. the 15 and 45 second timers in chapter 1). Usually they just provide a well defined sequence/ordering of events.

3)
Latches and flip-flops

Gate Representation
 Block Representation
Sample Timing
Outputs

Unclocked

Always

????

Sampling

Clocked

Samples

????

When

Clock is

High

?????

Negative edge triggered

Samples on

Falling Edge

Positive edge triggered

Samples on

Rising Edge

Excitation table for SR, JK, Toggle and D Flip-flops:

4)
Registers

 Registers are just groups of flipflops.

Might have: Synchronous or asynchronous “clear” or “set” along with input and clock.

Clock

5)
Moore machines

Combining Registers with combinational logic to get sequential circuit:

Moore Machine:

Moore machine diagram notation:

Moore machine Example: Look for the input sequence 110. Output 1 when found.

Start in START state. Output a 0 to say that the pattern hasn’t been found yet.

On the clock tick go to state 0 if input == 1. Else stay in START state. Continue to output 0.

Then go to state 1 if next input == 1. Else go back to START state. Continue to output 0.

Go to state 2 if next input == 0 and output a 1 to say the pattern has been found.

A Moore machine’s output is a function of the state. Only one possible output per state:

Output = F1(State) = F1(Q)

Next state is a function of present state and input:

Next state = Q+ = F2(Q,input)

Moore finite state machine for sequence detector example:

Give states names (digital values)

6)
Mealy machines

Mealy Machine:

Mealy machine diagram notation:

A Mealy machine’s output is a function of the state and input:

Output = F1(State,input) = F1(Q, input)

Next state is a function of present state and input:

Next state = Q+ = F2(Q,input)

Mealy finite state machine for sequence detector example:

Give states names (digital values)

A truth table for the Mealy machine sequence detector:

 Q1 and Q0 are present state. Q1+ and Q0+ are next state. Z is input.

Logic equations from truth table:

 _

Output = Q1 Q2 Z

Q0+ = Z

 __

Q1+ = Q1 Q0 Z + Q1 Q0

7)
One more Moore machine example

Parity checker. Outputs 1 when the sequence of bits so far has had an even number of ‘1’s in it. Outputs ‘0’ when there have been an odd number of ‘1’s in the input.

Give states names (digital values, Q = State variable)

Truth table (Z is input):

Skipped circuits on second to last page.

Z

Output

State Q

Even	 0

Odd	 1

Input = 1

Input = 0

D Q

Input = 0

Input = 1

Even

1

Q0 Q1 Z Q1+ Q0+ Output

0 0 0 0 0	0

0 0 1 0 1	0

0 1 0 0 0	0

0 1 1 1 1	0

1 0 0 ? ?	?

1 0 1 ? ?	?

1 1 0 1 0	1

1 1 1 1 1	0

Input = 1/

Output = 0

Input = 0/ Output = 1

Input = 0/

Output = 0

Input = 0/

Output = 0

Input = 1/Output = 0

Logic equations from truth table:

Q+ = Q(Z

Output = Q

Circuit:

Input = 1/Output = 0

Q Z Q+ Output

0 0 0	0

0 1 1	0

1 0 1	1

1 1 0	1

State 1

State 0

START

State Q1 Q0

START 0 0

State 0 0 1

State 1 1 1

Input/Output

State

OUT

 REG

IN

Combinational

Logic And

Output Logic

State Q1 Q2

START 0 0

State 0 0 1

State 1 1 1

State 2 1 0

Input = 1

Input = 1

Input = 0

Input = 0

Input = 0

Input = 0

Input = 0

Input = 1

Input = 1

State 2

1

State 1

0

State 0

0

START

0

Input

State

Outputs

Output

Logic

 REG

IN

Combinational

Logic

IN

OUT

OUT

IN

Combinational

Logic

 REG

D Q

D Q

D Q

D Q

Q Q+ S R J K T D

0 0 0 X 0 X 0 0

0 1 1 0 1 X 1 1

1 0 0 1 X 1 1 0

1 1 X 0 X 0 0 1

register

register

Enable

 S

 R

S Q

 _

R Q

CLK

 S

_

Q

 R

Q

S Q

 _

R Q

register

register

a>b

then a

else b

 S

_

Q

 R

Q

odd

0

