University of California at Berkeley

College of Engineering

Department of Electrical Engineering and Computer Science

EECS 150

R. H. Katz

Spring 2001

P. Yan

Project Checkpoint 2

Audio Interface
DAC Overview

In order for the DreamKatz videogame console to generate sound, we need to translate the digital sound data stored in the EPROM (erasable programmable ROM) into an analog signal so that it can be output to a speaker. To accomplish this, we will use a DAC (digital to analog converter), which can be thought of as the DreamKatz’s sound chip.

The AD1866 we are using is a 2-channel 16-bit DAC (we are only using one channel, though). Internally, the DAC has a 16-bit shift register, which shifts in a new bit from the DL line on each positive edge of the clock. On a negative edge of the LL line, the DAC takes the current 16-bit value in the shift register as the new value to output. The DAC only changes its output value at each negative edge of LL.

[image: image3.png]VPP
A6
A5
A2

A7
A6
A5
At
A3
a2
M
A0
Qo
ai
Q2
Vss

M27C4001

32
31

29
28
27
2

24
23
2
21
20
19
18
7

vee
A18
A7
A4
A13
A8
A9
A1

A10

ar
a6
Qs
Q4
Q3

Notice that the negative edge of LL comes after the last bit has been shifted in but before the next positive edge of the clock. This is a VERY IMPORTANT detail that you should be aware of when you design the DAC module.

EPROM Overview

We will use the EPROM to store sound data for sound effects. The EPROM uses 19-bit addresses, which reference 8-bit words. The only interfaces with the EPROM are the address lines (19 bits) and the data lines (8 bits). To read a word, all that is necessary is to drive the address lines with an address, and the word at that address will be output to the data lines (after a small delay, of course).

EPROM Data Format

The sound samples stored in the EPROM are 16-bit (two’s complement) sampled at 16khz. Since the EPROM is 512K, this gives us a total of 16 seconds of sound. To organize the sounds, the EPROM is partitioned into 8 segments each holding 2 seconds of sound; the upper (most significant) three bits are used to refer to each partition. These 8 partitions are used to store six sound effects. The first four partitions each hold one sound. The fifth and sixth partitions hold a double-long (4 seconds) sound, as do the seventh and eighth partitions.

[image: image1.png]

[image: image2.png]VPP
A6
A5
A2

A7
A6
A5
At
A3
a2
M
A0
Qo
ai
Q2
Vss

M27C4001

32
31

29
28
27
2

24
23
2
21
20
19
18
7

vee
A18
A7
A4
A13
A8
A9
A1

A10

ar
a6
Qs
Q4
Q3

Since each sound sample is 16-bit, we need two words of the EPROM to hold each sample. The samples in the EPROM are all aligned in little endian format. Each sample resides in two consecutive addresses, where the lower byte is contained at an address with LSB = 0, and the higher byte is contained at an address with LSB = 1. Thus, you can refer to a sample by the upper 18 bits of the address and just toggle the LSB to get the lower and higher bytes.

Prelab Preparations

This checkpoint requires these hardware components:

· M27C4001
EPROM

· AD1866
DAC

· LM4862
amplifier

· the two discrete packages

There is A LOT of wire wrapping to do. All of the components listed above need to be wire wrapped. It will probably be helpful to place wrap-IDs on the pin array for each chip, which can be found at U:\cs150\projectdocs\wrapid.doc. Also, it is a good idea to place components close to other components that they will be connected to (i.e. place the EPROM close to the Xilinx 4010XL chip).

EPROM Pin Connections

DAC and LM4862 Amplifier Pin Connections

Programming the EPROM

All of the tools necessary to program the EPROM are found in the back corner of 204b Cory. The programming software can be found in the computer on the left (next to the trash can).

First, you must make sure the EPROM is blank. To erase the contents of the EPROM, place it in the UV Eraser for about 15 – 20 minutes.

To program the EPROM, open up C:\advin\Speprom.exe. First, you need to make sure the settings are correct. The device type should be ST M27C4001 512KB. (This should already be set.) Also make sure that the file format (found in the File menu) is BINARY.

Then follow these steps to program the EPROM:

1) Place the EPROM in the PILOT-U40 programmer

2) Set the binary file directory (from the File->Directory menu) to C:\cs150\sfx\test.bin
3) Load the file into buffer 0 (File->Load)

4) Make sure the EPROM is blank (PROM->Blank)

5) Program the EPROM (PROM->Program)

6) Verify that it was programmed correctly (PROM->Verify)

Design Structure

The goal of this checkpoint is to build an independent audio module that can receive requests to play a sound effect. We will test this module with the controller from checkpoint 1.

Audio Module Structure

The Audio Module contains the DAC Module so that it can communicate with the DAC. It requires an FSM to handle requests and communicate with the EPROM and DAC Module.

Design Specifications

The goal for this checkpoint is very simple: to play a sound effect when a button is pressed on the controller. Since there are 6 sounds, we will use these 6 buttons:

button
sound effect (sound address)

C-UP
sound 1 (000)

C-DOWN
sound 2 (001)

C-LEFT
sound 3 (010)

C-RIGHT
sound 4 (011)

A
sound 5 (100)

B
sound 6 (110)

All clocks should be the 4mhz clock used in checkpoint 1.

DAC Module

The DAC Module should store the 16-bit sample into a register upon receiving a load signal, which should be a one-clock-cycle pulse. Then it should serially shift out the 16-bit sample (MSB first) to the DL line. After the 16th bit has been shifted into the DAC, a negative edge should be generated on the LL line (make sure it comes before the next positive edge of the clock, as indicated in the timing diagram).

The DAC Module requires OPAD connections to communicate with the DAC. The pin assignments are:

pin
DAC signal

P70
LL

P69
DL

P72
clk (4mhz)

Audio Module

The Audio Module takes in two input signals, a play signal and a sound address (3 bits). The play signal should be a one-clock-cycle pulse. Upon receiving the play signal, if the module is not currently playing a sound it should play the sound indicated by the sound address. If it is currently playing a sound then it should just ignore the request.

To play a sound, the Audio Module FSM should read a sample from the EPROM and then send it out to the DAC Module (by asserting the load signal of the DAC Module for one clock cycle). The FSM should sequentially read from the EPROM, starting with the starting address of the sound (indicated by the sound address) and ending with the address before the next sound starts.

This can be accomplished by using the 3 bits of the sound address as the upper 3 bits of the address, and using a 16-bit counter for the lower 16 bits of the address. Remember that there are two sounds that are twice as long, so in this case the counter needs to complete its count twice while the LSB of the sound address toggles from 0 to 1.

In the case that an invalid sound address is sent (for the two longer sounds), the LSB of the sound address should be ignored. This case should never happen though, since the Controller Interpreter should never send an invalid address.

The Audio Module requires IPAD and OPAD connections to the EPROM. The pin assignments are:

pin
EPROM signal

P3
A0

P4
A1

P5
A2

P6
A3

P7
A4

P8
A5

P9
A6

P10
A7

P14
A8

P18
A9

P61
A10

P62
A11

P65
A12

P66
A13

P67
A14

P57
A15

P58
A16

P59
A17

P60
A18

P77
D0

P78
D1

P79
D2

P80
D3

P81
D4

P82
D5

P83
D6

P84
D7

Controller Interpreter

The Controller Interpreter reads in the buttons’ state from the Controller Block (from checkpoint 1) and generates a play signal (one-cycle pulse) and a sound address to the Audio Module.

A combinational logic block can be used to map buttons to sound addresses. Edge detectors can be used to detect if a button was pressed.

Things To Do

· Wire wrap all components

· Create the DAC Module

· Create the Audio Module

· Create the Controller Interpreter block

Name __________________________________
Name __________________________________

Project Checkpoint 2

Checkoff Sheet
Design

Audio Module FSM state diagram

Implementation / schematics

DAC Module

Audio Module

Controller Interpreter block

Testing

DAC – correct DL and LL timing (oscilloscope)

[LL asserted between 16th and 17th positive edge of the clock]

Everything works

[requests to the Audio Module are ignored when sound is already playing]
finished 1st week (extra credit… yay!)

finished 2nd week (normal credit)

GND

P78

P79

P77

P3

P5

P4

P6

connection

connection

� EMBED PBrush ���

P7

higher byte

lower byte

16-bit sample

…1

…0

EPROM

sound 6

sound 5

sound 4

sound 3

sound 2

sound 1

111

110

100

101

011

010

load sample

sample

16

DAC Module

3

sound address

play

Audio Module FSM

data

address

19

8

EPROM

001

000

P9

P8

P10

P65

P58

P57

VCC

P80

P82

P81

P83

P84

P61

GND

GND

P62

P14

P18

P66

P67

P60

P59

VCC

VCC

1

15

9

AD1866

P70

P69

P72

2 (LL)

3 (DL)

4 (clk)

11

13

7

12

10f

10f

14

GND

GND

GND

GND

VCC

VCC

LM4862

GND

1f

.

GND

GND

VCC

1nf

22K

4

3

2

1

7

6

.

.

5

8

.

headphone jack

20K

0.47f

10f

0.1f

10f

10f

0.1f

0.1f

0.1f

0.47f

20K

1nf

22K

0.1f

1f

discrete parts

.

EPROM

Audio Module

controller block

3

8

19

32

play

sound address

Controller Interpreter

address

data

_1045226031

_1045258427

