10/18 & 10/20

CS150

Section week 8

This week: Top Down Design (Project) & Clocking

1. Top Down Design

The idea of Successive Approximation Design is that you make a guess at an answer to a problem, then get some new information from the results of your guess that tells you how to make a better guess the next time.

 For example:

You go bowling. Your first ball goes in the left gutter. What do you do? You throw the next one farther to the right... You’ve guessed and then got some information from the results of your guess to make it so you can make a better guess the next time you throw the ball.

There are a couple of approaches to solving this problem.

After throwing the ball into the left gutter, you could adjust your throws one degree to the right at a time until you get the results you want. This may take some time.

Or you could turn 90 degrees to the right and throw it into the next lane, which would give you the information that you went too far to the right... Then you could adjust your throw 45 degrees back to the left, then 22.5 degrees, then 11.25 degrees, etc., which would, in a lot of cases, get you to your desired results quicker than the first method.

These are two examples of choosing a usable adjustment amount. There is also the chance that you choose to turn 180 degrees the first time and throw the ball into the refreshment stand which wouldn’t give you much helpful information and you might never figure out which way to throw the ball. This is an example of a bad adjustment amount.

It is also important that you pick a starting point that will not lead you off in a wrong direction. If you throw the bowling ball while you’re in the bathroom it won’t give you any real useful information...

Problem:

Following the Top Down Design steps done in class, design a circuit which calculates the square root of an 8 bit number.

Following the top down design steps talked about in class:

1. Understand problem: Design a circuit which calculates the square root of an 8 bit number. Let’s also add that only squares of integers can be used as inputs (just to make the circuit simpler).

2. Identify inputs and outputs of circuit: We’ll need the NUMBER and the CLK as inputs, and the SQRT as an output. Since we’ll be using successive approximation as our algorithm, we’ll also need an input to tell the circuit to make its first guess, START.

3. Decide algorithm: Not giant so inputs & outputs

should be fine in parallel. And we’ll use

successive approximation to find SQRT.

4. Rough block diagram:

First think of the parts you’ll need. You’ll need

something to save your guess values in between evaluations and recalculations (a register). You’ll need something to calculate next guess (a block), and you’ll need something to evaluate your guess (another block).

4b. If any block is more complicated than something on the level of a Xilinx component (multiple functions in a single block, functionality that you can’t easily understand...), go back to #1 for that block.

Back to #1 for Next/First Guess Logic Block

Back to #1 for Guess Evaluation Block

1. Understand specs. Makes first guess and

1. Understand specs. Gives information

subsequent guesses.

On how good your guess was. Tells you

when you’re done.

2. Identify inputs and outputs.

2. Identify inputs and outputs

INFO: We’ll have more information about this

INFO: See what information the Next/First

after we decide which algorithm to use.

guess block needs then define.

2. Decide algorithm.

2. Decide algorithm.

 Not too big so parallel input and output should be
Parallel input and output.

fine. Pick a simple algorithm.

Evaluation method:

First guess = ¼*NUMBER[7:0]

Square guess and compare to NUMBER.

If !DONE

 If GUESS is too big

3. Block diagram

 Next guess = previous guess – 1

 else

 Next guess = previous guess + 1

So now we see we need to know if GUESS

was too big or small. So let’s make INFO

information from the evaluator whether the

GUESS was too big or not (GT).

3. Block diagram

Things to get out of this exercise: Process of top down design

 How to draw block diagrams

Steps after completing the block diagrams: 5. List control signals (none for this design), 6. Generate timing for control signals (none), 7. Design/simulate data path, 8. Design/simulate controller, 9. Put together.

2. Clocking

a. Using the falling edge of the clock

Timing for SRAM write (from lab 7)

 Three cycles:

Two cycles:

b. Two phase clocking

c. Two phase non-overlapping clocking

3. More Clocking

You are given a 16MHz clock. Generate a glitch free clock signal with an average frequency of 4/13. (16MHz (4.92MHz).

Clock edges are what’s important, not duty cycle.

a. Implement using ROM (Using clock b).)

0
0
0
0
0001
1

0
0
0
1
0010
0

0
0
1
0
0011
0

0
0
1
1
0100
1

0
1
0
0
0101
0

0
1
0
1
0110
0

0
1
1
0
0111
1
0
1
1
1
1000
0

1
0
0
0
1001
0

1
0
0
1
1010
1

1
0
1
0
1011
0

1
0
1
1
1100
0

1
1
0
0
0000
0

1
1
0
1
0000
0

1
1
1
0
0000
0

1
1
1
1
0000
0

b. Implementing with Counters

Simplest (using clock a).):

Using multiple FSMs (using clock c).):

And then there’s the single FSM + counter (using clock a).):

 Reset is counter reset.

 How would you make this self starting?

8

DONE

INFO

DONE

Present guess so you can make next guess

Information on how good guess was for making next guess

1

INFO (GT=1 then ‘-‘, GT=0 then ‘+’)

LT

GT

WE changes on the falling edge of the clock.

Everything else changes on the rising edge of the clock.

When drawing the STD for this circuit, consider the CLK value when assigning states and use the CLK value as an input value on your arcs between states.

Gives you more rising edges to run your logic off of. Extra edges may make it possible to speed up circuit.

Makes it possible to work with level sensitive

components in a circuit that has feedback. (Q. Why’s

this good? A: Think about how this would make memory components possible.) Most times level sensitive

components are faster than edge triggered components. How could you use this to make your circuit faster?

BRLSHFT8

NUMBER[7:0]

 Shift

 Amount

 = 2

START

New Guess

+/-

8

8

8

DONE

INFO(GT)

GUESS[7:0]

NUMBER[7:0]

COMPM8

Square Guess

8

8

8

8

NUMBER[7:0]

 GUESS[7:0]

Next Guess

START

NUMBER[7:0]

To evaluate guess, need NUMBER

CLK

 Guess

Evaluation

Present

 Guess

Next/First Guess Logic

New Guess

NUMBER[7:0]

 START

 CLK

SQRT[7:0]

12 0 1 2 3 4 5 6 7 8 9 10 11 12 0

16MHz CLK

(4.92MHz

 CLK

CLK

OE.L

WE.L

DATA/

ADDR

ENABLE

DATA/

ADDR

8

8

8

0

CLK

OE.L

WE.L

DATA/

ADDR

ENABLE

DATA/

ADDR

 START

 NUMBER[7:0]

 INFO

 DONE

 GUESS

Solutions in red

ADSU8

GUESS[7:0]

SQRT[7:0]

Guess

N3=0x0f80

N2=0x0878

N1=0x0666

N0=0x0555

OUT=0x0249

ROMs

NS[3:0]

Register

PS

PS

OUT’

OUT

Some possible STDs:

PS3	PS2	PS1	PS0	NS[3:0]	CLK2

Some possible clocks:

a)

b)

c)

OUT=1

OUT=0

OUT=0

OUT=1

OUT=1

OUT=0

OUT=0

OUT=0

OUT=1

OUT=0

OUT=0

OUT=0

OUT=1

LOOP 3

LOOP 4

LOOP3

 Wait

Output

ignored

 OUT=1

LOOP4

LOOP4

 OUT=0

 OUT=0

 OUT=1

 OUT=0

LOOP3

LOOP3

LOOP4

 OUT=1

 Wait

Output

ignored

 OUT=1

Clock click #7 or #8

Clock click #10 or #11

Count = 2 OR Count = 5 OR Count = 8

 OUT=1

Reset=1

Count = 11

 OUT=0

Reset=0

 OUT=1

 Reset=0

