Xilinx/ Synopsys Interface
Guide

Xilinx/Synopsys Interface Guide— ISE 4 Printed in U.S.A.

Xilinx/Synopsys Interface Guide

IXILINX®
The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

CoolRunner, RocketChips, RocketlP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XILINX, XC2064,
XC3090, XC4005, and XC5210 are registered trademarks of Xilinx, Inc.

&

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable
Logic Cell, CORE Generator, CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap,
Fast Zero Power, Foundation, Gigabit Speeds...and Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA,
LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia, MultiLINX, NanoBlaze, PicoBlaze,
PLUSASM, PowerGuide, PowerMaze, QPro, Real-PClI, Rocket I/O, Select I/0, SelectRAM, SelectRAM+, Silicon
Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap,
UIM, VectorMaze, VersaBlock, VersaRing, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL,
XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-BLOX +,
XChecker, XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP, all XC designated
products, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company is a service mark of Xilinx,
Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557, 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233, 4,835,418; 4,855,619; 4,855,669; 4,902,910, 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821, 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277, 5,267,187, 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254, 5,321,704, 5,329,174; 5,329,181,
5,331,220; 5,331,226, 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,355,035;
5,357,153; 5,360,747, 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104, 5,397,943; 5,399,924
5,399,925; 5,406,133; 5,410,189; 5,410,194, 5,414,377, 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719;
5,448,181; 5,448,493, 5,450,021, 5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414,
5,481,206; 5,483,478, 5,486,707, 5,486,776, 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,497,108;
5,498,979; 5,498,989; 5,499,192; 5,500,608; 5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,504,440; 5,506,518;
5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835; 5,521,837; 5,523,963; 5,523,971, 5,524,097; 5,526,322;
5,528,169; 5,528,176, 5,530,378; 5,530,384, 5,546,018; 5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751,
5,561,367; 5,561,629; 5,561,631; 5,563,527, 5,563,528; 5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051,
5,570,059; 5,574,634, 5,574,655; 5,578,946, 5,581,198; 5,581,199; 5,581,738; 5,583,450; 5,583,452; 5,592,105;
5,594,367; 5,598,424, 5,600,263; 5,600,264, 5,600,271; 5,600,597; 5,608,342; 5,610,536; 5,610,790; 5,610,829;
5,612,633; 5,614,844, 5,617,021, 5,617,041, 5,617,327, 5,617,573; 5,623,387; 5,627,480; 5,629,637; 5,629,886;
5,631,577; 5,631,583, 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545; 5,646,547; 5,646,564; 5,646,903;
5,648,732; 5,648,913, 5,650,672; 5,650,946, 5,652,904; 5,654,631, 5,654,665; 5,656,950; 5,657,290; 5,659,484
5,661,660, 5,661,685, 5,668,495, 5,670,896, 5,670,897, 5,672,966, 5,673,198, 5,675,262, 5,675,270; 5,675,589;
5,677,638; 5,682,107, 5,684,413; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,055; 5,694,056;
5,694,399; 5,696,454, 5,701,091; 5,701,441, 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,714,890;
5,715,197; 5,717,340, 5,719,506; 5,719,507; 5,724,276, 5,726,484; 5,726,584, 5,734,866; 5,734,868; 5,737,234;
5,737,235; 5,737,631, 5,742,178; 5,742,179; 5,742,531, 5,744,974, 5,744,979; 5,744,981, 5,744,995; 5,748,942;

ii Xilinx Development System

5,748,979; 5,752,006; 5,752,035; 5,754,459; 5,758,192; 5,760,603; 5,760,604, 5,760,607; 5,761,483, 5,764,076,
5,764,534, 5,764,564, 5,768,179, 5,770,951, 5,773,993; 5,778,439, 5,781,756, 5,784,313; 5,784,577, 5,786,240,
5,787,007, 5,789,938; 5,790,479, 5,790,882, 5,795,068; 5,796,269; 5,798,656, 5,801,546; 5,801,547, 5,801,548,
5,808,479; 5,811,985; 5,815,004, 5,815,016, 5,815,404, 5,815,405; 5,818,255, 5,818,730; 5,821,772, 5,821,774,
5,825,202; 5,825,662; 5,825,787, 5,828,230, 5,828,231, 5,828,236, 5,828,608, 5,831,448; 5,831,460, 5,831,845,
5,831,907, 5,835,402; 5,838,167, 5,838,901, 5,838,954, 5,841,296, 5,841,867, 5,844,422; 5,844,424, 5,844,829,
5,844,844, 5,847,577, 5,847,579, 5,847,580, 5,847,993; 5,852,323, 5,861,761, 5,862,082; 5,867,396, 5,870,309;
5,870,327, 5,870,586; 5,874,834; 5,875,111, 5,877,632; 5,877,979; 5,880,492; 5,880,598; 5,880,620; 5,883,525;
5,883,852; 5,886,538; 5,889,411; 5,889,412; 5,889,413; 5,889,701, 5,892,681; 5,892,961, 5,894,420; 5,896,047;
5,896,329; 5,898,319; 5,898,320; 5,898,602; 5,898,618, 5,898,893; 5,907,245; 5,907,248; 5,909,125; 5,909,453;
5,910,732; 5,912,937, 5,914,514; 5,914,616; 5,920,201; 5,920,202; 5,920,223; 5,923,185; 5,923,602; 5,923,614;
5,928,338; 5,931,962; 5,933,023; 5,933,025; 5,933,369; 5,936,415; 5,936,424; 5,939,930; 5,940,606; 5,942,913;
5,944,813; 5,945,837; 5,946,478; 5,949,690; 5,949,712; 5,949,983; 5,949,987; 5,952,839; 5,952,846; 5,955,888;
5,956,748, 5,958,026; 5,959,821, 5,959,881, 5,959,885; 5,961,576, 5,962,881, 5,963,048; 5,963,050, 5,969,539;
5,969,543, 5,970,142; 5,970,372; 5,971,595, 5,973,506; 5,978,260; 5,986,958, 5,990,704; 5,991,523, 5,991,788,
5,991,880; 5,991,908; 5,995,419; 5,995,744, 5,995,988; 5,999,014, 5,999,025, 6,002,268; 6,002,282; 6,002,991,
6,005,423; 6,005,829; 6,008,666; 6,011,407, 6,011,740; 6,016,063, 6,018,250, 6,018,624, 6,020,633, 6,020,756,
6,020,757, 6,020,776; 6,021,423; 6,023,564, 6,023,565; 6,025,736, 6,026,481, 6,028,445; 6,028,450, 6,033,938,
6,034,542; 6,034,548; 6,034,557, 6,035,106, 6,037,800; 6,038,386, 6,041,340, 6,043,692; 6,044,012; 6,044,025,
6,046,603; 6,047,115; 6,049,222; 6,049,227; 6,051,992; 6,054,871, 6,055,205; 6,057,589; 6,057,704; 6,057,708;
6,061,417; 6,061,418; 6,067,508; 6,069,488; 6,069,489; 6,069,490; 6,069,849; 6,070,260; 6,071,314; 6,072,348;
6,073,154; 6,074,432; 6,075,418; 6,078,201, 6,078,209; 6,078,528; 6,078,735; 6,078,736; 6,081,914; 6,084,429;
6,086,629; 6,086,631, 6,091,262; 6,091,263; 6,091,892; 6,094,063; 6,094,065; 6,094,385; 6,097,210; 6,097,238;
6,099,583; 6,100,705; 6,101,132; 6,101,143; 6,104,211, 6,105,105, 6,107,821, 6,107,826; 6,107,827, 6,112,322,
6,114,843; 6,118,286; 6,118,298; 6,118,300; 6,118,324; 6,118,869; 6,118,938; 6,120,549; 6,120,551; 6,121,795;
6,124,724, 6,124,731, 6,130,550; 6,133,751, 6,134,191, 6,134,517, 6,137,307, 6,137,714, 6,144,220, 6,144,225,
6,144,262; 6,144,933; 6,150,838; 6,150,839; 6,150,863; 6,154,048, 6,154,049; 6,154,052; 6,154,053, 6,157,209;
6,157,211, 6,157,213; 6,160,418; 6,160,431, 6,163,167, 6,167,001, 6,167,416, 6,167,545; 6,167,558, 6,167,560,
6,172,518, 6,172,519; 6,172,520, 6,173,241, 6,175,246, 6,175,530, 6,177,819, 6,177,830; 6,181,158, 6,181,164,
6,184,708, 6,184,709; 6,184,712; 6,185,724, 6,188,091, 6,191,610, 6,191,613, 6,191,614; 6,192,436, 6,195,774,
6,199,192; 6,201,406; 6,201,410; 6,201,411; and 6,202,106; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S.
and foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein are
free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to correct any
errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not
assume any liability for the accuracy or correctness of any engineering or software support or assistance provided
to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2001 Xilinx, Inc. All Rights Reserved.

Xilinx/Synopsys Interface Guide iii

Xilinx/Synopsys Interface Guide

iv Xilinx Development System

About This Manual

This manual describes the Xilinx/Synopsys Interface (XSI) program,
a tool used for implementing Field Programmable Gate Array
(FPGA) designs using either Synopsys FPGA Compiler, FPGA
Compiler Il, or the Design Compiler synthesis tools.

This manual does not cover the use of Synopsys FPGA Express with
the XSI program.

Before using this manual, you should be familiar with the operations
that are common to all Xilinx software tools: how to bring up the
system, select a tool for use, specify operations, and manage design
data. These topics are covered in the Development System Reference
Guide. Other publications you can consult for related information are
the LogiBLOX Guide, and Libraries Guide.

Manual Contents

This book contains the following chapters.

e “Introduction to the Xilinx/Synopsys Interface”
chapter“Introduction to the Xilinx/Synopsys Interface” chapter
provides information on the XSI Design Flow, FPGA compiler,
FPGA compiler Il, and Design Compiler. This chapter also
includes a list of additional documentation.

e “Getting Started” chapter“Getting Started” chapter shows how to
verify your software installation, modify your Synopsys startup
file, and run Synlibs to set the link and target libraries.

e “Synthesizing Your Design with FPGA Compiler I1”
chapter“Synthesizing your Design with FPGA Compiler 11”

Xilinx/Synopsys Interface Guide %

Xilinx/Synopsys Interface Guide

chapter shows how to port code from FPGA Compiler to FPGA
Compiler |1, convert script files from FPGA Compiler and Design
Compiler and includes design information on attribute passing,
I0B configuration, clock buffers, memory, boundary scan, the
Global Set/Reset net, and timing specifications.

e The “Synthesizing Your Design with FPGA Compiler and Design
Compiler” chapter“Synthesizing Your Design with FPGA
Compiler and Design Compiler” chapter includes design
information on wire-load models, IOB configuration, clock
buffers, memory, boundary scan, the Global Set/Reset net,
timing specifications, compiling, area reports, debugging,
implementing, and saving your designs.

* The “Using CORE Generator and LogiBLOX” chapter“Using
Core Generator and LogiBLOX” chapter provides information
about using Core Generator and LogiBLOX to create high-level
modules for your design.

* “Simulating Your Design” chapter“Simulating Your Design”
chapter describes how to perform RTL and timing simulation.

* “Using Files, Programs, and Libraries” chapter“Using Files,
Programs, and Libraries” chapter describes the files, programs,
and Xilinx-supplied libraries you need to translate your HDL
design using FPGA Compiler or Design Compiler.

* The “XSI Library Primitives” appendix“lists the primitives you
can synthesize or instantiate in a VHDL or Verilog HDL file.

* The “Targeting Virtex Devices” appendix*“describes how to
apply the XSI design flow to Virtex devices.

Additional Resources

For additional information, go to http:.//support.xilinx.com. The
following table lists some of the resources you can access from this

vi Xilinx Development System

http://support.xilinx.com

About This Manual

Web site. You can also directly access these resources using the
provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers Current listing of solution records for the Xilinx software tools

Database Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application Descriptions of device-specific design techniques and approaches

Notes http://support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which contains device-

specific information on Xilinx device characteristics, including readback,
boundary scan, configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm

Xcell Journals

Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Technical Tips

Latest news, design tips, and patch information for the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/index.htm

Xilinx/Synopsys Interface Guide vii

http://support.xilinx.com/support/techsup/tutorials/index.htm
http://support.xilinx.com/support/searchtd.htm
http://support.xilinx.com/apps/appsweb.htm
http://support.xilinx.com/partinfo/databook.htm
http://support.xilinx.com/xcell/xcell.htm
http://support.xilinx.com/support/techsup/journals/index.htm

Xilinx/Synopsys Interface Guide

viii Xilinx Development System

Conventions

This manual uses the following conventions. An example illustrates
most conventions.

Typographical

The following conventions are used for all documents.

Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: - 100

Couri er bol d indicates literal commands that you enter in a
syntactical statement. However, braces “{}” in Courier bold are
not literal and square brackets “[] in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del net=

Couri er bol d also indicates commands that you select from a
menu.

File - Open
Italic font denotes the following items.

¢ Variables in a syntax statement for which you must supply
values

edi f 2ngd desi gn_nane
¢+ References to other manuals

See the Development System Reference Guide for more
information.

Xilinx/Synopsys Interface Guide vii

Xilinx/Synopsys Interface Guide

¢+ Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

Square brackets “[] indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edi f 2ngd [option_nane] desi gn_nane

Braces “{ }”” enclose a list of items from which you must choose
one or more.

| owpwr ={on| of f}
A vertical bar *“ | separates items in a list of choices.
| ompwr ={on| of f}

A vertical ellipsis indicates repetitive material that has been
omitted.

| OB #1: Nanme = QQUT’
| OB #2: Name = CLKIN
A horizontal ellipsis “...” indicates that an item can be repeated

one or more times.

al I ow bl ock block_name locl loc2 ... locn;

Online Document

The following conventions are used for online documents.

viii

Blue text indicates cross-references within a book. Red text
indicates cross-references to other books. Click the colored text to

jump to the specified cross-reference.

Blue, underlined text indicates a Web site. Click the link to open

the specified Web site. You must have a Web browser and

internet connection to use this feature.

Xilinx Development System

Contents

About This Manual

Manual CONLENTSc.uveeeeiiiiiiiie i v
Additional RESOUICEScccvviieiiiiiiiee e %
Conventions
TYPOGIraPRICALeeeiiiiiiiiie e vii
ONliNE DOCUMENToviiiiiiiiiiee et Viii
Chapter 1 Introduction to the Xilinx/Synopsys Interface
WAL 1S XSI? e 1-1
XSI Design Flow Using FPGA Compiler Ilccveiiiiiiiiiiiiineeeen. 1-2
XSI Design Flow Using FPGA Compilercccocieieiiiieeiininen, 1-3
Comparing Design Compiler to FPGA Compiler and FPGA Compiler Il 1-
6
Using FPGA Compiler 11coouuiiiiiiiiiieiieee e 1-7
Xilinx Documentation Setcccceeiiiiiiieiiie e 1-7
Chapter 2 Getting Started
Setting Up the Synopsys Interfaceccccooeeeiiiiiiiiiiniie e 2-1
Setting up the XDW and Simulation Librariesccccoeoee. 2-2
Compiling XDW Librariesccccovuviieiniiiieeniieee e 2-3
Modifying the Default Synopsys Startup Filecccccevniinenen. 2-5
Checking the FPGA Compiler Setup Fileooeevviviviviienns 2-6
Checking the Design Compiler Setup Fileccccoviiiieennnnn 2-7
Examples of Synopsys Setup Filesccccccoviiiiiiiiiieieiniiieeen 2-9
XCA000 DEVICES ...ooeivrreiieiiiiie ettt 2-9
Example .synopsys_dc.setup Fileccccccviiiiiieiiiiieeens 2-9
Example .synopsys_dc.setup Fileccocccviiiieiiiiieeens 2-12
Example Script File for Virtex Devicesccccccceeevviinvvvnnen. 2-14
Verifying Software Installationcccccceeiiiieiini e 2-20

Chapter 3 Synthesizing Your Design with FPGA Compiler Il

Before YOU Begincooo i 3-2
Naming CONVENLIONSccooiiiiiiiiiiiiiee ettt 3-2
Porting Code from FPGA Compiler to FPGA Compiler 1l 3-2
Converting Script Files from FPGA Compiler and Design Compiler 3-3
Synthesizing the DeSigN ... 3-4
Entering Design Constraints and Controlsccccvvvvvvvvvviinnns 3-8
Specifying Timing CONSIIAINTScoooviiieiriiiieee e 3-10
Specifying Clock Constraintsccccooeiieeeiiiiiiieeeeee e 3-11
Specifying Path Group Constraintscccceeeeeeiviiiiieeeennn. 3-13
Specifying 1/O CONSLraintSc.eeeeviiiiieeeiiiiiee e 3-14
TiMING SUDPALNSvviiiii e 3-15
Defining Multicycle Timing Constraintscccccccceevvieinnnns 3-16
Adding Pull-Up and Pull-Down ReSIStorsc..ccceevunenneee 3-20
Optimizing a Design Implementationcccceeviiiieinniiieeeenn, 3-21
Optimizing Logic Across Hierarchical Boundaries 3-21

Xilinx/Synopsys Interface Guide 1

Xilinx/Synopsys Interface Guide

Using a Flattening Optimization Strategycccccccvvuvnnnn. 3-23
Setting Port Attributes and Constraintsccccvvvvvvvevvinnnns 3-23
Evaluating Timing Delayscoocueeiiiiiiiiiiiiiieee e 3-24
Using the FPGA Compiler Il Time Trackercccooeeeveiennnn, 3-25
Viewing the Results of Optimizationccccvvvvvvvieniiiieninnnnn. 3-26
Generating Reports for Debuggingccoceeevviiieeeiiniieeeennne 3-29
Viewing the Schematicscccccee i, 3-30
Exporting the Netlistuvvieiiiiiiiiiiei e 3-30
Using the Xilinx Development SyStemcccccooviieeieiiiiieee e, 3-31
HDL Coding TEChNIQUESoeeviiiiiiiiei it 3-31
ConfigurING TOBSovvviiiiiiieiirrs s e e e e e e e e e e e e areaaans 3-31
All AFCHITECIUIES ... 3-32
OptiMIZING INPULS ..eeeeeiiiiiieee e 3-32
Understanding and Using Slew Rateccccocvveeveeeeeennn. 3-32
USING TOBS ...ttt 3-32
Using INPUL BIOCKSo..vviiiiiiiiiie e 3-32
Using OUutput BIOCKScocciiiieiieecee e 3-33
Using Bidirectional Modeccccoouviiiiiniiiiiienice e 3-34
Inserting Bidirectional I/OSccooiiiiiiiiiiiiii e 3-35
Assigning Pad LOCAtiONScccvveeeeeieeeiiiiiiiiieeeree e 3-35
Instantiating a Registered Bidirectional I/Occcccovviieeene 3-35
Implementing 3-State Registered OULPULceeevviiieeeniiineeennne 3-37
Example of Not Directly Driving the 3-State Signal 3-37
Example of Directly Driving the 3-State Signalcceee.. 3-39
ALIDULE PASSING ..eeiiiviiiiie ettt 3-41
Implementing CIOCK BUFfErSccvvvveeiiiiiiiiiiecee e 3-43
USING MEMIOIY .ttt 3-44
Implementing VIntex/E/2 RAM ... 3-45
Implementing XC4000 RAMccccviiiiieeeiee e ee e e e e 3-45
Performing Boundary SCancccccceviiiiiieeiniiiee e 3-48
Using the Global Set/Reset Net ..o 3-53
Implementing GSR BUfferscccccviviiiee e, 3-54
Accessing Global Set/Reset Using STARTBUFcc.oee.... 3-57
Synthesizing/Simulating for VHDL Global Set/Reset Emulation 3-57
Instantiating a STARTUP Block in VHDLccccvvvnnee. 3-58
Increasing Performance with the GSR Netcccceeiiiiieeene 3-59

Chapter 4 Synthesizing Your Design with FPGA Compiler and De-
sign Compiler

Before YOU BeQINuuveeeeiiiiiiii i e 4-2
Naming CONVENLIONSccooiiiiiiiiiiiiiiee ettt 4-2
Setting the Wire-Load Modelccoocuviiiiiiiieiee e 4-3
Setting the Operating Condition Parametersccccceeeeeeeeen. 4-3
ConfiguriNg TOBSeiiiiiiiiiiie it 4-3
Al AFChITECIUIES ... 4-4
OptimIizINg INPULSoiiiii e 4-4
Understanding and Using Slew Rateccccoccviveennnnnnn. 4-4
XC3000A/L and XC3100A/L IOBScceviiviieiiiiiiiieeeeiieee e 4-5
Using INput BIOCKSouvveeiiiiiiei e 4-5

2 Xilinx Development System

Contents

Using OUtput BIOCKSuvuveeiiiiiiiieie e 4-6
Using Bidirectional Modeccoeeeeeieiiiiiiieeees 4-6
Using INPUL BIOCKSoevviiiiiiiiii e 4-7
Using OUtput BIOCKSuvuveriiiiiieieii i 4-7
Using Bidirectional Modeccoooeeeeieiiiiiiie e, 4-8
USING XC5200 IOBScceiiiiiiiiiiiiiiiie et 4-9
Using INput BIOCKSouvveeiiiiiiiii e 4-9
Using OUtput BIOCKSuvuveiiiiiieieie i 4-9
AsSIgNINg Pad LOCALIONScocvvieeeiiiiiiieeiiiiiee e 4-10
Example of Not Directly Driving the 3-State Signal 4-11
Example of Directly Driving the 3-State Signal 4-13
Inserting Bidirectional I/OSccccoviiiiiiiiiiiiiieec e 4-14
Instantiating a Registered Bidirectional /Oc.......... 4-15
Compiling Bidirectional /Ocoovvvviiieeiie 4-17
Using UnNbonded [OBSoviiiiiiiiiiiieee e 4-22
Adding Pull-Up and Pull-Down ReSIStorsccccvveeiiiiieeennne 4-22
Removing the Default Input Delaycccccooevviiiiiiiiiieeeeeeeennn, 4-23
Initializing the 10B Flip-Flop to Preset ..o 4-23
Inserting CloCK BUTFEISocuiiiiiiiiiiiii e 4-23
Controlling Clock Buffer Insertionccccccvveveeeene i, 4-24
Determining the Number of Clock Buffersccccccevniiienenn. 4-26
Preventing the Insertion of Clock Buffersccccvviiniinneenn. 4-27
USING MEMOTY ...viiiiiiiiiieee ettt eee e e e e e s e st ae e e e e e e e e e e s e snannneee s 4-27
Implementing XC4000 RAMSccoiiiiiiiiiiiiiiee i 4-28
Implementing RAM In VirteX DeVICeScccceeviiieeeeiiiiiieeennne 4-31
Performing Boundary SCanccccccceeviiiiiiiiiiiieeccee e 4-32
Using the Global Set/Reset Netcccovviiiiiiniiiiicieee e 4-37
Accessing Global Set/Reset Using STARTBUFccc..ce.... 4-38
Synthesizing/Simulating for VHDL Global Set/Reset Emulation 4-39
Using STARTBUF in VHDLoooiiiiiiiiii e 4-39
Instantiating a STARTUP Block in VHDLccccccoviiieeene 4-40
Setting Direct Preset or Direct Clearccccccveveeeeeeeieicinvnnen, 4-40
Increasing Performance with the GSR Netcccceevviiieeene 4-40
Using the Xilinx DesignWare Librarycccccconiviiiiiiieneniinen. 4-44
Improving Design Area and Speedcccoevvciviiieeiieee e 4-44
Creating Timing SPecificationscccccceeviiiee i, 4-45
Following the DC2NCF Design FIOWcccccoviiiiieeeiiiiiiieenns 4-47
Creating the Netlist and Script File (Design Compiler) 4-47
Creating the Netlist and Script File (FPGA Compiler) 4-48
Understanding DC2NCF Translation Limitations 4-49
Limitations of Create CIOCKccccoocvernieeiniieenee e 4-50
Limitations of Set Input Delay and Set Output Delay 4-50
Limitations of Set Max Delay and Set False Path 4-52
Set Multicycle Pathcccccvieiiiiiii e, 4-55
Compiling YOUr DESIGNuvviiiiiiiiie ittt 4-56
Optimizing Logic Across Hierarchical Boundaries 4-56
Using a Flattening Optimization Strategyccccceceeeeeennn. 4-58
Compiling the Design with Hierarchyccccccoiiiieennnn 4-58
Compiling the Design without Hierarchyccccoeeee 4-59
Compiling a Design with Instantiated 1/0O Cells 4-59

Xilinx/Synopsys Interface Guide 3

Xilinx/Synopsys Interface Guide

Chapter 5

Compiling XC4000, Spartan, and Virtex Designsccccc....... 4-60
Creating the Area REPOITcoovviviieeeeeee e 4-64
Evaluating Timing Delays ... 4-65
Generating Reports for Debuggingcccececiiieiiiiiiiiiiie e, 4-66

Generating a Configuration Reportcccceevvviviviveveeeeiinins 4-67

Generating a Hierarchical Schematicccccccociiiiieennne 4-70

Creating a Level for Each CLBand IOBccccevvvvvivivvvnnnnn. 4-70

Generating a Level for Each Function Generator 4-71
Writing and Saving Your DeSIgNcooviieeeiiiiiiieeiiiiee e 4-71

Saving the DB File ... 4-71

Replacing CLBs and IOBs with Gatesccccccvvveiveiciieninnnnn. 4-72

Invoking the Replace FPGA Commandcccccevviivieeennne 4-72
Replacing CLBs and IOBs in Designs with Hierarchy 4-72
Controlling the Synopsys Mappingccccceevvveeeeiviveeeeeeeeiiiinnns 4-73
Restoring BLKNM AHNDULESocvvvviiiiiiiieeiiieeee e 4-74
Setting the Design Part TYPEoccceeviiiiiiieeieiieeee e 4-74
Saving the Design Netlist Fileccocoociiiiiiiiii e 4-74
Saving your Netlist in EDIF Format (Design Compiler) 4-74
Saving your Netlist in XNF Format (FPGA Compiler) 4-75
Using the Xilinx Development Systemcccccvvvvveeeeee v, 4-76
Using CORE Generator and LogiBLOX
Using CORE GENEIatOrcccceeveieieeeeee e 5-1
Specifying Inputs and Outputs in LOGIBLOXcccccceviiiineennnnn. 5-2
Using LogiBLOX in the HDL Design FIOWccccceeiiiiiiieiiiineen. 5-3
INStantiating RAMvvieiiiice e 5-4

Instantiating RAM or ROM with FPGA Compiler 5-15

Instantiating RAM or ROM with FPGA Compiler Il 5-18
Simulation Design FIOW OVEIVIEWuveeeeeeiiiiiiiiieieieeeeeeeeaneeen 6-2
Using Simulation Librariesccccovieeiiiiiiineeeeee e 6-3

UNISIM LIDIAIY .oooiiiiiiiii s 6-3

UniSim Library Structureccccooeveieieeiiii e 6-4
UniSim Library Files ... 6-5
UniSim Library Component Instantiationccccoeeeeee. 6-6
SIMPHM LIDrary ..o 6-6
LOGIBLOX LIDIAIY ...eveeeeiiiiiiiie it 6-6
LogiBLOX Library Compilationccccuvveeiiiiiieeeiiiiiieeens 6-6
LogiBLOX Library Component Instantiation 6-7
Working with the VITAL Standardccccoviieieiniiiieennieeee 6-7
VHDL and Verilog Simulation FIOWccccveiiiiiiiieinieee e 6-7

Simulating at Register Transfer Level (RTL)coooeeveiiiicivvinnnnn. 6-8

Conducting a Post-Synthesis (pre-NGDBuild) Gate-Level Functional

SIMUIALION .. 6-9

Conducting a Post-NGDBUuild (Pre-Map) Gate-Level Functional Simu-

JALION . 6-9

Conducting a Post-Route Full Timing (Block and Net Delays) Simula-

HOM e e 6-10
Synthesizing/Simulating for VHDL Global Set/Reset Emulation ...6-10

Instantiating a STARTUP Block in VHDLoccoeveiiiiiieeene 6-11

Xilinx Development System

Contents

Using ROCBUF IN VHDLcuviiiiiiiiiiiiiiee e 6-13
Generating a 3-State-On-Configuration in VHDL 6-13
Using TOCBUF iN VHDL ...cooooiiiiiiiiieeeeeeee e 6-14
Using Oscillators in VHDLc.vvviiviiiiiiiiiiiien e 6-14
Using Global Set/Reset Emulation in Verilogccccoeeee. 6-15
Using Global 3-State Emulation in Verilogcccoccvviiiinnee.. 6-15
Using Oscillators in VErilogcccceeveiiininiiiiieeee e, 6-15
NGDBuild Support of Multiple Device Architectures 6-15
Recommended VSS Simulation Strategyccccccvviveveerniineeenns 6-16
VSS Simulation FIOWo.ooiiiiiiiiiiiiiee e 6-17
Editing the VSS Setup Fileueceiiiiiiiiii e, 6-18
Creating a Testhench File ..o 6-20
Using RTL SIMUIALIONeoiiiiiiiiie e 6-20
Implementing YOUr DESIgNuvevviiieeeeiiiiiiieiieee e 6-22
Understanding the XSI Directory Structureccccccevviiveeerennnen. 7-1
Using File DeSCIPLIONScooiiviiiieiiiiiiie e 7-4
Using Program DesCriptioNSceeeeveeeeiiiiiiiiiiiineeeeeeeeeesesnnnnnneens 7-6
Using Supplied Libraries DeSCriptionsccccovvvvevieiiiireeeniineenn. 7-7
Finding Supported Part Types and Speed Grades 7-12
Finding Unsupported Part Types and Speed Grades 7-12
Appendix A XSI Library Primitives
Generating a List of XSI Library Primitivescccccceviiiieninnnen. A-2
Obtaining XSI Library Primitive Pin Orderccccoocevieeennniiinns A-3
Alphabetical List of Primitives for All Architectures A-3
Using the Dont Touch Attribute ..o, A-4
Setting the INIT Attribute ... A-4
Primitive Name SUffiXeSoooiiiiiiiiiiiiiiieece e A-4
Virtex-Specific Primitive Name Suffixesccccoeeiiniiniennn. A-5
Architecture Abbreviationscccccveeeieieeiiiiiiie e A-6
Primitive Tables ... A-7
Understanding Virtex-Specific Cell Namesccccccovvvieeeiininenn. A-33
Virtex-Specific Primitives Table ... A-34
Virtex RAM Primitive Name Suffixesccccccoviiiiiiiiine e, A-37
Xilinx DesignWare ModuIEScoooiiiiiiiiiiiiiee e A-40
Post-Configuration Initialization Statescccccceeviviiiiiiiiiieeene A-42
Appendix B Targeting Virtex Devices
Following General GUIdeliNesccccceevieiiieieeiiieeeeeeeeeeeeeees B-1
Setting FPGA Compiler to Synthesize a Virtex Design B-2
Synthesizing a Virtex Design into FPGA Compiler B-4
Setting VSS Simulation for VIirteXcccccceecevieiiiiiiiieiiieeee e, B-5
Setting FPGA Compiler Il for VIrteXcccovieieiiniiiiie e B-5
Synthesizing a Virtex Design in FPGA Compiler Ilc.cccc... B-6
Using Clock Delay Locked Loops with Synopsysccccccceeeeeeennn. B-6

Xilinx/Synopsys Interface Guide 5

Xilinx/Synopsys Interface Guide

6 Xilinx Development System

Chapter 1

Introduction to the Xilinx/Synopsys Interface

This chapter describes the Xilinx/Synopsys Interface (XSI), compares
FPGA Compiler, FPGA Compiler Il, and Design Compiler, and lists
additional Xilinx and Synopsys documentation you can use in
conjunction with this manual. This chapter includes the following
sections.

* “WhatIs XSI?”
e “XSI Design Flow Using FPGA Compiler 11”
e “XSI Design Flow Using FPGA Compiler”

e “Comparing Design Compiler to FPGA Compiler and FPGA
Compiler I1”

e “Using FPGA Compiler I1”

e “Xilinx Documentation Set”

What Is XSI?

XSI supports Synopsys FPGA Compiler Version 1999.05 or later,
FPGA Compiler Il Version 3.3 or later, and Synopsys Design
Compiler Version 1999.05 or later.

This manual does not cover the use of Synopsys FPGA Express.

Use the XSI design tool kit to implement Xilinx Field Programmable
Gate Array (FPGA) designs using either Synopsys FPGA Compiler,
FPGA Compiler I, or Design Compiler. These Synopsys High-Level
Design Automation (HLDA) tools allow you to create and optimize
circuit designs from hardware descriptions written in VHSIC
Hardware Description Language (VHDL) or Verilog HDL. Library
support for XC4000E/L/EX/XL/XLA/ XV, XC5200, XC9000,

Xilinx/Synopsys Interface Guide 1-1

Xilinx/Synopsys Interface Guide

Spartan/XL/-I1, and Virtex/E/-Il devices includes a Xilinx
DesignWare (XDW) library.

Before you start creating your FPGA designs, refer to the most
current version of the ISE 4 Release Notes and Installation Guide for
information about the following topics.

» XSl installation instructions

e Tutorial on the tools

» Reference information on common instantiated components
» Constraints guide

For the latest information on Xilinx parts and software, visit the
Xilinx Web site at http://www.xilinx.com.

XSI Design Flow Using FPGA Compiler Il

1-2

Figure 1-1 illustrates the following required steps you follow to
implement and simulate your HDL designs using FPGA Compiler II.

Refer to the XSI Synopsys tutorials at ht t p: / / support.xilinx.com/
support/techsup/tutorials/index.htm for step-by-step instructions
on converting your HDL designs.

1. Synthesize your design with FPGA Compiler Il.

2. Save your design as an EDIF file.

3. Run NGDBuild on the EDIF file to create an NGD file.
4

Run the MAP program on the NGD file to create a mapped NCD
file.

5. Run the TRACE program to determine if PAR meets your timing
goals.

6. Run PAR on the NCD file to place and route your design.
7. Run TRACE again on your placed and routed design.

8. Run NGDAnNnNo on your routed NCD and NGM files to create an
NGA file.

9. Run either NGD2VHDL or NGD2VER on the NGA file to create a
VHDL (VHD) or Verilog (V) file for simulation with the
appropriate simulators for back annotation. These two programs

Xilinx Development System

http://support.xilinx.com/support/techsup/tutorials/index.htm
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://www.xilinx.com

Introduction to the Xilinx/Synopsys Interface

10.

also create a Standard Delay Format (SDF) file containing timing
information.

Run the BitGen program to create a bitstream for programming
the FPGA.

XSI Design Flow Using FPGA Compiler

Figure 1-1 illustrates the following required steps you follow to
implement and simulate your HDL designs using FPGA Compiler.

Refer to the XSI Synopsys tutorials at http://support.xilinx.com/
support/techsup/tutorials/index.htm for step-by-step instructions

on converting your HDL designs.

1.

10.

11.

Use the Synlibs program to determine the appropriate libraries
for your design.

Synthesize your design with either FPGA Compiler or Design
Compiler.

Save your design as an SXNF file or an SEDIF file, along with a
DC file that contains Synopsys constraints. Make sure you use
the .sxnf or .sedif file extension as NGDBuild will recognize that
the netlists are coming from FPGA Compiler or Design Compiler.

Use the DC2NCF program to translate the Synopsys constraints
DC file to a Netlist Constraints File (NCF).

Run NGDBuild on the SXNF or SEDIF file to create an NGD file.

Run the MAP program on the NGD file to create a mapped NCD
file.

Run the TRACE program to determine if PAR meets your timing
goals.

Run PAR on the NCD file to place and route your design.
Run TRACE again on your placed and routed design.

Run NGDAnNnNo on your routed NCD and NGM files to create an
NGA file.

Run either NGD2VHDL or NGD2VER on the NGA file to create a
VHDL (VHD) or Verilog (V) file for simulation with the
appropriate simulators for back annotation. These two programs

Xilinx/Synopsys Interface Guide 1-3

http://support.xilinx.com/support/techsup/tutorials/index.htm
http://support.xilinx.com/support/techsup/tutorials/index.htm

Xilinx/Synopsys Interface Guide

also create a Standard Delay Format (SDF) file containing timing
information.

12. Run the BitGen program to create a bitstream for programming
the FPGA.

1-4 Xilinx Development System

Introduction to the Xilinx/Synopsys Interface

SYNLIBS

Synopsys Setup

FPGA Compiler II

FPGA Compiler

CHEEDED)

From base PM
(For Design Compiler
designs only

From target arch. P

NGDBUILD
.ucf

From other PMs

PAR |« I NGD2VER l I NGD2VHDL l

v v

BITGEN

NGDANNO

_‘I NGD2VHDL l I NGD2VER]47
(.vhd) (.sdf) (v)

Figure 1-1 XSI Design Flow

Xilinx/Synopsys Interface Guide 1-5

Xilinx/Synopsys Interface Guide

Comparing Design Compiler to FPGA Compiler and
FPGA Compiler Il

1-6

XSI contains libraries for the following device families:
« XC4000™/E/EX/L/XL/XLA/XV

« XC9000™

« Spartan" /XL/-II

« CoolRunner™ XPLA3

e Virtex "/-E/-II

You can use either FPGA Compiler, FPGA Compiler Il, or Design
Compiler to synthesize a design for these devices. Generally, for
XC4000L and XC4000XL devices, you can use the XC4000E and the
XC4000EX synthesis libraries, respectively.

This manual assumes that you use FPGA Compiler or FPGA
Compiler Il synthesis tools for XC4000, XC5200, XC9000, Spartan,
and Virtex devices. If you do not have FPGA Compiler or FPGA
Compiler 11, XSI provides XC4000, XC5200, XC9000, Spartan, and
Virtex libraries to use with Design Compiler. You can use FPGA
Compiler or FPGA Compiler 11 for XC3000 and XC3100 devices, but
the libraries for these devices use the Design Compiler synthesis
features.

Design Compiler offers the following features.

» Optimizes flip-flops without clock enables, and latches in the
input/output block (10B)

» Optimizes 3-state buffers in the IOB
* Encodes one-hot state machines

* Automatically uses the configurable logic block (CLB) Clock
Enable pin

FPGA Compiler and FPGA Compiler |1 offers the previously
described Design Compiler features, as well as the following.

* Optimizes logic to the XC4000 and Spartan/XL CLB and 10B
architectures

» Reports area and timing by device architecture, for example,
CLB, IOB, and 3-state buffer

Xilinx Development System

Introduction to the Xilinx/Synopsys Interface

Passes timing constraints to the core tools

Uses lookup table (LUT) optimization for XC3000A/L,
XC3100A/L, XC5200, Spartan-11, and Virtex devices. These new
libraries that use the LUT optimization allow FPGA Compiler
and FPGA Compiler Il to synthesize your design to a collection of
lookup tables, registers, and 1/0 pads.

Using FPGA Compiler Il

FPGA Compiler I, a logic-synthesis and optimization tool, allows
you to create optimized netlists from VHDL, Verilog, and existing
unoptimized FPGA netlists. FPGA Compiler Il (Mersion 3.2 or better)
offers the following features.

Provides an integrated text editor for entering VHDL and Verilog
source code for your design

Analyzes HDL source files for correct syntax, accepting any
combination of VHDL, Verilog, and FPGA netlist files as sources

Synthesizes logic from VHDL, Verilog, and FPGA netlist sources

Optimizes logic for speed and area according to design
constraints

Contains integrated schematic viewing and static timing analysis

Extracts and displays accurate post-synthesis delay information

Synopsys provides FPGA Compiler Il libraries used for Xilinx
products.

Xilinx Documentation Set

The following documents provide additional design information.

Development System Reference Guide provides detailed information
on the programs found in Xilinx software.

LogiBLOX Guide describes the LogiBLOX program, a tool used to
create high-level modules for insertion into your HDL design.

Libraries Guide presents information about the various Xilinx-
provided primitives and macros.

ISE 4.x Release Notes Documentation describes installation setup
and current issues regarding the use of the Synopsys interface.

Xilinx/Synopsys Interface Guide 1-7

Xilinx/Synopsys Interface Guide

e For converting an XACT 5.xx Synopsys design to M1, refer to the
Xilinx Software Conversion Guide from XACTstep v.5.X.X to
XACTstep vVM1.X.X.

1-8 Xilinx Development System

Chapter 2

Getting Started

This chapter provides information on setting up the Xilinx Synopsys
Interface (XSI) and associated libraries. Example files are included to
help you set up the FPGA Compiler with the Xilinx software. This
chapter also describes how to verify your software installation,
modify the .synopsys_dc.setup file, and use the Synlibs program to
determine the correct XSl libraries for FPGA Compiler or Design
Compiler. You will also find general information about using the
interface.

Read this chapter before you begin either the FPGA Compiler or
Design Compiler tutorials located at http://
www.support.xilinx.com/support/techsup/tutorials/index.htm.

This chapter includes the following sections.

e “Setting Up the Synopsys Interface”

e “Setting up the XDW and Simulation Libraries”
« “Modifying the Default Synopsys Startup File”
« “Examples of Synopsys Setup Files”

o “Verifying Software Installation”

Setting Up the Synopsys Interface

The following environment variables must be modified or added to
run the Synopsys interface tools.

« SYNOPSYS (add)

¢ PATH (modify)

« LD_LIBRARY_PATH (modify)
¢ SHLIB_PATH (modify)

Xilinx/Synopsys Interface Guide 2-1

http://www.support.xilinx.com/support/techsup/tutorials/index.htm
http://www.support.xilinx.com/support/techsup/tutorials/index.htm

Xilinx/Synopsys Interface Guide

Set these variables as follows.

setenv SYNOPSYS installation_path_to_synopsys
set path = ($XILINX/ bin/platformnane \
$SYNOPSYS/ pl at f or m_nanme/ syn/ bi n \

$SYNOPSYS/ pl at f or m_name/ si m bin \

$pat h)

For Solaris only.

setenv LD LI BRARY_PATH $SYNOPSYS/ pl at f or m_nane/ si m
li b: $LD_LI BRARY_PATH

For HP/UX only.

setenv SHLI B_PATH $SYNOPSYS/ pl at f or m nane/ si nf
l'i b: $SHLI B_PATH

The following is an example.

set env SYNOPSYS /usr/synopsys

set path = ($XI LI NX/ bin/sol \

$SYNOPSYS/ sol / syn/ bin \

$SYNOPSYS/ sol / si m bin \

$pat h)

setenv LD LI BRARY_PATH $SYNOPSYS/ sol /sim
li b: $LD_LI BRARY_PATH

Setting up the XDW and Simulation Libraries

2-2

Note If you are not using FPGA Compiler Il v3.3 or a later, you must
re-compile the Xilinx DesignWare (XDW) libraries.

The XSI (Xilinx Synopsys Interface) simulation and XDW (Xilinx
DesignWare) libraries are compiled for Synopsys v1999.05. If you are
using the latest version of XSI with a version of Synopsys newer than
v1999.05, you must re-compile the XDW libraries with the version of
Synopsys you are using. If you are going to simulate with VSS, you
must re-compile the simulation libraries.

Compiling the libraries in the $XILINX area requires write
permissions to this area. If you copy the $XI LI NX/ synopsys
directory to a local area, you do not need rewrite permissions for the
$XILINX area to re-compile the libraries. However, verify that the
.synopsys_dc.setup and .synopsys_vss.setup files use the local copy.

Xilinx Development System

Getting Started

Compiling XDW Libraries

Follow these steps to compile the XDW libraries.

1.
2.
3.

Set up your Xilinx and Synopsys software environments.
Go to the $XI LI NX/ synopsys/ | i brari es/ dw src directory.

In this directory, there are subdirectories that represent the Xilinx
device families that have XDW libraries. If you are going to use
any of the device families listed, you must go to the
corresponding subdirectory and run the .dc compile script in that
directory. For example, for a Spartan device, enter the following
commands.

cd spartan
Run the install_dw.dc script by entering the following.
dc_shell -f install_dw dc

When the script is finished, go back to $XI LI NX/ synopsys/
i braries/dw src. Repeat these steps for each device you
plan on using.

Xilinx/Synopsys Interface Guide 2-3

Xilinx/Synopsys Interface Guide

2-4

Compiling the Simulation Libraries

Note The following procedure is for compiling the XSI simulation
libraries with VSS. If you are using a different HDL simulator, refer to
your simulator’s documentation for instructions on compiling HDL
simulation libraries.

1.
2.

Setup your XSl and Synopsys software environments.

Go to the $XI LI NX/ synopsys/libraries/sinmsrc
directory.

In this directory, there are subdirectories that represent the five
simulation libraries, described as follows.

¢+ LogiBLOX — for functional simulation of VHDL designs
with instantiated LogiBLOX components

¢+ SimPrims — timing simulation library
¢+ UNISIMS — functional simulation library
¢+ XC9000 — XC9500 functional simulation library

¢+ XDW — Functional simulation library for post-synthesis
(FPGA compiler) pre-NGDBuild simulation

Some or all of these libraries need to be re-compiled
depending on the device and type of simulation you plan on
using. Xilinx recommends compiling the logiblox, simprims,
and unisims libraries. Use the following steps to compile
these libraries.

Go to the logiblox directory and enter the following command.
.l anal yze. csh

Go back to the $XI LI NX/ synopsys/|ibraries/simsrc
directory.

Go to the simprims directory and enter the following command.
.l anal yze. csh

Go back to the $XI LI NX/ synopsys/libraries/simsrc
directory.

Go to the unisims directory and enter the following command.

.l anal yze. csh

Xilinx Development System

Getting Started

The unisims directory also contains the analyze_52k.csh script. If
you plan on simulating XC5200 devices, you must run this script
as well. You must also edit the .synopsys_dc.setup file in the
unisims directory to point to a location for the compiled XC5200
libraries.

Go back to the $XI LI NX/ synopsys/|ibraries/simsrc
directory.

7. Go to the xdw directory and enter the following command.
.lanal yze. csh

Go back to the $XI LI NX/ synopsys/|ibraries/simsrc
directory.

8. Gotothe xc9000/ f t gs directory and enter the following
command.

dc_shell -f install_xc9000.dc

Modifying the Default Synopsys Startup File

The startup file for the Synopsys synthesis tools is
.synopsys_dc.setup. This file contains the search path for the XSI
libraries, Synopsys libraries, and user libraries. XSl provides a
template Synopsys startup file.

XSI provides the template.synopsys_dc.setup_dc and
template.synopsys_dc.setup_fc template files. You can find the
template files in the $XILINX/synopsys/examples directory. Use
template.synopsys_dc.setup_dc if you use Design Compiler; use
template.synopsys_dc.setup_fc if you use FPGA Compiler.

$SYNOPSYS is the directory where the Synopsys software resides. If
you do not know the location of this directory, enter the following at
the system prompt.

echo $SYNOPSYS

If you already have a .synopsys_dc.setup file, you must modify your
file to include the commands found in the Xilinx-supplied template
startup files.

If you do not already have a Synopsys startup file, copy the
appropriate Xilinx-supplied startup file to your home or working
directory and rename it as follows.

Xilinx/Synopsys Interface Guide 2-5

Xilinx/Synopsys Interface Guide

cp $XI LI NX/ synopsys/ exanpl es/
tenpl at e. synopsys_dc. set up_conpi | er
. synopsys_dc. setup

Substitute “dc” or “fc”” for compiler.

Checking the FPGA Compiler Setup File

This section contains a reproduction of the template setup file for
FPGA Compiler.

/*

—_ */

/* Tenpl ate . synopsys_dc. set up file for Xilinx desi gns
*/

/* For use with Synopsys FPGA Conpil er. */
/*

/*::: */
/* The Synopsys search path shoul d be set to point */
/* to the directories that contain the vari ous */

Xilinxlnstall = get_unix_variabl e(Xl LI NX);
Synopsyslnstall = get_uni x_vari abl e(SYNOPSYS) ;

search_path = { . \
Xilinxlnstall + /synopsys/libraries/syn \

Synopsyslinstall + /libraries/syn }
/22 T T A Y O B B

/* Ensure that your UNI X environment */
[* includes the two environnent var- */
/* iables: $XILINX (points to the */
[* Xilinx installation directory) and*/
/* $SYNOPSYS (points to the Synopsys */

/* installation directory.) */
/22 T T A O B B

/* s s s sy g g ———————————— */
/* Define a work library in the current project dir */
/* to hold tenporary files and keep the project area */
/* uncluttered. Note: You nust create a subdirectory */
/* in your project directory called WORK */

2-6 Xilinx Development System

Getting Started

/* s s s s s b —p————
define_design_lib WORK -path ./WORK

/* s s s s s b —p————

/* Ceneral configuration settings.

/* s s s s s b —p————

conpile fix_rmultiple_port_nets = true

xnfout _constraints_per_endpoint = 0
xnfout library version = "2.0.0"

bus_nam ng_style = "%<%l>"

bus_di mensi on_separator_style = "><"

bus_i nference_style = "%<%l>"

/* s s s s s b —p————
/* Set the link, target and synthetic library

/* variables. Use synlibs (with the -fc switch) to
/* determine the link and target |ibrary settings.
/* You may like to copy this file to your project

/* directory, renanme it ".synopsys_dc.setup" and

/* append the output of synlibs. For exanple:

/* synlibs -fc 4028ex-3 >> .synopsys_dc. setup

/* s s s s s g g ————————————

*/
*/
*/
*/
*/
*/
*/
*/
*/

Checking the Design Compiler Setup File

This section shows the template setup file for Design Compiler.

/ *
::*/
/* Tenpl at e . synopsys_dc. set up file for Xi l'inx desi gns
*/

/* For use with Synopsys Design Conpil er. */
/* b ———————————————— e ——————————————— */
/* b ———————————————— e ——————————————— */
/* The Synopsys search path shoul d be set to point */
/* to the directories that contain the vari ous */
/*synthesis |ibraries used by Design Conpil er during */
/* synt hesi s. */
/* b ———————————————— e ——————————————— */
Xilinxlnstall = get_unix_variabl e(Xl LI NX);

Synopsyslnstall = get_uni x_vari abl e(SYNOPSYS)

Xilinx/Synopsys Interface Guide 2-7

Xilinx/Synopsys Interface Guide

search_path = { . \

Xilinxlnstall + /synopsys/libraries/syn \

Synopsyslinstall + /libraries/syn }
N NN
/* Ensure that your UNI X environnent */
/[* includes the two environnent var- */
/* iables: $XILINX (points to the */
[* Xilinx installation directory) and*/
/* $SYNOPSYS (points to the Synopsys */

/[* installation directory.) */
J* LLLLLLLILE ey *y
/* e —_———————————————p e —————————— g */

/* Define a work library in the current project dir */
/* to hold tenporary files and keep the project area */
/* uncluttered. Note: You nust create a subdirectory */

/* in your project directory called WORK */

/* jrp e —_——————————————p—p e —————————p b */
define_design_lib WORK -path ./WORK

/* s S S . . T, T, T, T, T, T, T T T T . . T T T T . . T T S T S S S S S S S S S S S S S S */

/* Ceneral configuration settings. */

/* s S S . . T, T, T, T, T, T, T T T T . . T T T T . . T T S T S S S S S S S S S S S S S S */

conpile fix multiple_port_nets = true

bus_naming_style = "%<%>"
bus_di mensi on_separator_style = "><"
bus_inference_style = "%<%>"

edi fout_netlist_only = true
edi f out _power _and_ground_representation = cel

edi fout_wite_properties_list ="instance_nunber pad_| ocation part"”
edi fout _no_array = true

/* s s s s s g g ———————————— */
/* Set the link, target and synthetic library */
/* variables. Use synlibs (with the -dc switch) to */
/* determine the link and target |ibrary settings. */
/* You may like to copy this file to your project */
/* directory, renanme it ".synopsys_dc.setup" and */
/* append the output of synlibs. For exanple: */
/* synlibs -dc 4028ex-3 >> .synopsys_dc. setup */
/* s s s s s g g ———————————— */

2-8 Xilinx Development System

Getting Started

Examples of Synopsys Setup Files

This section includes examples of the Synopsys setup files needed to
run the FPGA Compiler with the Xilinx tools. These examples are for
XC4000XL and Virtex devices. Other FPGA and CPLD templates are
in the Xilinx installation path, $XI LI NX/ synopsys/ exanpl es.

XC4000 Devices

Although the following .synopsys_dc.setup file example is for an
XC4000XL device, it is similar to the setup file required for XC4000E/
EX/XLAZXV devices.

Example .synopsys_dc.setup File

Following is an example of a .synopsys_dc.setup file.

/* Tenplate .synopsys_dc.setup file for Xilinx */

/* For targeting a XC4000XL */
Xilinxlnstall = get_unix_variabl e(Xl LI NX);
Synopsyslnstall = get_uni x_vari abl e(SYNOPSYS) ; search_path = { . \

Xilinxlnstall + /synopsys/libraries/syn\
Synopsyslnstall + /libraries/syn }

/* Define a work library. You nust create ‘work’ */
define_design_lib WORK -path ./WORK

/* Declare the Xilinx DesignWare library */
define_design_lib xdw 4000xl -path \

Xilinxlnstall + /synopsys/libraries/dw Iib/xc4000xI

/* Ceneral configuration settings. */
conpile fix _multiple_port_nets = true
xnfout _constraints_per_endpoint = 0

xnfout _library version = "2.0.0"

bus_nam ng_style = "%<%l>"

bus_di mensi on_separator_style = "><"

bus_i nference_style = "%<%l>"

/* synlibs -fc 4028ex-3 >> .synopsys_dc. setup */

Xilinx/Synopsys Interface Guide 2-9

Xilinx/Synopsys Interface Guide

Example Script File for XC4000E/EX/XL/XV Designs

This section describes the typical sequence of commands used to
process designs with the Synopsys interface. You should run the
commands at the dc_shell command line, either individually or in
batch mode. While every design may not require all the commands
used in this section, the following example represents a good starting
point for most designs. This script file includes information on 1/0
pin location constraints, timing constraints, setting the part-type,
controlling 170 characteristics, and controlling Synopsys mapping
and packing functions.

add tabs to the following for correct spacing

/* Sanple Script for Synopsys to Xilinx Using */
/* FPGA Conpiler targeting a XCA4000EX devi ce*/
/* Set the nane of the design’'s top-level */
TOP = <desi gn_nanme>

designer = "XSI Teant
conpany = "Xilinx, Inc"
part = "4028expg299- 3"

/* Analyze and El aborate the design file. */
anal yze -format vhdl TOP + ".vhd"
el aborate TOP
/* Set the current design to the top level. */
current _design TOP
/* Set the synthesis design constraints. */
renove_constraint -al
/* Sone exanple constraints */
create_cl ock <clock_port_name> -period 50
set _input_delay 5 -clock <cl ock_port_nanme> \
{ <a_list_of _input_ports>}

set _output_delay 5 -clock <cl ock_port_nanme> \
{ <a_list_of _output_ports> }

set _max_delay 100 -from <source> -to <destination>
set _false _path -from <source> -to <destination>
/* Indicate which ports are pads. */
set_port_is_pad "*”
/* Sonme exanple I/ O paraneters */
set _pad_type -pullup <port_nanme>
set _pad_type -no_clock all _inputs()

2-10 Xilinx Development System

Getting Started

set _pad_type -clock <clock_port_nane>
set _pad_type -exact BUFGS_F <hi _fanout _port_name>
set _pad_type -slewate H CGH all _out puts()
i nsert _pads
/* Synthesize the design.*/
conpil e -boundary_optim zation -map_effort ned
/* Wite the design report files. */
report_fpga > TOP + ".fpga"
report _timng > TOP + ".timng"
/* Wite out an internediate DB file to save state*/
wite -format db -hierarchy -output TOP + " _conpiled .db"
/* Replace CLBs and 1 0Bs prinmitives (XCA4000E/ EX/ XL only)*/
repl ace_fpga
/* reapply set_max_del ay/set _fal se path if using FPGA conpiler */
/* Set the part type for the output netlist.
set _attribute TOP "part" -type string part
/* Optional attribute to renmove the mappi ng synbol s*/set_attribute
find(design,"*")\
"xnfout_wite_map_ synbol s" -type bool ean FALSE
/* Add any |/O constraints to the design. */
set _attribute <port_nane> "pad_l ocation" \
-type string "<pad_l ocation>"
/* Wite out the intermediate DB file to save state*/
wite -format db -hierarchy -output TOP + ".db"
/* Wite out the tining constraints*/
ungroup -all -flatten
wite script > TOP + ".dc"
/* Save design in XNF format as <design>.sxnf */
wite -format xnf -hierarchy -output TOP + ".sxnf"
/* Convert constraints to Xilinx syntax */
sh dc2ncf TOP + ".dc"
/* Exit the Compiler. */
exi t

Xilinx/Synopsys Interface Guide 2-11

Xilinx/Synopsys Interface Guide

Virtex Devices

The following setup file examples are for Virtex devices.

Example .synopsys_dc.setup File

/* For use with Synopsys FPGA Conpil er. */
/* e —_———————p—p———————— e —p——————————————————— */
/* s s s s s b —p———— */

/* The Synopsys search path should be set to point */

/* to the directories that contain the various */

/* synthesis libraries used by FPGA Conpiler during */
/* synthesis. */
/* e —_———————————————p e —————————— g */
Xilinxlnstall = get_unix_vari abl e(Xl LI NX);
Synopsyslnstall = get_uni x_vari abl e(SYNOPSYS) ;
search_path = { . \

Xilinxlnstall + /synopsys/libraries/syn\
Synopsyslnstall + /libraries/syn }

/2.2 U O T T T T A I I B AL

/* Ensure that your UNI X environnment */
[* includes the two environnent var- */
/* iables: $XILINX (points to the */
[* Xilinx installation directory) and*/
/* $SYNOPSYS (points to the Synopsys */

/[* installation directory.) */
/.20 U O T T T T A I O B AL

2-12 Xilinx Development System

Getting Started

/* Define a work library in the current project dir */
/* to hold tenporary files and keep the project area */
/* uncluttered. Note: You nust create a subdirectory */
/* in your project directory called WORK */

define_design_lib WORK -path ./WORK

bus_extraction_style = "%<%: %d>"
bus_nam ng_style = "%<%l>"
bus_di mensi on_separator_style = "><"

Ve ol
" GND"'

edifin_lib_logic_1 synbol
edifin_lib_|ogic_0_ synbol
edi f out _ground_name = " G\D"
edi fout _ground_pin_name = "G
edi f out _power _nane = "VCC'
edi f out _power _pin_nane = "P"
edi fout_netlist_only = "true"
edi fout_no_array = "fal se"
edi f out _power _and_ground_representation = "cell"”
edi fout_wite properties_list = {"CLKLX DUTY" "IN T_00"
"INIT_O1" "INIT_02" "IN T_03" \

"I NI T_04" "INIT_05" "INIT_06" "INIT_O7" "INIT_08" "IN T_09"
"INIT_OA" "INIT_OB" "INIT_OC" \

"INIT_OD'" "INIT_OE" "INIT_OF" "INT"' "CLKDV_DIVIDE" "I1OB" "EQN'
"lut_function"}

/ * s S S . . T, T, T, T, T, T, T T T T . . T T T T . . T T S T S S S S S S S S S S S S S S */
/* Set the link, target and synthetic library */
/* variables. Use synlibs to */

/* determine the link and target library settings. */
/* You may like to copy this file to your project */
/* directory, rename it ".synopsys_dc.setup" and */
/* append the output of synlibs. For exanple: */
/* synlibs xfpga virtex-3 >> .synopsys_dc. setup */
/ * s S S . . T, T, T, T, T, T, T T T T . . T T T T . . T T S T S S S S S S S S S S S S S S */

link_library
symbol _|i brar

xfpga virtex-5.db }
{virtex. sdb}

< 1
I~

Xilinx/Synopsys Interface Guide 2-13

Xilinx/Synopsys Interface Guide

define_design_lib xdwvirtex -path X linxlnstall + /synopsys/
libraries/dw lib/virtex
synthetic_library = {xdw_ virtex.sldb standard. sl db}

Example Script File for Virtex Devices

S
/* Sanple Script for Synopsys to Xilinx Using */
/* FPGA Conpi |l er */
/* */

/* Targets the Xilinx XCV150P@40-3 and assunes a */

/* VHDL source file by way of an exanpl e. */
/* */
/* For general use with VIRTEX architectures. */
T ——
e ——
/* Set the nane of the design’s top-level nodule. */
/* (Makes the script nore readable and portable.) */
/* Also set some useful variables to record the */
/* desi gner and conpany nane. */

e ——

2-14 Xilinx Development System

Getting Started

TOP = <desi gn_nane>

/* Note: Assunes design file- */
/* name and entity nane are */

/* the same (mnus extension) */

designer = "XSI Teant

conpany = "Xilinx, Inc

part " XCV150PQR40- 3"

/* e —_———————————————p e —————————— g */
/* Analyze and El aborate the design file and specify */
/* the design file format. */

/* s s s s s s s s s s e */

analyze -format vhdl TOP + ".vhd"

Xilinx/Synopsys Interface Guide 2-15

Xilinx/Synopsys Interface Guide

/*

/*

/*

/*

/*

/*

/*

/*

*/

2-16

/* You nust anal yze | ower-1level */

/* hierarchy nodul es here

el aborate TOP

current _design TOP

remove_constraint -all

If setting timng constraints, do it here.
For exanpl e:

create_cl ock <clock_pad_nane> -period 50

*/

===== */

===== */
*/

===== */

===== */
*/

—==== */

*/

Xilinx Development System

Getting Started

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

I ndi cate those ports on the top-level nodule that */
shoul d becone chip-level 1/0O pads. Assign any 1/0O */
attributes or paranmeters and performthe 1/0O */

synt hesi s. */

set_port_is_pad "*"
set _pad_type -slewate H CGH all _out puts()

i nsert _pads

+++++++HH A Y
Conpi | e the design */

L L L |

conpile -map_effort ned

Xilinx/Synopsys Interface Guide

2-17

Xilinx/Synopsys Interface Guide

report _timng > TOP + ".timng"
/* e —_———————————————p e —————————— g */
/* Set the part type for the output netlist. */
/* e —_———————————————p e —————————— g */

/* e —_———————————————p e —————————— g */
/* Save design in EDIF format as <design>. sedif */
/* e —_———————————————p e —————————— g */

wite -format xnf -hierarchy -output TOP + ".sedif"
/* s s s s s b p———— */
/* Wite out the design to a DB. */
/* s s s s s g g ———————————— */

wite -format db -hierarchy -output TOP + ".db"

/* s S S . . T, T, T, T, T, T, T T T T . . T T T T . . T T S T S S S S S S S S S S S S S S */
/* Wite-out the tinming constraints that were */
/* applied earlier. (Note that any design hierarchy */

/* needs to be flattened before the constraints are */

2-18 Xilinx Development System

Getting Started

/* witten-out.) */

/* s s s s s b —p———— */
/* Call the Synopsys-to-Xilinx constraints translator*/

/* utility DC2NCF to convert the Synopsys constraints*/

/* toa Xilinx NCF file. You may like to view */
/* dc2ncf.log to review the translation process. */
/* s s s s s g g ———————————— */

sh dc2ncf -w TOP + ".dc"

/* s S S . . T, T, T, T, T, T, T T T T . . T T T T . . T T S T S S S S S S S S S S S S S S */

/* Exit the Conpiler. */

/* s S S . . T, T, T, T, T, T, T T T T . . T T T T . . T T S T S S S S S S S S S S S S S S */
exit

/* s S S . . T, T, T, T, T, T, T T T T . . T T T T . . T T S T S S S S S S S S S S S S S S */

/* Now run the Xilinx design inplenmentation tools. */

/* s S S . . T, T, T, T, T, T, T T T T . . T T T T . . T T S T S S S S S S S S S S S S S S */

Xilinx/Synopsys Interface Guide

2-19

Xilinx/Synopsys Interface Guide

Verifying Software Installation

2-20

Use the following steps to verify installation of Xilinx, XSI, and
DesignWare software on your system, and to ensure your .cshrc or
Jogin files include the required environmental variables and search
paths.

Xilinx supports Synopsys v1999.05 and later, and Synopsys FPGA
Compiler Il version 3.3 or later. These instructions verify the
installation of Synopsys v 1999.05 or later. For Support of earleir
version of Synopsys with the current release of ISE software, please
go to the web site http://support.xilinx.com/support/troubleshoot/
htmindex/sw_synopsys.htm for library availability.

1. Go to the platform where the Xilinx software is installed.

2. To verify that your system has the Xilinx software, enter the
following.

whi ch par

The full path for PAR appears. If the system cannot find PAR,
refer to the installation instructions in the release notes or contact
your system administrator.

3. To verify XSl installation, enter the following.
whi ch synli bs

The full path for XSI appears. If the system cannot find Synlibs,
refer to the installation instructions in the release notes or contact
your system administrator.

4. Enter the following to change to the correct directory.
cd $XI LI NX/ synopsys/libraries/dw lib/architecture

5. List the contents of this directory to verify that installation placed
the source Xilinx DesignWare files in this directory.

This directory contains the object file for the Xilinx DesignWare
symbol modules (xdw_module.syn) and the simulation modules
(xdw_module.sim). The variable xdw_module refers to the Xilinx
DesignWare primitive name.

If you do not find the SYN and SIM files in this directory, refer to
the release notes or contact your system administrator. The

Xilinx Development System

Getting Started

READMIE file contains installation instructions, and resides in the
SXILINX/synopsys/libraries/dw/src/architecture directory.

6. To verify that you are using Synopsys v1999.05 or later, enter the
following.

desi gn_anal yzer

This command starts Design Analyzer and displays the version
number on your screen.

Xilinx/Synopsys Interface Guide 2-21

Xilinx/Synopsys Interface Guide

2-22 Xilinx Development System

Chapter 3

Synthesizing Your Design with FPGA

Compiler I

Synthesize and implement your HDL designs for Xilinx FPGA
devices with FPGA Compiler Il by using the information in the
following sections.

“Before You Begin”
“Naming Conventions”
“Porting Code from FPGA Compiler to FPGA Compiler I1”

“Converting Script Files from FPGA Compiler and Design
Compiler”

“Synthesizing the Design”

“Entering Design Constraints and Controls”
“Specifying Timing Constraints”
“Optimizing a Design Implementation”
“Evaluating Timing Delays”

“Exporting the Netlist”

“Using the Xilinx Development System”
“HDL Coding Techniques”

“Inserting Bidirectional 1/0s”
“Implementing 3-State Registered Output”
“Attribute Passing”

“Implementing Clock Buffers”

“Using Memory”

Xilinx/Synopsys Interface Guide 3-1

Xilinx/Synopsys Interface Guide

e “Performing Boundary Scan”
e “Using the Global Set/Reset Net”

Before You Begin

Before beginning a Xilinx design using the Synopsys tools, read the
“Getting Started” chapter and ensure the following.

» \rify the installation of Xilinx software on your system.

* \rify that you use Synopsys version 3.3.1 or later for FPGA
Compiler II.

Naming Conventions

Unless otherwise noted, the following naming conventions are used
to group Xilinx device families:

» Virtex represents Virtex, Virtex-E, Virtex-11 and Spartan-II
devices.

» Spartan represents Spartan and SpartanXL devices.

e XC4000 represents XC4000E, XC4000L, XC4000EX, XC4000XL,
XC4000XLA and XC4000XV devices.

e XC9500 represents XC9500, XC9500XL, XC9500XV and
XC9500XVA devices.

e XC3000 represents XC3100 and XC3100A devices.
» XC5200 represents XC5200 devices.

Porting Code from FPGA Compiler to FPGA
Compiler I

You can port a design from FPGA Compiler or Design Compiler to
FPGA Compiler II. You do not have to modify the code if you are
compiling a 100 percent behavioral design originally compiled with
FPGA Compiler or Design Compiler. However, if you instantiated
components from the XSl libraries, understand that some of these
components do not exist in the FPGA Compiler Il libraries.

3-2 Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

Some of the components you can instantiate in the Xilinx design flow you
cannot instantiate in the FPGA Compiler 11 tool because of dlight differences
in names. For example, the BUFGP_F in the XSI component library does
not exist in the FPGA Compiler |1 component library. In FPGA Compiler I,
the equivalent name of the BUFGP_F is BUFGP. For a complete listing of
thelibrary cellsthat can be instantiated in FPGA Compiler I1, refer to the
contents of the following.

fpgacompilerll/lib/virtex
fpgacompilerll/lib/spartan
fpgacompilerll/lib/spartanxI
fpgacompilerll/lib/xc4000e
fpgacompilerll/lib/xc4000ex
fpgacompilerl1/1ib/xc9500
fpgacompilerll/1ib/xc3000
fpgacompilerll/1ib/xc5200

The fpgacompilerll directory is where FPGA Compiler Il resides on
your system. These directories contain files with a .dsn extension. The
string in front of .dsn is the name of the CELL that you can instantiate
in FPGA Compiler. Refer to the Xilinx Libraries Guide for pin names.

In general, instantiation is not necessary. For the XC4000 and Virtex
FPGA Compiler Il flow, you must instantiate the following
components.

* 1/0 multiplexers

» Fast capture latches

* RAM

« BSCAN, READBACK

* LogiBLOX, CoreGen modules

Converting Script Files from FPGA Compiler and
Design Compiler

This chapter will not document the TCL-based scripting capabilities
of FPGA Compiler II. Please consult the FPGA Compiler Il

Xilinx/Synopsys Interface Guide 3-3

Xilinx/Synopsys Interface Guide

documentation for details on the fc2_shell program. However, a few
things are noted here:

o fc2_shell is the command line name of the FPGA Compiler 1l
shell tool.

e Ascript converter, dc-transcript, is available on Unix to convert
DC shell scripts to TCL shell. This program is not available
within FPGA Compiler Il itself.

e TCL script can be created after synthesizing in the FPGA
Compiler Il GUI. Select the optimized chip and then select
Script - Export FPGA Scri pt to create a script of all the
commands run up to that point.

Synthesizing the Design

3-4

This section describes the synthesis flow through the FPGA Compiler
Il product, using the Graphical User Interface (GUI), from creating
the project through the netlist generation.

After opening the FPGA Compiler Il GUI, select Fi | e » New
Pr oj ect . Select the name and location for this project before clicking
Cr eat e. HDL source files may also be added at this time.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

Create new FPGA Compiler Il Project
Save in: |E calc j | I'ﬁl ain
] alu.vhd [i] stack_dk.vhd

j calc.vhd s . vhd
j contral.vhd

j debounce. vhd

j osc_4k.vhd

j seqfdec. vhd

.................................

M arne: calc i Lreate

Cancel |

Xilinx/Synopsys Interface Guide

Figure 3-1 Create a New FPGA Compiler Il Project

Add all the source files by selecting Synt hesi s - Add Sour ce
Fi | es (if they have not yet been added to the project). FPGA
Compiler Il analyzes the source files and reports syntax errors. Be
sure to add any package files first, as these files must be analyzed
before the HDL files that access them.

3-5

Xilinx/Synopsys Interface Guide

Add Sources

Look in; £ calc

File nanne: Ivhl:l" "zegfdec.vhd" "stack_dk vhd" "alu.vhd" Open

Files of type: IEDmmDn Sources [“.v;“.vhd;“.:-mf;“.edf;“.edn;j Cancel

Figure 3-2 Add HDL Source Files

New libraries may be created by selecting Synt hesi s - New

Li br ary. Give this new library a name and click OK. Add any VHDL
library files to it by right clicking the library name and selecting Add
sources in <library>.

At this point, make sure that all the global constraints have been set.
Select Synt hesi s — Opti ons to modify any global project options.
Changing some options may require you to re-analyze your HDL
source.

3-6 Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

General Froject I Dptimizatiunl LPH I

— FSk synthesziz: Default encoding [takes effect on file analvze)

' One Hat " Binary " Zero One Haot

—FSk sunthesziz: Interpretation of YHOL when athers'
% fastest & smallest [only defined states)
= zafest [all possible, including ilegal, states]

W Diefault Expart Timing constraints option to vES
[T Insert LCELL buffers, style WirSIwG [Alkera FLE anly]

[" Enable Verilog Pre-processaor

|nput =MF Busz stule: I?é$<?a’d> [reqular expreszion - click Help for examplez]

E spoart Direchory: I Browsze. .. |

[T Save these settings as user defaults for new projects

Cancel | e (1] | Help |

Figure 3-3 Setting Global Synthesis Options

Now you are ready to synthesize the design. Click the plus (+) sign
next to your top level HDL file, and select the name of the top level
entity/module. Select Synt hesi s — Create | npl enent ati onto
begin the synthesis process.

In the Create Implementation dialog, set the Vendor to Xilinx and select the
family, device and speed grade of the target chip. You can also set the global
synthesis options like Optimization Type, Optimization Effort and Clock
Freguency in this dialog box. You may instruct FPGA Compiler 1l to
maintain al hierarchical boundaries in the design by checking the Preserve
Hierarchy box. If you have instantiated all of the 1/0 buffersin this design,
you may checktheDo not insert |/ O pads box. Finaly, if youwant
to stop and enter more detailed synthesis and timing constraints, uncheck the
Ski p constraint entry box. Click OKto begin synthesis.

Xilinx/Synopsys Interface Guide 3-7

Xilinx/Synopsys Interface Guide

Create Implementation - calc

Implementation Mame In::aln:

— Target device
Yendor Device
| R AT -
Family Speed grade
[VIRTEX = s =

— O phimize for
* Spesd
" Area

— Effart
" High
* Low

Clack frequency IEU MHz

[V Skip constraint entry

[~ Preserve Hierarchy
[T Donatingert 10 pads

Caticel | Help

Figure 3-4 Create Implementation Dialog Box

Synthesis is done in two parts. In the first portion, the source files are
linked and the hierarchical structure is built. The source HDL is
elaborated into a generic database, and all functional modules are
defined. FPGA Compiler 1l reports synchronous elements (flip flops
and latches) and inferred three states. You can add constraints after

this functional structure is built.

In the second portion, the design is optimized for the target
architecture. Technology specific elements are inferred here (for
instance, STARTUP, clock buffers, and 1/0 registers), and mapping is
done. Preliminary timing and resource use estimates are performed
at this stage. Once optimization is finished, the netlist can be written

and sent to the implementation tools.

Entering Design Constraints and Controls

Before you optimize the design to the target device, you can set
performance constraints, attributes, and optimization controls.

3-8

Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

Design constraints guide FPGA Compiler Il with specific
optimization requirements. Although this step is optional, it is highly
recommended. Entering your requirements in the constraint tables
can improve the results of place and route tools. For example,
entering constraints for an output port with restrictive speed
requirements makes it easier for the place-and-route tool to fulfill
those requirements.

In another example, if a design is very large and has many
hierarchical levels, entering hierarchy constraints helps the place and
route tool. If default constraints are not sufficient for your
requirements, you might have to create and optimize
implementations many times to enter constraints. For best results,
specify only what is really required.

FPGA Compiler |1 separates constraint entries into logically related groups
(for example, clocks, ports, and paths). It extracts design-specific
information such as clock hames, port names, and design hierarchy from the
design and displaysit in tables. You enter performance constraints,
attributes, and optimization options directly into the tables.

Each set of constraint tables and dialog boxes is specific to a
particular FPGA architecture. Controls for some target technologies
are available through a vendor-specific dialog box that is displayed as
another tab with the constraint tables.

Right-click the functional design implementation and choose Edi t
Const r ai nt s to open the design constraint and optimization-
control tables. Constraints and controls are logically separated into
separate Clocks, Paths, Ports, and Modules tables. A fifth tab is
available for Xilinx-specific options.

Clocks | Paths I Parts | Mu:udulesl =iling Dptiu:unsl

Hame Clock
1 =default= | 200040
2 fealciclk

Figure 3-5 FPGA Compiler Il Constraints Editor

Xilinx/Synopsys Interface Guide 3-9

Xilinx/Synopsys Interface Guide

The contents of the tables depend on the architecture that you chose. Notice
that clock and pad tabs are preloaded with the clock frequency (and
corresponding period) that you entered for the base clock frequency.

After entering constraint, attribute, and option information, close the
implementation’s constraint window. This will save your changes.

Specifying Timing Constraints

3-10

The timing constraints issued to Synopsys to control the synthesis
process pass through the design implementation tools to control the
place and route process. To get the best possible results, make these
constraints realistic and achievable.

During the synthesis of your design, area and timing constraints can impact
implementation almost as much as changes made to your HDL code.
Carefully apply area and timing constraints. During the implementation of
your design, timing constraints have a direct impact on run time and
performance verification. For example, the run time required to find a place
and route solution to support the 40 MHz operation of a design takes longer
than that reguired to find a4 MHz solution. Meaningful and detailed timing
congtraints also allow the design implementation tools to report the status of
your design’stiming in terms of your timing goals.

After creating a chip, but before optimization, edit the chip by
entering timing constraints. FPGA Compiler Il lets you enter timing
constraints for common types of paths including pad-to-pad, pad-to-
setup, register-to-register, and clock-to output paths. FPGA Compiler
Il compares these timing constraints to the values calculated by its
built-in Time Tracker.

You enter timing constraints in a top-down method: starting with
global constraints (such as clock periods), proceeding to the more
specific (such as group path timing), then to the most specific (input
and output delay).

The following procedure shows you how to enter timing specification
for your design in FPGA Compiler II.

1. Inthe Clocks constraint table, enter the default clock waveform
for each clock in your design, including the clock period and rise
and fall times.

The clock default is the first row in the Clock constraint table. The
default should be sufficient in most of the cases when the circuit

Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

has only clock, and there are no special input delay and output
delay requirements.

The waveform you define using the Def i ne command in the
Clock pulldown list in the Clocks constraint table should be
sufficient for most synchronous circuits without special 1/0 port
delay requirements and without multicycle paths.

2. Inthe Paths constraint table, change the default path delays that
FPGA Compiler Il automatically calculates from the clock
waveform.

When there are more restrictive timing requirements than the
defaults, you can override a default path constraint with a more
specific constraint by entering path constraints in the Paths
constraint table. Here you apply timing constraints to groups of
paths, the set of all clock-to output paths, for example. The input
and output delays for the I/0 ports are given default values
based on the path constraints. It is important that the delays be
specified accurately so that they do not overconstrain or
underconstrain the optimization.

3. Inthe Ports constraint table, change the default input delay and
output delay of 170 ports when they have special requirements.
Any delay specified at a port overrides the path delay from or to
the port.

Sometimes a single value applied to many paths is not sufficient for a
particular port. In the example of clock-to-out paths, there may be a
particular output port that has a more restrictive clock-to-output
requirement. To override a path constraint with an even more specific
congtraint, proceed to the Ports constraint table, where you can set input
and output delays for individual ports.

After entering timing constraints, optimize the design.

Specifying Clock Constraints

Use the Clock constraint table to specify the waveforms of periodic
signals in the design. FPGA Compiler Il displays the constraint tables
when you click the right mouse button on an implementation icon
and select Edi t Constrai nts.

FPGA Compiler Il automatically constructs the list of periodic signals
when it creates an implementation. For each periodic signal, FPGA

Xilinx/Synopsys Interface Guide 3-11

Xilinx/Synopsys Interface Guide

3-12

Compiler Il displays the name (Name column) and period/rise/fall
waveform (Clock column).

Name

The full name of the periodic signal in the design hierarchy (for
example, top/modulel/clk).

Clock

The waveform (period, rise time, fall time) of each periodic signal. Note
that the falling edge can befirst, and the clock’s duty cycle does not
have to be 50%. To specify awaveform, click the Clock cell, click the
expand arrow that appearsin the cell, and then select Def i ne. . . This
displays the Define Clock dialog box where you can enter the period,
risetime, and fall time of the signal. The waveform in thisdialog box is
for information only and does not reflect the values you enter.
Alternatively, you can click the expand arrow in the cell and select a set
of values from thelist. Thislist contains all the previously entered
values. You can also use the cut and paste commands.

Default Timing Values

When a table cell is blank, FPGA Compiler Il uses the default
clock waveform defined in the first row. This default waveform is
derived from the Clock frequency value in the Create
Implementation dialog box. You can override this value when
editing the implementation constraints.

The following procedure describes the steps to specify clock
constraints.

1.

Open the Clocks constraint table in the Chips window by
selecting the preoptimized chip, clicking the right mouse button,
and selecting Edit Constraints.

Specify the waveforms of periodic signals in the design. To
specify a waveform, click the Clock column cell and then the
expand arrow appearing in the cell.

Select Def i ne.

The Define Clock dialog box appears, where you can enter the
period, rise time, and fall time of the signal.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

Define Clock E

Times in nz
Fenod: Rize at: Fall at:
|2u / |n / |1 i

= Period .

= Rize

* Fal

Cancel Help

Figure 3-6 Specifying Clock Parameters

Specifying Path Group Constraints

Use the Paths constraint table to specify timing constraints for timing
groups. FPGA Compiler Il displays the constraint tables when you
click the right mouse button on the implementation icon and select
Edit Constraints.

The Paths constraint table contains the list of timing groups
automatically constructed in the Create Implementation step. For
each path, FPGA Compiler Il displays the starting group (From
column), the end group (To column), and the maximum delay of the
path (Required Delay column).

A timing group is a set of sequential cells or ports in the design that
share the same timing behavior. For example, all flip-flops clocked by
a common clock signal are grouped in one timing group. A path
group is the set of all combinatorial paths between two timing
groups. You can use path groups to describe the timing behavior of
the design in the Paths constraint table.

The starting group of the path (entered in the From column) can be
the set of all primary inputs of the design, all edge-sensitive
sequential elements clocked by a specified periodic signal, or all

Xilinx/Synopsys Interface Guide 3-13

Xilinx/Synopsys Interface Guide

level-sensitive sequential elements clocked by a specified periodic
signal.

The end group of the path (entered in the To column) can be the set of
all primary outputs of the design, all edge-sensitive sequential
elements clocked by a specified periodic signal, or all level-sensitive
sequential elements clocked by a specified periodic signal.

Required Delay is the maximum delay of the path, computed from the
waveforms of the periodic signals. This value is the difference between the
active edge of the end group of the path and the active edge of the starting
group of the path. To enter anew value for a path group, click the Required
Delay column to highlight the default value, and type in the new value.
Alternatively, you can click the expand arrow in the cell and select avalue
from the list of previously entered Delay values. You can also use cut and
paste commands.

Clocks Paths |F'|:urts I Mndulesl Hilir Dptiu:unsl

From

To

Req.
Delay

T Al Input Ports

<] All Output Ports

2

= Al Input Parts

FLRC-CLK

2

FLRC-CLK

<] Al Output Ports

21

| a b —

FLRC-CLK

FLRC - CLK

2

3-14

Figure 3-7 Entering Path Delays in the Constraints Editor

FPGA Compiler 11 computes default timing values using the default
waveforms of the periodic signals. To specify point-to-point constraints,
create subpaths by clicking the right mouse button on a path for the subpaths
menul.

Specifying 1/0 Constraints

Enter port-specific constraints in the Ports constraint table in the
Chips window. Each row in the table shows the constraint for a port.
These are the timing constraints you can enter in this table:

¢ Input Delay

Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

The input delay of an input or inout port is the maximum delay
from that port to a timing group. To define an input delay, click
the Input Delay cell for a port, and select Def i ne. In the Define
Delay dialog box, define the input delay.

Output Delay

The output delay of an output or inout port is the maximum
delay from a timing group to that port. To define an output delay,
click the Output Delay cell for a port and select Def i ne. In the
Define Delay dialog box, define the output delay.

Pad Location

You can specify the location of pads for a port. You cannot
specify pad locations for a design that has the Do Not Insert I/0
Pads option selected.

Timing Subpaths

With FPGA Compiler I, you can enter point-to-point constraints (for
instance, multicycle timing paths) by creating subpaths. The
procedure to create subpaths for a path follows.

1.

Right-click on the path in the Paths table.

The selections are New Subpath, Edit Subpath, and Delete
Subpath.

Select New Subpat h or Edi t Subpat h (if one has already been
created).

The Create/Edit Timing Sub Path dialog box opens, displaying
the primary path and the components in that path.

Enter a name for the subpath.

Select startpoints and endpoints for each subpath group by
double-clicking the object icons. The names of subpath groups
must be unique.

Specify the delay for the subpath. You can specify a different
constraint for each subpath.

You can use the Select All buttons to make multiple startpoint and
endpoint selections. You can use the Clear al buttonsto clear all
startpoint and endpoint selections. You can enter common expressions
such as DI* to make multiple selections.

Xilinx/Synopsys Interface Guide 3-15

Xilinx/Synopsys Interface Guide

Create / Edit Timing Sub Path EE
Frirnary Path: IFF's clocked by rising foalcdclk -» All Dutput Parts
Sub-path Marne: Imy_subpath Delay: |-| 3
Ohject | Atribu.. |«| Object | Aibu... |
T /oalcdxaludofi_reg * 3 out
Ex’calcf:-talua’“q_regw)“ = b aut
Efcalcfﬁaluf"q_reg(b" c ot
E Joalodvalu'o_regs 2" d aut
E Joalcdwaludn_rega3y" e ot
TF fcaledmew? M swi_rege 0" f out
T foalcdmew? M swi_rega1s" * g out
T fcalcdmew? M swi_rege 2" = ol aut
T foalcdmew? M swi_reg 3" * |ed 3> out
TF foalcdmew? M swi_regeds" * |ed2s aut
T foalcdmew? swi_regeBe" * |ed1> out
TF fcalcdmew? M swi_reg<Bs" * |ed0> aut
LT fcalcdwstack dreg_reg<0:"
T fcalc/uwstack'dreg_reg< 13" LI
SelectAl | Cleardl | Selectal | Clearanl |
Select: Select | Select: Select |
Cancel | Help |
Figure 3-8 Entering a Subpath Constraint
6. When you click OK, the Paths constraint table is updated to reflect
the new subpath groups.
You can expand and contract the path hierarchy of the Paths
Constraint table by double-clicking the path icon. To modify or
delete subpaths, select the subpath and click the right mouse
button for the subpaths menu.
Defining Multicycle Timing Constraints
FPGA Compiler Il can generate timing groups and path groups for
logic that uses clock enable signals. This is useful when portions of a
design run at a slower speed than the rest, with the slower flip-flops
controlled by the enable signal. Using enable signals with a
fundamental click eliminates clock skew, which can be introduced by
additional clock signals. You can set multicycle timing constraint for
3-16 Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

specified paths, making the slower logic easier to place and route
using the Xilinx software. Multicycle timing constraints can be
applied to subpath groups that you create.

Thisis an example of asituation in which amulticycle timing constraint is
appropriate. An FPGA contai ns some high-speed interface logic that must
run at 40 MHz, some low-speed interface, and core logic that has to run at
10MHz. The FPGA has a 40 MHz system clock and usesit to generate a 10
MHz enable signal for internal distribution. The foll owing figure shows how
the 10 MHz enable might align with the system clock when the rising edge
of the 40 MHz system clock is the active edge. The 40 MHz clock is
distributed to the clock input of each FPGA flip-flop, while the enable signal
isdistributed to each FPGA flip-flop clock enable input. In this case, the
primary clock period is 25 ns, but the 10 MHz enabled logic needs to satisfy
aperiod of only 100 ns.

40 MHz clock _|-|_[-1_[-1_I-1-1_I-T_I-1_I-1_I-1_I-
10 MHz enabl e | --] | --]

A simple shift register circuit shown in the following logic diagram
illustrates how the multicycle timing constraint is assigned in FPGA

Compiler I1.
ena
L load
ger_in q(3:0) hold regi3:0)
— —d ¢ d a—
regl reg?
clk

Figure 3-9 Shift Register Circuit

Register regl is a 4-bit serial-input parallel-output register. Register
reg? is a holding register that is loaded with the clock enable ena. The
paths from the output of regl to the input of reg2 (net q) are
multicycle paths because the data bits have four clock cycles to reach
their destinations. The register-to-register timing constraint is 25 ns (1
/ 40 MHZz), but the multicycle timing constraint is 100 ns (4 x 25 ns).

Xilinx/Synopsys Interface Guide 3-17

Xilinx/Synopsys Interface Guide

To create a subpath group of the register-to-register paths in the Paths
constraint table, click the right mouse button on the register-to-
register path groups and select New Subpat h.

Clacks Paths |F'-:rt$ | Modules | iling Options |

From To =
Delay
1 = Al Input Ports FLRC-clk 25
2 FLRC-clk 3] Al Output Parts | 25
3 FLRC-clk FLRC-clk
[Velete Sty path

Figure 3-10 New Subpath Dialog Box

The Create / Edit Timing Subpath window appears. Use this window
to construct your own path group by selecting specific startpoints
and endpoints. The newly created path group is called a subpath
because it is a subset of another path group, in this case, the register-
to-register paths in the design.

3-18 Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

Create / Edit Timing Sub Path EHE
Frimary Path: IFF'S clocked by riging feer_par_4/clk > FF'z clocked by riging feer_par_4./cll
Sub-path Mame: IIJD Delay: 100
Objest | Attibu_| fbject | atibu_ |

T} feer_par_4/'hald_reg_reg<0:" E fzer_par_4/"hold_reg_reg<:"
TF feer_par_4'hald_req_reg<1s" E fzer_par_4/"hald_reg_reg<1:"
TF feer_par_4/'hald_req_reg<2:" E feer_par_4/"hold_reg_rege2:"
TF fser_par_4/'hald_req_reg<3:" E dser_par_4/"hold_reg_regs 3"
E fser_par_4'q_reg<0>" 1 fser_par_d/"'qregeds"
E feer_par_4'q_rege»" 1 feer_par_d/'qregets"
E feer_par_4M'q regeds" TF feer_par_4/'q reg2s"
E feer_par_4"'q_rege3:" T3 Jeer_par_ 4/'q reged"

Selectdl | Clearal | Selectdl | Cleardl |
Select: Select | Select: “hold*

Qg | Caticel | Help |

Figure 3-11 Create/Edit Timing Sub Path Dialog Box

In this example, the outputs of regl are the startpoints and the inputs
of reg2 are the endpoint for the subpath. A delay of 100 ns is assigned
to the subpath. For more information about using the subpath editor,
see the FPGA Compiler Il online help.

After you create a subpath and apply the multicycle timing
constraint, the subpath appears in the Paths constraint table.

Xilinx/Synopsys Interface Guide 3-19

Xilinx/Synopsys Interface Guide

Clocks Paths |F'Dlts I Modulesl wilire Dptions

From To Req.
Delay
1 = Al Input Ports: FLRC-clk 25
2 FLRC-clk <a] Al Output Potts | 25
3 EHFLRC-clk BFfLRC-clk 25
4 =, p0-From =, p0-To 100

Figure 3-12 Paths Constraint Table Dialog Box

Notice that an enabled flip-flop can be included in two different path
groups—those that include clock-to-clock paths and those that include
clock-to-enabled clock paths. Thisimplies that there are two TIMESPECs
with overlapping constraints generated by FPGA Compiler Il. The constraint
for clock-to-clock timing, 25 nsin this case, conflicts with the constraint for
clock-to-enabled-clock timing, which is 100 ns. The Xilinx implementation
software assigns different priorities to these two constraints, placing ahigher
priority on the more specific one. Because the subpath constraint is more
specific than the clock-to-clock constraint, it takes precedence and the
corresponding paths can be optimized for the slower speed.

Adding Pull-Up and Pull-Down Resistors

You can apply pull-up and pull-down resistors to chip-level 1/0
ports, and you can use them internally.You can only instantiate
internal pull-up and pull-down resistors. The following table shows
which devices require pull-up/pull-down resistors.

Table 3-1 Instantiating Pull-up/Pull-down Resistors

XC4000EX/ Virtex/E/-II
XC3000A/L | XC4000E/L XLIXLA/XV XC5200 Spartan-II Spartan/XL
Pull-up Pull-up/ Pull-up/ Pull-up/ Pull-up/ Pull-up/
Pull-down Pull-down Pull-down | Pull-down |Pull-down

Refer to the “XSI Library Primitives” appendix for a listing of all cells

and their pin names for instantiation.

See the “Using the Xilinx Development System” section in this

chapter for more information on pull-up and pull-down resistors.
3-20 Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

Optimizing a Design Implementation

After you finish entering constraint, attribute, and option definitions,
you are ready to optimize the design and generate FPGA netlists. In
this step, you optimize a design implementation for performance and
area, guided by the implementation constraints and controls you
entered in the constraint tables.

You can optimize your design for area, speed, or a combination of both. To
get the most effective results from FPGA Compiler I, apply accurate and
achievable constraints. For example, if you set atiming goal of O nson all
ports, FPGA Compiler Il attempts to meet this goal by duplicating logic to
reduce critical paths. This can result in a significant and possibly
unwarranted increase in CLB and interconnect usage.

The following steps show how to optimize a design implementation:
» Click the design implementation in the Chips window to select it.
Its name is displayed in the top-level design field of the tool bar.

* Right-click the design implementation and choose Optimize
Chip, or click in the toolbar.

A new optimized implementation icon appears beneath the
original implementation.

When you optimize a design implementation, FPGA Compiler 11
analyzes the actual timing and area of your design to see whether
they meet your requirements. After optimization, the design
implementation tables display the constraints you have specified
with the actual results of your design so you can compare them.

The following sections describe how to compile and optimize your
HDL design.

Optimizing Logic Across Hierarchical Boundaries

CLBs contain Boolean logic implemented in both function generators and
flip-flops. Some CLBs only implement flip-flops and contain unused
function generators and other CLBs only implement function generators and
contain unused flip-flops. Additionally, the Boolean logic in one hierarchy is
not optimized with that in another to reduce the CLB areaor logic levels.

The choice of hierarchical boundaries can have a significant impact
on the area and speed of the synthesized design. Using FPGA

Xilinx/Synopsys Interface Guide 3-21

Xilinx/Synopsys Interface Guide

Compiler Il, you can optimize a design while preserving these
hierarchical boundaries.

The TOP design, illustrated in the following figure, references two sub-
blocks, one completely combinatorial (blockl) and one completely
sequentia (block2).

TOP
BLOCK1 BLOCK 2
IN1
D FDC Q
= OUT1
o) > L >
OR2 C

cLock |

X4887
Figure 3-13 Sequential and Combinatorial Design

FPGA Compiler 1| cannot move logic across levels of hierarchy. To maintain
the hierarchy you need two CL Bs to implement the TOP design. FPGA
Compiler 11 uses one CLB to implement the OR gate and another to
implement the FDC flip-flop.

However, if FPGA Compiler Il merges two subdesigns into a single
level of hierarchy, you need only one CLB to implement the TOP
design, illustrated in the following figure. FPFGA Compiler Il can
merge the combinatorial and sequential logic into one CLB.

TOP
CLB
IN1
D FDC Q
OR2 c

CLOCK >————————

X4894
Figure 3-14 Merging into a Single Level of Hierarchy

To check if FFGA Compiler Il can combine the combinatorial and
sequential logic across hierarchical boundaries, optimize the design

3-22 Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

with and without hierarchy, and then compare the results as
described in the following sections.

By default, FPGA Compiler 1l flattens your design hierarchy. This can be
changed at the top level. To preserve or eliminate the hierarchy on a module
per module basis, select the implementation, click the right mouse button,
and select Edi t Const rai nt s. Inthe Modules table, set the Preserve or
Eliminate attribute on the module. The default is Eliminate.

Using a Flattening Optimization Strategy

Flattening eliminates the existing logic structure. In general, you can flatten
random control logic because automatic structuring usually improves upon
manual structuring. For FPGA designs, flatten designs when the number of
CLBs needed to implement a Boolean function seems too high or there are
too many logic levels. You probably do not need to flatten regular or highly
structured designs such as adders and ALUs designed with an explicit
structure.

Flattening works especially well for the FPGA CLB structure because
FPGA Compiler Il has a built-in optimizer for Boolean logic. This
algorithm works efficiently when the structure decomposes
sufficiently so that the Boolean logic can map into the CLB function
generators.

Setting Port Attributes and Constraints

You can enter port-specific constraints in the Ports constraint table in
the Chips window. Each row in the table shows the constraints for a
port. You can enter the following timing constraints in the Ports
constraint table.

* Input Delay

The input delay of an input or inout port is the maximum delay
from that port to a timing group. To define an input delay, click
the Input Delay cell for a port, and select Def i ne. In the Define
Delay dialog box, define the input delay.

e Output Delay

The output delay of an output or inout port is the maximum
delay from a timing group to that port. To define an output delay,
click the Output Delay cell for a port and select Def i ne. In the
Define Delay dialog box, define the output delay.

Xilinx/Synopsys Interface Guide 3-23

Xilinx/Synopsys Interface Guide

 Pad Location

You can specify the location of pads for a port. You cannot
specify pad locations for a design that has the Do Not Insert 1/0
Pads option selected.

Seethebidi_reg.vhd and bidi_reg.v examplesin the “Viewing the
Schematics’ section for designs that contain both instantiated 1/0s and 1/0Os
inserted using FPGA Compiler 1.

Evaluating Timing Delays

3-24

The Synopsys tools report all delays in nanoseconds. The reported delays
include logic-level and interconnect delays. Because FPGA Compiler |1
synthesizes CLBs and 10Bs (X C4000 and Spartan devices) or LUTsand
flip-flops (X C3000, X C5200, XC9000 and Virtex devices), it reports|ogic-
level delays with a higher degree of accuracy than Design Compiler.

FPGA Compiler Il estimates possible interconnect delays on the basis of a
net’s fanout. These estimates allow you to evaluate your design’s
performance prior to performing place and route. FPGA Compiler 11 applies
the wire-load model only to nets between CLBs and | OBs (XC4000 devices)
or between LUTS, 1/Os, and flip-flops (XC3000 and X C5200 devices).

After optimization, edit the chip and select Vi ew Resul ts torun
the FPGA Compiler Il TimeTracker. TimeTracker calculates the delay.

Timing analysis follows the same top-down paradigm (from global to
specific) as timing constraint entry. (See the “Specifying Timing
Constraints” section of this chapter:.)

The Clocks table contains a new column showing the actual clock
frequency for each clock in your design next to the desired frequency
derived from your timing constraints. If a particular clock fails to
meet its constraint, it is highlighted in red. To see greater detail,
proceed to the Paths constraint table.

The Paths constraint table shows the paths that violate a timing
constraint and shows a detailed list of each path’s structure.

The Paths table contains an additional column displaying path delay with
violationsin red. It shows which groups of paths fail to meet constraints.
Selecting any particular group lists all pathsin that group with their
startpoints, endpoints, and delays. At another level of detail, it shows exactly
which paths arein violation. Selecting any particular path displays alisting
of the composition of the entire path from startpoint to endpoint, including

Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

each instance in the path, the type of component, the cumulative delay
through each instance, and the fanout of that particular pin of the instance.

These tables should provide the information you need to make
design improvements without running the implementation tools.

Timing analysis fits into the present FPGA Compiler 11 design flow
and gives you detailed information about the timing behavior of your
design. With timing analysis, you can see the actual delay values
presented next to the desired delay values. For any path, the
TimeTracker provides a detailed listing of the path composition to
help you debug critical paths. FPGA Compiler Il timing analysis
shortens the design cycle by eliminating the need to run
implementation tools to get timing information.

Using the FPGA Compiler Il Time Tracker

The FPGA Compiler Il TimeTracker speeds the design cycle by allowing
you to identify and repair critical portions of your design without having to
run vendor tools to perform place and route. The TimeTracker isintegrated
into the existing design flow and runs when you view the results of an
optimized chip. It allows you to compare actual delay values to entered
constraints.

Timing Analysis also provides details of particular paths and a
detailed listing of critical paths.

After you read the HDL source code into FPGA Compiler 1l and enter
timing requirements, synthesize the design for the target FPGA
architecture. Then, instead of using FPGA vendor tools to place and
route the design, view the results of the optimized chip.

These are the advantages of using the FPGA Compiler 11
TimeTracker:

« It gives feedback about how you meet your timing requirements
without you having to run the vendor’s place and route tool and
timing analyzer.

« It presents timing analysis results and timing requirements in a
table, making the results easy to interpret.

Xilinx/Synopsys Interface Guide 3-25

Xilinx/Synopsys Interface Guide

Viewing t

he Results of Optimization

The post-synthesis timing data is displayed in the same formats as
the tables you used to enter constraints. The following steps show
how to view the results of optimization:

1.

Open an optimized implementation by clicking the right mouse
button and selecting Vi ew Resul t s.

Check the Clocks constraint table to see the maximum clock
frequencies FPGA Compiler Il calculated for each of the clocks in
the design. Clock frequency violations appear in red.

The figure below shows the Clocks constraint table after
optimization.

Clocks | Pathis | Ports | Mu:udulesl #ilirs Dptinnsl
Req. Freq Est. Freq
Hame Clock {MHz) (MHz}
1 =clefault= 200000
2 Mealc-Optimized"iclk_BUF GPed 50 115
Figure 3-15 Clocks Constraint Table after Optimization.
3. Check the Paths constraint table for more detail on timing
violations. Select a path group to see a list of paths in that group.
4. Select apath from thelist to see the detail s of path composition,
cumulative delays, and fanout.
The following figure shows the Paths constraint table after
optimization.
3-26 Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

Clocks Faths |F'|:urts IMu:u:IuIes Hiline Options

Req. | E=st. Instance
From To Delay|Delay Path =
1 = Al Input Ports F1 RC - clk_BUFGPed [28 2
2 F1L RC - clk_BUFGPed <2] All Qutput Ports 20 =]
3 F1 RC - clk_BUFGPed F1 RC - clk_BUFGPed [28 5]
Est. Delay /
From To Slack

Figure 3-16 Paths Constraint Table after Optimization.

5.

Note that all pins on the timing path will be displayed; hence,

two rows of the path table correspond to a single net (src and

load).

Check the Ports constraint table for information about input and
output delays. The following figure shows the Ports constraint
table where results include the slack for input arrival time and
output delay for each port.

Xilinx/Synopsys Interface Guide

3-27

Xilinx/Synopsys Interface Guide

Clocks | Paths ~ Ports |Mndules|><i|in:-: Elpticunsl

Input Delay Input Qutput Delay [Output| Global |Pad| Use |Slew

e Ch | edlon (ns) Slack (ns} Slack | Buffer | Dir |I/0 Reg| Rate| 29 ¢
1 |defats AUTOMATIC] | TRUE |5.12
2 okt | 20(RCeH_BUFGRed) 199 BUFGF
3 exc |t | 20(RCeH_BUFGPed) 182
4 |ewebs |npt | 200RCeH_BUFGFRed) 186
5 |swess |t | 20(ACcH_BUFGRed) 186
B |sweds [t | 20(RCeH_BUFGPed) 186
7 |eweds ot | 200RCeH_BUFGFRed) 186
8 |swezs |t | 20(RCcH_BUFGFed) 186
9 |swels [npt | 20(RCeH_BUFGPed) 186
10 |swss |t | 20¢RCeH_BUFGFRed) 186
H |a output 20(RC,cli_BUFGPed)| 127
12 |n output 20{RC,clk_BUFGPed)| 127
B | output 20{RC, clt_BUFGPed)| 127
1% |d output 20(RC,clt_BUFGPed)| 127
15 e output 20{RC,clk_BUFGPed)| 127
B | output 20{RC, clt_BUFGPed)| 127

Figure 3-17 Ports Table (Slack for Input)

6. Check the Modules constraint table for information about the
device resources used.

7. Double-click the items in the Area column for details about cell
count.

The following figure shows the Modules constraint table after
optimization.

3-28 Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

I:h:u:ksl Pathz I Ports Modules | <iline Options
Hame Hierarchy | Primitives | Dont Touch ODEFH_'(DT TG Effort
Sharing for
EH =default= |Eliminste Preserve on Speed High
EH calc Falzse

Figure 3-18 Modules Constraint Table after Optimization

Generating Reports for Debugging

You can generate an FPGA Compiler 1l report on a project, library, file, or
chip. A project report documents the design through the synthesis and
optimization design flow and includes information such as design source
data, constraints, and optimization options.

The following steps show how to generate a report:

1.

Select the project, library, design, or chip in the project window
and click the tool bar, or right-click the project, library, design, or
chip and choose Report .

In the dialog box that appears, select a name and location for the

report.

Click Save.

FPGA Compiler Il creates a text file containing summary
information for the whole project, the library, the design, or the

chip.

Open the file in a text editor or word processing application.

Xilinx/Synopsys Interface Guide

3-29

Xilinx/Synopsys Interface Guide

Viewing the Schematics

FPGA Compiler 11 creates schematic representations of the logic it
synthesizes. To view a schematic, right click on either the functional
structure or the optimized structure in the Chips window and select Vi ew
Schemat i c. Usetheitemsin the View Toolbar to navigate within the
schematics.

Exporting the Netlist

3-30

The Export Netlist button opens the Export Netlist dialog box. You export
the selected optimized design for place-and-route.The netlists are
automatically formatted into Electronic Data Interchange Format (EDIF).
You can specify the export design directory. Individual file names
correspond to the source design names.

You can also export Verilog or VHDL netlists for functional
simulation along with the design netlist. FPFGA Compiler Il passes the
timing constraints with the netlist. Timing constraints are not
included in the netlist file for any design that you compiled with the
Do Not Insert 1/0 Pads option selected.

Timing constraints can also be exported by checking the Export
Timing Specifications checkbox.

The option labeled Bus Style in the Place and Route section of the
Export dialog box adds control to the bus style for EDIF output. Bus
information for top-level 1/0 can be preserved or eliminated.

The default setting, Expand, causes each bit of a bus to become an
individual 170 port. The other settings include delimiters for
different bus style notations: [], <>, (), and {}.

The Generate Synopsys db Files option exports .db files along with
the netlist. This enables projects created in FPGA Compiler 1l to be
integrated into your design flow with other Synopsys tools. These
files are placed in the location specified in the "Export Directory”
option.

FPGA Compiler Il creates two .db files. For a design called “test”, for
example, one file, named test-Optimized_des.db, describes the
design. The other file, named test-Optimized_lib.db, contains the
technology library primitives used in the design.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

Using the Xilinx Development System

To translate your design to a bit file so the Xilinx tools can program
your device, perform the following steps.

1. Run NGDBuild on the EDIF file to create an NGD file.

2. Runthe MAP program on the NGD file to create a mapped NCD
file.

3. (optional) Run the TRACE program to determine if PAR will
meet your timing goals.

Run PAR on the NCD file to place and route your design.
Run TRACE again on your placed and routed design.
Run NGDAnNnNo on your routed design to create an NGA file.

Run either NGD2VHDL or NGD2VER on the NGA file to create a
VHD or VER file that can be simulated with the appropriate
simulators.

N o g &

Note For more information about using the Xilinx Development
system, please refer to the online tutorial located at http://
support.xilinx.com/techsup/tutorials/tutorials31i.htm

HDL Coding Techniques

The following sections cover HDL coding techniques for 10Bs.

Configuring IOBs

This section describes how to configure FPGA I0Bs. You must
implement some components manually, but FPFGA Compiler |1
performs the following optimization functions automatically.

e Inserts input buffers (IBUF) and output buffers (OBUF)

* Inserts IBUFs and 3-state output buffers (OBUFT) for
bidirectional 170 (IOBUF)

« Inserts a clock buffer for ports driving clock pins (BUFG)

Note The following functions apply only to FPGAs with 170 flip-
flops.

Xilinx/Synopsys Interface Guide 3-31

Xilinx/Synopsys Interface Guide

3-32

e Optimizes a flip-flop (IFD) without a clock enable, or latch
(ILD_1) attached to input buffers into the IOB

e Optimizes a flip-flop without a clock enable attached to output
buffers into the I0OB (OFD)

Indicate which ports in your design to use for chip-level 1/0s with
the Ports constraint table.

All Architectures

This section includes general information about IOBs that applies to
all supported device architectures.

Optimizing Inputs

FPGA Compiler Il optimizes any flip-flops connected to an input port
into the 10B if the flip-flop or latch does not use the Clock Enable,
Direct Clear, or Preset pin.

You can configure the buffered input signal that drives the data input
of a storage element as either a flip-flop or a latch. You can use the
buffered signal in conjunction with the input flip-flop or latch.

A delay buffer added to the signal feeding the data input of the input
flip-flop/latch avoids a possible hold time violation.To remove this
delay, use the FPGA Compiler 1l Constraint Table. Under the Ports
tab, change the value under the Input Reg Delay column from Delay
to Nodelay. This can be set globally (as the default) or for individual
ports.

Understanding and Using Slew Rate

The output buffers have a default slow slew rate that alleviates
ground-bounce problems and the option of a fast slew rate that
reduces the output delay. The SLOW option increases the transition
time and reduces the noise level. The FAST option decreases the
transition time and increases the noise level.

Change SLOW slew rate to a FAST slew rate in the Constraint Table.
This value is set in the Slew Rate column of the Ports tab.

Using IOBs

This section describes how to use IOBs.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

Using Input Blocks

Select input thresholds globally with TTL/CMOS. You can make
inputs registered or latched. You can select register and latch setup
time. Internal pullup resistors can optionally attach to the I/0 pad.

Registered and latched inputs become available simultaneously with
direct input. You cannot apply asynchronous set/reset control on
input registers and latches, but you can apply clocks and latches on
input register and latches. You have no clock or latch-enable, but you
can control the initial state of input registers and latches.

XC5200 10Bs can contain no input registers, although you can
emulate this functionality using the latch/flip-flop in the adjacent
CLB. Additionally, CLB registers and latches have clock or latch-
enables and asynchronous reset inputs.

The IOB input path has an optional delay with which you can adjust input
setup and hold times. In the default configuration, the input register or latch
has positive setup and zero hold time (when used in conjunction with a
global clock network). Reducing input setup time dlightly increases hold
time. Three setup and hold delay adjustments allow setup versus hold
parameter tuning.

Using Output Blocks

You can select the output driver slew rate. The output driver by
default uses a slow slew rate setting to reduce system noise and
power. A faster slew rate decreases chip-to-out propagation delay.

XC 52000 IOBs contain no output registers, although you can emulate
this functionality using the latch or flip-flop in the adjacent CLB.
Additionally, CLB registers and latches have clock or latch-enables
and asynchronous reset inputs.

You can register outputs and make them tristate. You cannot enable
asynchronous set/reset control on output registers, but you can specify clock-
enable on output registers.

You cannot apply clock-enable or asynchronous set/reset control on
output registers, but you can control the initial state of output
registers.

Perform 2-to-1 multiplexing or 2-input function directly in the output path of
an 10B (XC4000EX/XL/XV only). You can trade an output register for a 2-
input function or multiplexer. FPGA Compiler Il cannot infer output drivers

Xilinx/Synopsys Interface Guide 3-33

Xilinx/Synopsys Interface Guide

3-34

containing a 2-input function or output multiplexer. Additionally, you must
instantiate the following primitives (valid for XC4000). See the “ XSl
Library Primitives’ appendix for more details.

« OAND2

« OMUX2

« ONAND2
+ ONOR2

+ OOR2

* OXNOR2
* OXOR2

Using Bidirectional Mode

You can select the output driver slew rate. The output driver by
default uses a slow slew rate setting to reduce system noise and
power. A faster slew rate decreases chip-to-out propagation delay.

Select input thresholds globally with TTL/CMOS. Input can be
registered or latched, and you can select register and latch setup time.

XC5200 10Bs contain no input registers, although you can emulate
this functionality using the latch/flip-flop in the adjacent CLB.
Additionally, CLB registers and latches have clock or latch-enables
and asynchronous reset inputs.You can make outputs tristate.

The I0OB input path has an optional delay with which you can adjust
input setup and hold times. In the default configuration, the input
register or latch has positive setup and negative hold time (when
used in conjunction with a global clock network). This corresponds to
a full delay. Reducing input setup time slightly increases hold time.

You cannot apply clock or latch-enable or asynchronous set/reset
control on input registers and latches. Direct input makes registered
and latched input available simultaneously. You can control the
initial state of input registers and latches, and you can register
output.

Perform 2-to-1 multiplexing or 2-input function directly in the output
path of an IOB (XC4000EX/XL/XV only). You can trade an output
register for a 2-input function or multiplexer. FPGA Compiler Il
cannot infer output drivers containing a 2-input function or output

Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

multiplexer. Additionally, you must instantiate the following
primitives (valid for XC4000). See the “XSI Library Primitives”
appendix for more details.

« OAND2

« OMUX2

« ONAND2
+ ONOR2

+ OOR2

* OXNOR2
* OXOR2

Inserting Bidirectional 1/0Os

FPGA Compiler Il has the ability to insert bidirectional ports.
Describe the 3-state signal that drives the output buffer in the same
hierarchy level as the input signal, as in the bidi_reg.vhd and
bidi_reg.v examples in the following section.

Assigning Pad Locations

You can specify pad locations in the Ports constraint table in the
Chips window. You cannot specify pad locations for a design that has
the Do Not Insert 1/0 Pads option selected.

Refer to The Programmable Logic Data Book, available on the Xilinx Web
site at http://www.xilinx.com, for the locations and names of the
pins.

Instantiating a Registered Bidirectional 1/0

library |EEE;

The top-level design examples bidi_reg.vhd and bidi_reg.v instantiate
a core design, reg4. In these examples, two clock buffers, CLOCK1
and CLOCK?2, automatically infer a BUFG buffer. The reset and load
signals, RST and LOADA, automatically infer an IBUF.

The bidi_reg.vhd VHDL example follows.

use | EEE. std_| ogic_1164.all;

Xilinx/Synopsys Interface Guide 3-35

http://www.xilinx.com

Xilinx/Synopsys Interface Guide

entity bidi _reg is

port (S| GA:

end bidi _reg;

architecture STRUCTURE of bidi _reg is

LOADA, CLOCK1, CLOCK2, RST: in

conponent
port (INX

conponent OFDT
(D in STD_LCOG G
C in STD LQG C;
T: in STD_LOGE C,

port

O out STD LOG C);

end conponent;

conponent

port

| BUF

regé

i nput STD LOd C VECTOR (3 downto 0);

STD_LOG O) ;

in STD LOd C VECTOR (3 downto 0);
LOAD, CLOCK, RESET:
QUTX: buffer STD LOGd C VECTOR (3 downto 0));
end conponent;

(I: in STD_LOA C

O out STD LOA C);

end conponent;

si gnal
begi n

end STRUCTU

i nout

3-36

I NA, QUTA:

ES5565E60

[3:0]

reg4
OFDT
OFDT
OFDT
OFDT
| BUF
| BUF
| BUF
| BUF

RE;

in STD LOG C

STD LOd C VECTOR (3 downto 0);

port
port
port
port
port
port
port
port
port

map
map
map
map
map
map
map
map
map

(I'NA, LOADA, CLOCK1, RST, QUTA);

(QUTA(0),
(QUTA(1),
(QUTA(2),
(QUTA(3),
(SI'GA(0),
(SIGA(1),
(SIGA(2),
(SIGA(3),

CLOCK2,
CLOCK2,
CLOCK2,
CLOCK2,
I'NACO));
INA(L));
INAC2));
I'NAC3));

The bidi_reg.v Verilog example follows.
nodul e bidi _reg (SIGA LOADA, CLOCK1, CLOCK2, RST) ;

S

| GA ;

LOADA, SIGA(0));
LOADA, SIGA(1));
LOADA, SIGA(2));
LOADA, SIGA(3));

Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

i nput
i nput
i nput
i nput

Wre

[3:0]

/1 Netlist

LOADA ;
CLOCK1 ;
CLOCK2 ;
RST ;

I NA, QUTA ;

regd Us (.INPUT(INA), .LD(LOADA), .CLOCK(CLOCK1), .RESET(RST), \

OFDT
OFDT
OFDT
OFDT
| BUF
| BUF
| BUF
| BUF

&E5&6

E§S9655~~~~

. QUT(QUTA))

endnodul e

.D(OUTA[0]), .C(CLOCK2), .T(LOADA), .Q(SIGA[O
.D(OUTA[1]), .C(CLOCK2), .T(LOADA), .O(SIGA[1
.D(OUTA[2]), .C(CLOCK2), .T(LOADA), .O(SIGA[2
.D(OUTA[3]), .C(CLOCK2), .T(LOADA), .O(SIGA[3
(.1(SIGA0]), .Q(INALQ]))
(.1(SIGA1]), .QINALL])) ;
(.1(SIGA2]), .Q(INA2]))
(.1(SIGAL3]), .QAINALZ]))

1))
1))
1))

1))

The backslash (“\) character shows a line break required for
formatting purposes.

Implementing 3-State Registered Output

FPGA Compiler Il infers the use of 3-state output flip-flops, such as
OFDT, under the following two conditions.

* The flip-flop must directly drive the 3-state signal.

* The HDL code of the flip-flop must reside in the same process as
the 3-state HDL code.

The following sections illustrate a flip-flop that does not directly
drive the 3-state signal and one that does directly drive the 3-state
signal.

Example of Not Directly Driving the 3-State Signal

If any logic exists between the flip-flop and the 3-state signal
connected to the output flip-flop, FPGA Compiler Il does not infer a

Xilinx/Synopsys Interface Guide 3-37

Xilinx/Synopsys Interface Guide

3-38

3-state output flip-flop. The following VHDL and Verilog examples
illustrate a flip-flop not directly driving a 3-state output flip-flop.
Figure 3-19 shows a schematic representation.

The three_ex1 VHDL example follows.

library | EEE;
use | EEE. std | ogic_1164.all;
use | EEE. std_| ogi c_unsigned. al | ;

entity three_exl is
port (BUS IN, EN, CLK: in STD LG4 C,
BUS QUT: out STD LCAE C);
end three_ex1;

architecture RTL of three_exl is
signal BUS IN REG BUS QUT_REG STD LOd C,

begi n
sync: process (CLK)
begi n
if (CLK event and CLK= ‘1) then
BUS | N REG <= BUS I N;
BUS OUT REG <= BUS | N REG
end if;
end process;
BUS QUT <= BUS _OUT_REG when (EN= ‘0') else 'Z;

end RTL;

The three_ex1 Verilog example follows.

nmodul e three_ex1(BUS_IN, EN, CLK, BUS QUT);
i nput BUS_IN ;

i nput EN ;

i nput CLK ;

out put BUS_QUT ;

reg BUS OQUT_REG BUS |IN REG BUS QUT;
al ways @ posedge CLK)

begi n

Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

BUS_OUT_REG = BUS_I N_REG ;
BUS | N_REG = BUS_IN ;

end
al ways @EN or BUS_OUT_REGQ
begi n
if ('EN
BUS OUT = BUS QUT_REG
el se
BUS QUT = 1' bz;
end
endnodul e
EN [> T
IBUF

BUS_OUT
BUSIN [>—2 IFD |Q BUSIN.REG p [FDC |[qQ BUS_OUT REG

CLOCK D_I> c c OBUFT_F

BUFG_F

X8564
Figure 3-19 No Output Register Inferred

Example of Directly Driving the 3-State Signal

The HDL code for the flip-flop must reside in the same process as the
3-state HDL code and must directly drive the 3-state output, as
shown in the sync process in the following VHDL and Verilog
examples. If the code meets these two conditions, FPGA Compiler Il
infers a registered 3-state output, as illustrated by Figure 3-19.

Having the flip-flop and the 3-state signal in separate processes
causes the insertion of additional logic between the flip-flop and the
3-state signal.

The three_ex2 VHDL example follows.

library |EEE;
use | EEE. std_| ogic_1164.all;
use | EEE. std_| ogi c_unsi gned. al | ;

Xilinx/Synopsys Interface Guide 3-39

Xilinx/Synopsys Interface Guide

entity three_ex2 is
port (BUS IN, EN, CLK: in STD LOd C,
BUS QUT: out STD LCGE C);
end three_ex2;

architecture RTL of three_ex2 is
signal BUS_IN REG STD LOG C;

begi n
sync: process (CLK, EN)
begi n
if (CLK event and CLK= ‘1) then
BUS | N REG <= BUS I N;
if (EN="0") then
BUS OUT <= BUS | N REG
el se
BUS QUT <= 'Z';
end if;
end if;
end process;

end RTL;
The three_ex2 Verilog example follows.

nmodul e three_ex2(BUS_IN, EN, CLK, BUS QUT) ;
i nput BUS IN ;

i nput EN ;

i nput CLK ;

out put BUS_QOUT ;

reg BUS_QUT ;
reg BUS IN Q BUS_IN REG ;

al ways @ posedge CLK)
begi n
BUS IN.Q = BUS IN ;
BUS IN REG = BUS IN Q ;
if (!EN) BUS QUT = BUS | N REG
el se BUS QUT = 1’ bz;

3-40 Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

end
endnodul e
IFD BUS_OUT_TRI_ENABLE
N[> : < ==
C
OFDT
IFD BUS_IN_REG OFD BUS_ouT
BUS_IN > b Q — D Q
OBUFT
CLOCKD—D c g

BUFG

X8559

Figure 3-20 Output Register Inferred

Attribute Passing

Attributes can be inserted in the HDL code to be passed on to the
resulting EDIF netlist. These attributes can have any name or value,
but they can only be applied to instantiated components or nets (not
inferred logic or ports).

Use the following syntax to place an attribute in your HDL.:
Verilog
// synopsys nane attribute val ue

This comment is placed immediately after the instantiated
component.

Example:
BUFG MYCLK (.1 (clk), .Q(clkin)); //synopsys attribute LOC “BR

If multiple attributes need to be applied to the same component, use
multiple line comments like the following:

RAMBA_S4 UL (.WE(w), EN(en), RST(r), .CLK(ck), .ADDR(ad), DI(di),
D) (do));

/*synopsys attribute | Nl T_00" AAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBEE
INIT 09 “9999998888888888777777777776666666” */

Xilinx/Synopsys Interface Guide 3-41

Xilinx/Synopsys Interface Guide

VHDL
Place the following in the architecture before the “begin” keyword:

attribute: nanme: string;
attri bute: nane of instance: |abel is value;

The attribute is applied to the instance name of an instantiation. If
you want to apply an attribute to a signal instead of a component,
replace “label” with “signal.”

Example:

attribute LOC: string;
attribute LOC of CLOCKBUF: |abel is “BR’;

MYCLK : BUFG port map (I=>clk, 0=>clKkin);

If you need to apply multiple attributes to the same component,
create two lines for each attribute:

attribute INIT_00:string;

attribute INNT_00 of MY_BLKRAM | abel is
“ AAAAAAAAAAAAAAAA” ;

attribute INIT_09;string;

attribute INNT_09 of MY BLKRAM | abe is
“9999998888888888" ;

MY_BLKRAM RAMB4_S4port map(
addr =>ADDRTWD,
di =>DI NTWO,
cl k=>CLK,
we=>WETWO,
en=>ENTWDO,
r st =>RST,
do=>DOUTTWD) ;

3-42 Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

Implementing Clock Buffers

Global clock buffers are used to drive high-fanout signals such as clocks and
RAM write enables with minimal skew. The following tableisa
comprehensive list of the buffers available in each family.

Table 3-2 Global Clock Buffers

I[:)sr\:]iiclze Slobal Buffer | Number I\B/It?f);ler?:mf':?rr::z;m
y ymbol Name |Available FPGA Compiler I
XC3000 GCLK 1 1
ACLK 1 1
XC4000/ BUFGS 4 0
XC4000E
XC4000L/ |BUFGP 4 0
Spartan/XL
BUFG 8 4
XC4000EX |BUFGLS 0
XC4000XL BUFGE 0
XC4000XV |BUFFCLK 0
BUFG (8))
XC5200 BUFG 4 4
Virtex/E/I|
Spartan-I1
XC9500 BUFG 3 0

For XC4000 devices, FPGA Compiler 11 infers BUFG, an architecture-
independent global buffer, so that the Xilinx implementation software has
the flexibility to convert each BUFG to an appropriate type of global buffer
for the target device. In XC4000/E/L and Spartan devices, aBUFG
represents either a BUFGS or BUFGP. In XC4000EX/XL/XV and Virtex
devices, a BUFG represents either aBUFGLS or a BUFGE.

FPGA Compiler Il extracts clock nets from your design and lists them
in the Clock constraint table. You can either let FPGA Compiler 1l
allocate the clock buffers for you, or you can manually assign them in
the Global Buffer column of the Ports constraint table.

Xilinx/Synopsys Interface Guide

3-43

Xilinx/Synopsys Interface Guide

When FPGA Compiler Il performs the allocation, it uses one BUFG
per clock, up to the maximum specified in the last column of the
Global Clock Buffers table. Allocation begins with the most heavily-
loaded clock signal. For example, if an XC4000E design contains five
clock signals, FPGA Compiler Il allocates four BUFG buffers to the
four most heavily-loaded clocks. Targeting the same design to an
XC4000EX device would result in the use of five BUFGs. In XC4000/
E/L and Spartan devices, FPGA Compiler Il infers a maximum of
four global buffers even though eight exist. Inferring more than four
buffers could use extra global routing resources, threatening chances
of a successful route. XC4000EX/XL/XV and Virtex devices contain
extra routing resources so FPGA Compiler Il infers up to eight
BUFGs (the maximum available in the device) for them.

To perform manual allocation, choose the buffer type in the Global Buffer
column of the Ports constraint table. FPGA Compiler || maintains a count of
global buffers so that you cannot assign more global buffers than are
available for the current device. It is also possible to assign global buffersto
non-clock signals.

XCA4000EX/XL/XV devices contain BUFGE and BUFFCLK buffers. These
buffers are primarily used to implement high-speed 1/0 interfaces. You can
assign these buffersin the Global Buffer column of the Ports constraint
table.

For XC9500 devices, FPGA Compiler Il does not infer BUFG buffers
for clock signals. The Xilinx CPLD implementation tools are
responsible for automatically assigning BUFG buffers.

Using Memory

3-44

You can use on-chip RAM for status registers, index registers, counter
storage, distributed shift registers, LIFO stacks, and FIFO buffers.

The XC4000 family can efficiently implement RAM and ROM using
CLB function generators. Implement a ROM by describing it
behaviorally as shown in the Implementing XC4000 ROM section.
Alternatively, the XSI XC4000E/L/EX/XL/XV libraries contain 16 x
1 (16 deep x 1 wide) and 32 x 1 (32 deep x 1 wide) RAM and ROM
primitives and 16 x 1 dual-port RAM you can instantiate.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

You can a so implement memory using the LogiBLOX program. LogiBLOX
can create RAM and ROM between 1-32 bits wide and 2—256 bits deep.
Using LogiBLOX to add RAM or ROM to your design provides an efficient
implementation of your memory in addition to a simulation model for
Register Transfer Level (RTL) simulation.

For VHDL and Verilog examples of instantiating RAM in your designs
using CoreGen or LogiBLOX, refer to the “Using CORE Generator and
LogiBLOX" chapter. Also, refer to the LogiBLOX Guide for more
information on LogiBLOX.

Implementing Virtex/E/-Il RAM

Implement RAMs in your HDL with the following methods.

e Instantiate 16 x 1 and 32 x 1 distributed RAM from the Unified
primitive libraries.

* Instantiate Block RAM components from the Unified primitive
libraries.

e Instantiate any size Block RAM using CoreGen.

The INIT values for RAM32X 1 and RAM32X1_1 map differently
from 4000EX/XL/XV and Spartan/XL.

Virtex maps the lower INIT values to G and upper INIT values to F
for both RAM32X. 4000EX/XL/XV and SpartanXL map those lower
INIT values to F and upper INIT values to G.

Behaviorally describing RAMs in VHDL creates combinatorial loops
during compiling.

Implementing XC4000 RAM

Implement RAMSs in your HDL with the following methods.

* Instantiate 16 x 1 and 32 x 1 RAMSs from the XSI primitive
libraries.

» Instantiate any size RAM using LogiBLOX.

Behaviorally describing RAMs in VHDL creates combinatorial loops
during compiling.

Xilinx/Synopsys Interface Guide 3-45

Xilinx/Synopsys Interface Guide

3-46

Implementing XC4000 ROM

Implement ROM in your HDL with the following methods.
e Describe ROM behaviorally.

e Instantiate 16 x 1 and 32 x 1 ROM primitives.

e Instantiate any size ROM using LogiBLOX.

To instantiate the ROM16 x 1 and ROM32 x 1 primitives into your
design, connect the input and output pins to the appropriate signals.
GUI

Compile calculates ROM content values by considering the 16 x 1 or
32 x 1 ROMs 16 or 32 1-bit locations as bits in a 16 or 32 bit word. For
example, for a 32 x 1 ROM, specify an 8-digit hexadecimal (hex) value
in place of the 4-digit hex value. See Figure 3-21.

Refer to the Application Note “Using Select-RAM Memory in XC4000
Series FPGAs” for more information.

ADDR ROM16X1 ROM16X1 ROM16X1 ROM16X1

ROM16X4

=
I
©

ADDR | Value ~ ADDR | Value

®No o s wN RO

[

A[3:0] O[3:0]
—_— |—

11
12
13

14
15

,_
17
©

‘H ‘H ‘H ‘H ‘H ‘H ‘H ‘H ‘O ‘O ‘O ‘O ‘G “3‘0 ‘O‘

‘H ‘H ‘H ‘H ‘0 ‘5 ‘0 ‘5 ‘H ‘H ‘H ‘H ‘5 ‘O‘G ‘O‘

‘H ‘H ‘O ‘O ‘» ‘H ‘O ‘G ‘» ‘H ‘O ‘O ‘H ‘H ‘O ‘O‘

‘» ‘G ‘» ‘G ‘» ‘G ‘» ‘G ‘» ‘G ‘» ‘G ‘H ‘O ‘H ‘O

XNF_INIT XNF_INIT XNF_INIT XNF_INIT
0000000011111111 0000111100001111 0011001100110011 0101010101010101
=00FF,, =OFOF,, =3333, =5655,

X8001

Figure 3-21 Implementing ROMs

The 16 x 4 ROM VHDL and 16 x 4 ROM Verilog HDL examples
illustrate how to define a ROM in VHDL and Verilog HDL,
respectively. FPFGA Compiler Il creates ROMs from optimized
random logic gates implemented using function generators.

The 16 x 4 ROM RTL VHDL example follows.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

-- RTL 16x4 ROM Exanpl e

roml6x4_4k. vhd

entity roml6x4_4k is

port (ADDR:

in | NTEGER range 0 to 15;

DATA: out BIT_VECTOR (3 downto 0));

end roml6x4_4k;

archi tecture RTL of

romi6x4_4k is

subtype ROM WORD is BI T_VECTOR (3 downto 0);
type ROM TABLE is array (0 to 15) of ROM WORD;
constant ROM ROM TABLE

begi n

ROM WORD' (
ROM WORD' (
ROM WORD' (
ROM WORD' (
ROM WORD' (
ROM WORD' (
ROM WORD' (
ROM WORD' (
ROM WORD' (
ROM WORD' (
ROM WORD' (
ROM WORD' (
ROM WORD' (
ROM WORD' (
ROM WORD' (
ROM WORD' (

DATA <= ROM ADDR) ;

end RTL;

0000”
ooor”
0010”
0100”
1000”
1000”
1100”
1010”
1001”
1001
1010”
1100”
1001
1001”
11017
1111”

-- Read fromthe ROM

Nl e N N N N N N N N N N N N N N e

ROM TABLE' (

The 16 x 4 ROM RTL Verilog example follows.

nodul e roml6x4_4k(ADDR, DATA)

i nput [3:0] ADDR ;
out put [3:0] DATA ;

reg [3:0] DATA ;

Xilinx/Synopsys Interface Guide

3-47

Xilinx/Synopsys Interface Guide

Performing

3-48

al ways @ ADDR)

begi n
case (ADDR)
4’ b0000 : DATA = 4’ b0000 ;
4’ b0001 : DATA = 4’ b0001 ;
4’ b0010 : DATA = 4’ b0010 ;
4’ b0011 : DATA = 4’ b0100 ;
4’ b0100 : DATA = 4’ b1000 ;
4’ b0101 : DATA = 4’ b1000 ;
4’ b0110 : DATA = 4’ b1100 ;
4’ b0111 : DATA = 4’ b1010 ;
4’ b1000 : DATA = 4’ b1001 ;
4’ b1001 : DATA = 4’ b1001 ;
4’ 1010 : DATA = 4’ b1010 ;
4’ b1011 : DATA = 4’ b1100 ;
4’ 1100 : DATA = 4’ b1001 ;
4’ b1101 : DATA = 4’ b1001 ;
4’ b1110 : DATA = 4’ bl101 ;
4' b1111 : DATA = 4’ bl111l ;
endcase
end
endnodul e

Boundary Scan

The XC4000, XC5200, Spartan, and Virtex FPGA devices contain boundary
scan facilities compatible with IEEE Standard 1149.1. Refer to the
Devel opment System Reference Guide.

for a detailed description of the X C4000 and X C5200 boundary scan
capabilities.

Xilinx parts support external (1/0 and interconnect) testing and have
limited support for internal self-test.

Full access to the built-in boundary-scan logic exists between power-
up and the start of configuration. Optionally, specify boundary scan
in the design to access built-in logic after configuration. During
configuration, you can use the Sample/Preload and Bypass
instructions only.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

To make boundary-scan logic active in a configured FPGA device,
include the boundary-scan cell and its related 1/0 cells in the
configuration data of your design. For HDL designs, you must
instantiate the boundary-scan symbol, BSCAN, and the boundary
scan I/0 pins, TDI, TMS, TCK, and TDO.

The following figure illustrates the BSCAN symbol instantiated into
an HDL design.

BSCAN

TDI DI TDO TDO
T™S ™S DRCK |—
TCK —

TCK IDLE To User

From [—]TDO1 SEL1[— Logic
User Logic
—TD02 SEL2[—
X8560

Figure 3-22 Boundary Scan Symbol Instantiation in XC4000
Family

The following examples show the code used to instantiate the cells in
the previous figure. The Verilog code for instantiating BSCAN in
XC4000 appears in the following example. Note the use of upper and
lower case in the sample.

nmodul e exanple (a,b,c);

i nput a, b;

out put c;

reg c;

wire tck net;

wire tdi _net;

wire tns_net;

wire tdo_net;

BSCAN ul (.TDI(tdi _net), .TWVMS(tms_net),
. TCK(tck_net), .TDQ(tdo_net));

TDI u2 (.I1(tdi_net));

TVMS u3 (.1 (tms_net));

Xilinx/Synopsys Interface Guide 3-49

Xilinx/Synopsys Interface Guide

3-50

TCK ud4 (.1(tck_net));
TDO u5 (. Q(tdo_net));
al ways@ posedge b)

c <= a;
endnodul e

The VHDL code for instantiating BSCAN in XC4000/XC4000E
example follows.

entity exanple is
port (a, b: in bit; c: out bit);
end exanpl e;

architecture xilinx of exanple is
conponent bscan

port(tdi, tms, tck: in bit; tdo: out bit);
end conponent;

conmponent tck
port (i : out bit);
end conponent;

conponent tdi
port (i : out bit);
end conponent;

conmponent tms
port (i : out bit);
end conponent;

conmponent tdo
port (o: in bit);
end conponent;

signal tck _net : bit;
signal tdi_net : bit;
signal tms_net : bit;
signal tdo_net : bit;
begi n

ul: bscan port map (tdi=>tdi _net, tms=>tns_net,
tck=>tck_net, tdo=>tdo_net);

Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

u2: tck port map (i=>tck_net);
ud: tdi port map (i=>tdi_net);
ud: tns port map (i=>tnms_net);
u5: tdo port nmap (o=>tdo_net);

process(b)

begi n

if(b’event and b="1") then
C <= a;

end if;

end process;

end xilinx;

The Verilog code for instantiating BSCAN in XC4000/XC4000E
appears in the following example. Note the use of upper and lower
case in the sample.

modul e exanple (a, b, c);
i nput a, b;
out put c;
reg c;
wire tck_net;
wire tdi _net;
wire tns_net;
wre tdo_net;
BSCAN ul (. TDI(tdi _net), .TMS(tns_net),
. TCK(tck_net), .TDO(tdo_net));
TDl u2 (.1(tdi_net));
TMS u3 (.1 (tns_net));
TCK ud4 (.1(tck_net));
TDO u5 (. Q(tdo_net));
al ways @ posedge b)
c<=a;
endnodul e

The VHDL code for instantiating BSCAN in XC4000/XC4000E
example follows.

entity exanple is
port (a, b: in bit; c: out bit);
end exanpl e;

Xilinx/Synopsys Interface Guide 3-51

Xilinx/Synopsys Interface Guide

architecture xilinx of exanple is
conmponent bscan

port(tdi, tns, tck: in bit; tdo: out bit);
end conponent;

conmponent tck
port (i : out bit);
end conponent;

conmponent tdi
port (i : out bit);
end conponent;

conmponent tms
port (i : out bit);
end conponent;

conponent tdo
port (o: in bit);
end conponent;

signal tck_net : bit;
signal tdi_net : bit;
signal tms_net : bit;
signal tdo_net : bit;
begi n

ul: bscan port map (tdi=>tdi _net, tms=>tns_net,
tck=>tck_net, tdo=>tdo_net);

u2: tck port map (i=>tck_net);

u3d: tdi port map (i=>tdi _net);

ud: tnms port map (i =>tnms_net);

u5: tdo port map (o=>tdo_net);

process(b)

begi n

if(b'event and b="1") then
C <= a;

end if;

end process;

end xilinx;

3-52 Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

Using the Global Set/Reset Net

All Xilinx FPGA devices have a dedicated Global Set/Reset (GSR) net that
initializes all CLBs and 10B flip-flops. The function of the GSR net is
separate from and overrides the individual flip-flop or latch Preset (PRE)
and Direct Clear (CLR) pins. The following table summarizes the GSR
buffers available in each device family.

Table 3-3 Global Set/Reset Buffers

Family Global Buffer Symbol Name
XC3000 none

XC4000, Spartan | STARTUP

XC5200 STARTUP

XC9500 BUFGSR

Virtex STARTUP_VIRTEX
Spartan-II STARTUP_Spartan-I1

If your design includes a signal used to globally initialize all the flip-
flops or latches, use the GSR net to increase design performance by
reducing the overall routing congestion. The GSR net, a dedicated
routing resource, exists outside of the general purpose interconnect.
You can disconnect your design’s global initialization signal from the
flip-flops and latches in your design and implement this function
using the device’s dedicated GSR net.

Xilinx/Synopsys Interface Guide 3-53

Xilinx/Synopsys Interface Guide

3-54

CLK —>C

PRE

X8003

Figure 3-23 Emulation of Power-on State “1” with Inverters
(XC3000A/L, XC3100A, and XC5200)

Implementing GSR Buffers

To implement a global reset in XC3000 devices, you must connect the
external reset signal to the dedicated RESET pin. This input is an
active-low, asynchronous reset of all memory elements in the device.

To implement a global reset in XC9500 devices, you must connect the
external reset signal to the GSR dedicated input pin. To do this, either
assign the BUFGSR in the Global Buffer column of the Ports
constraint table or instantiate a BUFGSR primitive in your design.
You can program the GSR input to be either an active-high or an
active-low asynchronous reset of all memory elements in the device.

You can implement GSRs in the other families by either inference or
instantiation. For FPGA Compiler 11 to infer a GSR buffer, HDL flip-flop
descriptions must contain an asynchronous set or reset as their first
condition. The following examples are VHDL and Verilog descriptions of
flip-flops that use signal rst asthe GSR signal and clk as the clock signal.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

Code Example 1 VHDL Description

process (rst, clk)

begi n

if rst =1 then
ql <= "0
Q2 <= "1

elsif clk =1 and clk’event then
gl <= di;
g2 <= d2z;

end if;

end process;
Code Example 2 Verilog Description

al ways @ posedge cl k or posedge rst)
if (rst) begin

gl = 1’ bO;
g2 = 1' b1,
end
el se begin
gl = di;
g2 = dz;
end

Inthe VHDL example, rstisaglobal reset of the gl flip-flop and aglobal set
of the g2 flip-flop. Note that al flip-flops in the design must use rst asthe
asynchronous set or reset in their HDL descriptions in order for the GSR to
beinferred. If there is even one flip-flop that is not described as
asynchronously set or reset by rst, the FPGA Compiler 11 is not able to infer
rst asthe GSR signal. The actual implementation of GSR is an instance of
the Xilinx primitive STARTUP with asingle input GSR connected to rst.

There are situations in which the GSR signal cannot be inferred. For
example, when a design contains two or more asynchronous set/
reset signals, FPGA Compiler Il cannot infer the GSR signal. In these
situations, you must use instantiation to implement the GSR. The
following examples are the VHDL and Verilog descriptions of a case
in which rst_a is used as the GSR, but a flip-flop is asynchronously
reset by signal rst_b.

Xilinx/Synopsys Interface Guide 3-55

Xilinx/Synopsys Interface Guide

3-56

Code Example 3 VHDL Description of rst_a Used As the GSR

conponent STARTUP
port(GSR in std_logic);
end conponent;

STARTUP_ i: STARTUP --instantiate STARTUP
port map(GSR => rst_a);

process(cl k, rst_b)

begi n
if rst_b="'1 then
q <="'0";
elsif clk =1 and clk’ event then
q <= d;
end if;
end;

Code Example 4 Verilog Description of rst_a Used As the GSR

STARTUP STARTUP i (.GSR(rst_a));
/] instantiate STARTUP

al ways @ posedge cl k or posedge rst_b)

if (rst_b)
g = 1' b0;

el se
q=d;

In the Verilog example, because rst_a is the GSR signal, the flip-flop q
is reset regardless of the state of rst_b, because the GSR sets or resets
all memory elements in the device. Note that for XC5200 devices, the
GSR pin is named GR instead of GSR.

RAMs and ROMs in XC4000 devices are implicitly set or reset using
the INIT property in their netlists. The INIT property is inserted by
the memory netlist generation utility (CoreGen/LogiBLOX in Xilinx
software).

Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

If adesign contains ablack box, such as a netlist from CoreGen or
LogiBLOX, FPGA Compiler Il can still infer the GSR aslong as all flip-
flopsin the design are asynchronously set or reset by the same signal. In this
case, you must select the “Infer GSR if design contains unlinked cells’
option in the Xilinx Options page of the constraint tables.

Accessing Global Set/Reset Using STARTBUF

Access an FPGA’s GSR signal by attaching a net to the input pin on
the STARTBUF cell. Asserting the net attached to the STARTBUF
block’s GSR pin also asserts FPGA Global Set/Reset causing every
flip-flop and latch in the device to assume its power-on state.

You must instantiate the STARTBUF block.

The GSR net does not appear in the pre-placed and routed netlist.
Asserting the GSR signal to High (the default) sets every flip-flop and
latch to the same state it had at the end of configuration, illustrated in
the following tables. When you simulate the placed and routed
design, the simulator’s translation program correctly inserts the
functionality.

Any signal can drive the STARTUP block’s GSR pin, however, do not
use flip-flop or latch output signals.

Synthesizing/Simulating for VHDL Global Set/Reset
Emulation

VHDL requires a testbench to control all signal ports. You can
instantiate certain VHDL-specific components, explained in the
following sections, in the RTL and post-synthesis VHDL description
to allow the simulation of the global signals for global set/reset and
global 3-state.

NGD2VHDL creates a port in your back-annotated design entity for
stimulating the global set/reset or 3-state enable signals. This port does not
actually exist on the configured part.

Xilinx/Synopsys Interface Guide 3-57

Xilinx/Synopsys Interface Guide

3-58

Using STARTBUF in VHDL

STARTBUF replaces STARTUP. With STARTBUF you can
functionally simulate the GSR/GR net in both function and timing
simulation. By connecting the input pin of the STARTBUF to a top-
level port and using STARTBUF as the source for all asynchronous
set/reset signals in a design, Xilinx software can automatically
optimize the design to use the GSR/GR. Because you can use
STARTBUF in functional simulation (unlike STARTUP), when you
use STARTBUF you can map to the GSR/GR in a device. You can still
use STARTUP, but it does not always provide correct GSR/GR in
HDL flows.

The STARTBUF component passes a reset or 3-state signal in the
same way that a buffer allows simulation to proceed and also
instantiates the STARTUP block for implementation. One version of
STARTBUF works for all devices, however, the XC5200 and the
XC4000 STARTUP blocks have different pin names. Implementation
with the correct STARTUP block occurs automatically. The following
shows an instantiation example of the STARTBUF component.

Ul: STARTBUF port map (GSRI N => DEV_GSR PORT, GISIN
=>DEV_GIS PORT, CLKIN => ‘0', GSROUT => GSR_NET,
GISQUT => GIS_NET, QOUT => open, @BOUT => open,
QLAQUT => open, DONElI NOUT => open):

You can use one or both of the input ports (GSRIN and GTSIN) of the
STARTBUF component and the associated output ports (GSROUT
and GTSOUT). You can use pins left open to pass configuration
instructions to the implementation tools by connecting the
appropriate signal to the port instead of leaving it open.

Instantiating a STARTUP Block in VHDL

The STARTUP block traditionally instantiates to identify the GR,
PRLD, or GSR signals for implementation. However, simulation can
occur only when the net attached to the GSR or GTS goes off the chip
because the STARTUP block does not have a simulation model. You
can use the new components described below to simulate global set/
reset or 3-state nets whether or not the signal goes off the chip.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

Setting Direct Preset or Direct Clear

You can program each flip-flop and latch as either Preset or Clear but
not both. The device’s automatic assertion of its own GSR net
asynchronously sets flip-flops and latches as either Preset or Cleared
upon completion of configuration. Use individual flip-flop and latch
Preset (PRE) and Clear (CLR) pins to set them as preset or cleared.

The power-on state of a register or latch and the selection of PRE or
CLR pin must match. For example, a register with a CLR pin assumes
the value of 0 on power-up. Alternatively, a register with a power-up
state of 0 can only have a CLR pin.

To get an asynchronous set or asynchronous reset flip-flop, describe
the behavior in the RTL code. If you only want to describe the power-
on state of a flip-flop, connect the asynchronous set or asynchronous
reset signal of the RTL flip-flop to the ROCBUF.

Increasing Performance with the GSR Net

Many designs have a net that initializes the majority of the design’s
flip-flops. If this signal initializes all the design’s flip-flops, you can
use the GSR net.

To have your HDL simulation match that of the resulting design,
modify your HDL code so that asserting the GSR signal presets or
clears every flip-flop and latch. FPGA Compiler Il only routes this
signal to the dedicated STARTUP component, using the dedicated
global routing resource, so this signal does not get routed with
general purpose interconnect.

Alternatively, the Xilinx tools move this signal on to the device’s
dedicated GSR routing network when the following conditions

apply.

* The asynchronous Preset or Clear pin of every register in your
design that has this pin connects to the same net.

* That net connects to the GSR pin of the STARTUP block.

* You use STARTBUF (see the “Using the Xilinx Development
System” section).

The following figure illustrates this flow.

Xilinx/Synopsys Interface Guide 3-59

Xilinx/Synopsys Interface Guide

STARTUP
p | | @ D_| PRE | o p_| FDC | o
CLK CLK > CLK
GSR CLR CLR
RESET D_{> RESET
PORT
IBUF NET
STARTUP
p | FDC | @ D | FDP | @ D | FDC | Q
CLK CLK CLK >
GSR

RESET
PORT

IBUF

X8002

Figure 3-24 Increasing Performance with GSR Net

The following VHDL and Verilog examples illustrate a design that
uses the GSR net. The design contains two flip-flops, one reset and
one set when the signal RST is High.

The following example shows VHDL code before using the GSR net.

library |EEE;
use | EEE. std_| ogic_1164.all;
use | EEE. std_| ogi c_unsi gned. al | ;

entity gsr_ex is
port (CLK,RST : in STD LOd C
ST: buffer std_logic_vector (1 downto 0));
end gsr_ex;

architecture EXAMPLE of gsr_ex is

begi n
process (CLK, RST)
begi n
if RST= ‘1" then

3-60 Xilinx Development System

Synthesizing Your Design with FPGA Compiler Il

ST <= “017;
elsif (CLK event and CLK= ‘1) then
ST <= ST + “01";
end if;
end process;

end EXAMPLE;
The following example shows Verilog code before using the GSR net.
nmodul e gsr_ex (CLK, RST, ST) ;

i nput CLK ;
i nput RST ;
out put [1:0] ST,

reg [1:0] ST,

al ways @ posedge CLK or posedge RST)
begi n
if (RST == 1’ bl)
ST = 2'b01 ;
el se
ST = ST + 1'bl ;
end

endnodul e

Add the reset signal in your design to the GSR pin of the STARTUP
block. This makes the Xilinx tools move this signal on to the
dedicated routing network if all other conditions are satisfied.

To utilize the GSR net, add the STARTUP block to your design by
instantiation, illustrated in the following examples. The following example
shows VHDL code using the GSR net.

Xilinx/Synopsys Interface Guide 3-61

Xilinx/Synopsys Interface Guide

l'ibrary | EEE;
use | EEE. std | ogic_1164.all;
use | EEE. std_| ogi c_unsigned. al | ;

entity top_gsr is
port (CLK,RST : in STD LOd C,
ST: buffer STD LOd C VECTOR (1 downto 0));
end top_gsr;

architecture EXAMPLE of top_gsr is
conponent STARTUP
port (GSR in STD LOd O);
end conponent;

conponent gsr_ex
port (CLK RST: in STD LQQ C;
ST : buffer STD LOG C VECTOR (1 downto 0));
end conponent;

begi n

Ul : STARTUP port map (GSR=>RST);
U2 : gsr_ex port map (CLK=>CLK, RST=>RST, ST=>ST) ;
end EXAMPLE;

The following example shows Verilog code using the GSR net.

modul e top_gsr (CLK, RST, ST) ;

i nput CLK ;
i nput RST ;
output [1:0] ST,

STARTUP Ul (.GSR(RST)) ;
gsr_ex U2 (.CLK(CLK), .RST(RST), .ST(ST)) ;

endnodul e

3-62 Xilinx Development System

Chapter 4

Synthesizing Your Design with FPGA
Compiler and Design Compiler

Synthesize and implement your HDL designs for Xilinx FPGA
devices with either FPGA Compiler or Design Compiler by using the
information in the following sections.

“Before You Begin”

“Naming Conventions”

“Setting the Wire-Load Model”
“Setting the Operating Condition Parameters”
“Configuring 10Bs”

“Inserting Clock Buffers”

“Using Memory”

“Performing Boundary Scan”

“Using the Global Set/Reset Net”
“Using the Xilinx DesignWare Library”
“Creating the Area Report”
“Compiling Your Design”

“Creating the Area Report”
“Evaluating Timing Delays”
“Generating Reports for Debugging”
“Writing and Saving Your Design”

“Using the Xilinx Development System”

Xilinx/Synopsys Interface Guide 4-1

Xilinx/Synopsys Interface Guide

Before You Begin

Before you begin a Xilinx design using the Synopsys tools, read the
“Getting Started” chapter and ensure the following.

Verify the installation of Xilinx software on your system.

Modify the Xilinx-provided default Synopsys startup file, if
applicable.

Verify that you use Synopsys version 1999.05 or later for FPGA
Compiler and Design Compiler.

Xilinx does not support the following library cells in the Spartan
design flow because they do not exist in the Spartan architecture.

RAM16X1
RAM32X1
DECODEX
WANDXx
WOR2AND
MDO

MD1

MD2

Naming Conventions

Unless otherwise noted, the following naming conventions are used
to group Xilinx device families:

4-2

Virtex represents Virtex, Virtex-E, Virtex-1l1 and Spartan-11
devices.

Spartan represents Spartan and SpartanXL devices.

XC4000 represents XC4000E, XC4000L, XC4000EX, XC4000XL,
XC4000XLA and XC4000XV devices.

XC9500 represents XC9500, XC9500XL, XC9500XV and
XC9500XVA devices.

XC3000 represents XC3100 and XC3100A devices.
XC5200 represents XC5200 devices.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

Setting the Wire-Load Model

Each primitive library contains device and speed-grade specific
estimated pre-layout and routing wire-load models. The Synopsys
tools can use these estimates when optimizing your design for an
FPGA. XSI provides two wire-load models per device-speed grade
combination, an average model and a worst-case model. These
models receive “_avg” and “_wc” designations, respectively; the
default is average. Using the default (average) wire loads produces
more realistic designs.

To change a wire load model, use the following syntax.
set_wire_|oad “parttype —-s.wc”
Substitute the part type to change for parttype.

Run synl i bs with the —h option to get a listing of all available part
type and speed grade combinations. You can also refer to the Xilinx
online Data Book at_http://www.xilinx.com/support for current
speed grade information.

Setting the Operating Condition Parameters

You need only one set of operating condition parameters, the worst-
case commercial (WCCOM) parameter. This set of parameters is the
default in the Xilinx libraries.

Configuring IOBs

This section describes how to configure FPGA I0Bs. You must
implement some features manually, but FPGA Compiler performs
the following optimization functions automatically.

e Inserts input buffers (IBUF) and output buffers (OBUF)

* Inserts IBUFs and 3-state output buffers (OBUFT) for
bidirectional 170 (IOBUF)

« Inserts a clock buffer for ports driving clock pins (BUFG)

Note: The following functions apply only to FPGAs with 170 flip-
flops.

Xilinx/Synopsys Interface Guide 4-3

http://www.xilinx.com/support

Xilinx/Synopsys Interface Guide

4-4

e Optimizes a flip-flop (IFD) without a clock enable, or latch
(ILD_1) attached to input buffers into the IOB

e Optimizes a flip-flop without a clock enable attached to output
buffers into the I0OB (OFD)

Indicate which ports in your design to use for chip-level 1/0s with
the Set Port Is Pad command. The Insert Pads command adds the
correct buffers to the ports declared as pads, as shown in the
following example.

set _port_is_pad “*”

i nsert_pads

All Architectures

This section includes general information about 10Bs that applies to
all supported device architectures.

Optimizing Inputs

FPGA Compiler optimizes any flip-flops connected to an input port
into the IOB if the flip-flop or latch does not use the Clock Enable,
Direct Clear, or Preset pin.

You can configure the buffered input signal that drives the data input
of a storage element as either a flip-flop or a latch. You can use the
buffered signal in conjunction with the input flip-flop or latch.

A delay buffer added to the signal feeding the data input of the input
flip-flop/latch avoids a possible hold time violation. Instantiating a
flip-flop or latch, such as an IFD_F or ILD_1F, removes this delay
because these cells include a NODELAY attribute. Refer to the “XSI
Library Primitives” appendix for a complete list of primitives that
include NODELAY attributes.

Understanding and Using Slew Rate

The output buffers have a default slow slew rate that alleviates
ground-bounce problems and the option of a fast slew rate that
reduces the output delay. The SLOW option increases the transition
time and reduces the noise level. The FAST option decreases the
transition time and increases the noise level.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

Warning: Synopsys and Xilinx define slew rate using opposite terms.
Synopsys uses slew control, whereas Xilinx uses slew rate. For example,
the Synopsys HIGH slew control is equivalent to the Xilinx SLOW
slew rate.

The XSl libraries contain two types of output buffers. The default
output buffer has a slow slew rate. An additional output buffer with a
fast slew rate has a FAST attribute assigned to it, OBUF_F (output
buffer) and OBUFT _F (3-state output buffer), also in the XSl libraries.
To avoid possible ground-bounce problems, use the default SLOW as
the slew rate. Assign a FAST slew rate only to output buffers that
require additional speed.

To change any output port to a FAST slew rate, use the following
command. Set this command before implementing the Insert Pads
commands.

set _pad_type —-slewate NONE {port}
Replace port with the name of the output port.
Table 4-1 XC4000E/EX/XV Slew Rate Settings

Xilinx Slew Synopsys Slew .
Rate Control Attribute FPGA Compiler Command
SLOW HIGH set_pad_type —slewrate HIGH { port}
FAST NONE set_pad_type —slewrate NONE {port}

XC3000A/L and XC3100A/L IOBs

This section describes XC3000A/L and XC3100A/L I0OBs.

Using Input Blocks

Select input thresholds globally with TTL/CMOS. Internal pull-up
resistors can optionally attach to the 1/0 pad. You can make inputs
registered or latched. You can select register and latch setup time.

In the default configuration, the input register or latch has positive
setup and negative hold time (when used in conjunction with a
global clock network). Reducing input setup time produces a small
positive hold time.

Xilinx/Synopsys Interface Guide 4-5

Xilinx/Synopsys Interface Guide

46

Registered and latched inputs become available simultaneously with
direct input. You have no clock or latch-enable or asynchronous set/
reset control on input registers and latches, but you can control the
initial state of input registers and latches.

Using Output Blocks

You can select the output driver slew rate. The output driver by
default uses a slow slew rate setting to reduce system noise and
power. A faster slew rate decreases chip-to-out propagation delay.

You can register outputs and make them tristate.

You cannot apply clock-enable or asynchronous set/reset control on
output registers, but you can control the initial state of output
registers.

Using Bidirectional Mode
You cannot use internal pull-up resistors in this mode.

You can select the output driver slew rate. The output driver by
default uses a slow slew rate setting to reduce system noise and
power. A faster slew rate decreases chip-to-out propagation delay.

Select input thresholds globally with TTL/CMOS. Input can be
registered or latched, and you can select register and latch setup time.

In the default configuration, the input register or latch has positive
setup and negative hold time (when used in conjunction with a
global clock network). Reducing input setup time slightly increases
hold time.

You cannot apply clock or latch-enable or asynchronous set/reset
control on input registers and latches. Direct input enables
simultaneous availability of registered and latched input.

You can control the initial state of input registers and latches, and you
can register output.

You cannot apply clock-enable or asynchronous set/reset control on
output registers, but you can control the initial state of output
registers.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

XC4000 I0Bs
This section describes XC4000 10Bs.

Using Input Blocks

Select input thresholds globally with TTL/CMOS. Specify an internal
pull-up/pull-down resistor that can optionally attach to an 1/0 pad.

You can make inputs registered or latched, and you can select register
and latch setup time.

In the default configuration, the input register or latch has positive
setup and zero hold time (when used in conjunction with a global
clock network). For XC4000 devices, reducing input setup time
slightly increases hold time. For XC4000EX/XL/XLA/XV devices,
three setup and hold delay adjustments allow setup versus hold
parameter tuning.

Direct input enables simultaneous availability of registered and
latched input. You cannot apply asynchronous set/reset control on
input registers and latches, but you can apply clocks and latches on
input register and latches.

FPGA Compiler cannot infer 170 registers and latches with clock and
latch-enables.

You can control the initial state of input registers and latches.

Using Output Blocks

You can select the output driver slew rate. By default, the output
driver uses a slow slew rate setting to reduce system noise and
power. A faster slew rate decreases chip-to-out propagation delay.

You can register outputs and make them tristate. You cannot enable
asynchronous set/reset control on output registers, but you can
specify clock-enable on output registers. FPGA Compiler cannot infer
170 registers and latches with clock and latch enables.

You can control the initial state of output registers.

Perform 2-to-1 multiplexing or 2-input function directly in the output
path of an OB (XC4000EX/XL/XV only). You can trade an output
register for a 2-input function or multiplexer. Additionally, you must
instantiate the following primitives (valid for XC4000EX/XL/XLA/

Xilinx/Synopsys Interface Guide 4-7

Xilinx/Synopsys Interface Guide

48

XV/XLT). See the “XSI Library Primitives” appendix for more
details.

« OAND2

« OMUX2

« ONAND2
« ONOR2

+ OOR2

+ OXNOR2
* OXOR2

FPGA Compiler cannot infer output drivers containing a 2-input
function or output multiplexer.

Using Bidirectional Mode

You can select the output driver slew rate. By default the output
driver uses a slow slew rate setting to reduce system noise and
power. Faster slew rates decrease chip-to-out propagation delay.

Select input thresholds globally with TTL/CMOS. Input can be
registered or latched, and you can select register and latch setup time.

In the default configuration, the input register or latch has positive
setup and negative hold time (when used in conjunction with a
global clock network). This corresponds to a full delay. Reducing
input setup time slightly increases hold time.

You cannot enable asynchronous set/reset control on input registers
and latches. Direct input makes registered and latched input
available simultaneously.

You can specify clock and latch-enable on input registers and latches.
FPGA Compiler cannot infer 1/0 registers or latches with clock or
latch enables.

You can control initial states of 1/0 registers and latches. You can
register output.

You cannot enable asynchronous set/reset control on output
registers, but you can specify clock-enable on output registers. FPFGA
Compiler cannot infer 170 registers and latches with clock or latch
enables.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

You can control the initial state of output registers.

Perform 2-to-1 multiplexing or 2-input function directly in the output
path of an IOB. You can trade an output register for a 2-input
function or multiplexer. FPFGA Compiler cannot infer output drivers
containing 2-input functions or output multiplexers. Additionally,
you must instantiate the OMUX2, ONADNZ2, ONOR2, and OOR2
primitives. See the “XSI Library Primitives” appendix for more
details.

Using XC5200 IOBs
This section describes XC5200 IOBs.

Using Input Blocks

Select input thresholds globally with TTL/CMOS. Specify an internal
pull-up/pull-down resistor that can optionally attach to an 1/0 pad.

IOBs can contain no input registers, although you can emulate this
functionality using the latch/flip-flop in the adjacent CLB.
Additionally, CLB registers and latches have clock or latch-enables
and asynchronous reset inputs.

The IOB input path has an optional delay with which you can adjust
input setup and hold times. By default an input register or latch has a
positive setup and negative hold time (when used in conjunction
with a global clock network). Reducing input setup time slightly
increases hold time.

Using Output Blocks

You can select the output driver slew rate. By default the output
driver uses a slow slew rate setting to reduce system noise and
power. A faster slew rate decreases chip-to-out propagation delay.

You can make outputs tristate.

I0Bs contain no output registers, although you can emulate this
functionality using the latch or flip-flop in the adjacent CLB.
Additionally, CLB registers and latches have clock or latch-enables
and asynchronous reset inputs.

Xilinx/Synopsys Interface Guide 4-9

Xilinx/Synopsys Interface Guide

4-10

Using Bidirectional Mode

Select input thresholds globally with TTL/CMOS. Have an internal
pull-up/pull-down resistor that can optionally attach to an 1/0 pad.

I0Bs contain no input registers, although you can emulate this
functionality using the latch/flip-flop in the adjacent CLB.
Additionally, CLB registers and latches have clock or latch-enables
and asynchronous reset inputs.

The IOB input path has an optional delay with which you can adjust
input setup and hold times. By default the input register or latch has
a positive setup and negative hold time (when used in conjunction
with a global clock network). Reducing input setup time slightly
increases hold time.

You can select the output driver slew rate. By default, the output
driver uses a slow slew rate setting to reduce system noise and
power. A faster slew rate decreases chip-to-out propagation delay.

You can make outputs tristate.

I0Bs contain no output registers, although you can emulate this
functionality using the latch or flip-flop in the adjacent CLB.
Additionally, CLB registers and latches have clock or latch-enables
and asynchronous reset inputs.

Assigning Pad Locations

You can specify pad locations in your synthesis script or in a Xilinx
User Constraints File (UCF). To assign pad locations in your
synthesis DC script, include the following command in your script,
replacing pad and pin number with the appropriate values.

set _attribute pad “pad_l ocation” \
—type string “pin nunber”

Refer to The Programmable Logic Data Book, available on the Xilinx Web
site at http://www.xilinx.com, for the locations and name of the
pins. For more information on the UCF, refer to the Development
System Reference Guide or the Libraries Guide.

Xilinx Development System

http://www.xilinx.com

Synthesizing Your Design with FPGA Compiler

Implementing 3-State Registered Output

FPGA Compiler infers the use of 3-state output flip-flops, such as
OFDT, under the following two conditions.

« The flip-flop must directly drive the 3-state signal.

e The HDL code of the flip-flop must reside in the same process as
the 3-state HDL code.

The following sections illustrate a flip-flop that does not directly
drive the 3-state signal and one that does directly drive the 3-state
signal.

Example of Not Directly Driving the 3-State Signal

If any logic exists between the flip-flop and the 3-state signal
connected to the output flip-flop, FPGA Compiler does not infer a 3-
state output flip-flop. The following VHDL and Verilog examples
illustrate a flip-flop not directly driving a 3-state output flip-flop.
Figure 4-1 shows a schematic representation.

The three_ex1 VHDL example follows.

library |EEE;
use | EEE. std_| ogic_1164.all;
use | EEE. std_| ogi c_unsi gned. al | ;

entity three_exl is
port (BUS IN, EN, CLK: in STD LOd C,
BUS QUT: out STD LCAE C);
end three_ex1;

architecture RTL of three_exl is
signal BUS IN REG BUS QUT_REG STD LOd C,

begi n
sync: process (CLK)
begi n
if (CLK event and CLK= ‘1) then
BUS | N REG <= BUS I N;
BUS OUT_REG <= BUS | N REG
end if;

Xilinx/Synopsys Interface Guide 4-11

Xilinx/Synopsys Interface Guide

end process;
BUS _OUT <= BUS_QOUT_REG when (EN= ‘0’) else ‘Z;

end RTL;
The three_ex1 Verilog example follows.

nmodul e three_ex1(BUS_IN, EN, CLK, BUS QUT);
i nput BUS_IN ;

i nput EN ;

i nput CLK ;

out put BUS_QUT ;

reg BUS OUT_REG BUS_ I N REG BUS_OUT;

al ways @ posedge CLK)

begi n
BUS OUT_REG = BUS | N REG ;
BUS IN REG = BUS IN ;

end
al wvays @EN or BUS _OUT_REG
begi n
if ('EN)
BUS QUT = BUS QUT_REG
el se
BUS QUT = 1' bz;
end
endnodul e
EN [|'> T
IBUF

BUS_OUT
IFD | BUSINREG p| FDC |q BUS OUT REG

BUS_IN W
CLOCK D_I> c c OBUFT_F

BUFG_F

X8564

Figure 4-1 No Output Register Inferred

4-12 Xilinx Development System

Synthesizing Your Design with FPGA Compiler

Example of Directly Driving the 3-State Signal

The HDL code for the flip-flop must reside in the same process as the
3-state HDL code and must directly drive the 3-state output, as
shown in the sync process in the following VHDL and Verilog
examples. If the code meets these two conditions, FPGA Compiler
infers a registered 3-state output, as illustrated by Figure 4-1.

Having the flip-flop and the 3-state signal in separate processes
causes the insertion of additional logic between the flip-flop and the
3-state signal.

The three_ex2 VHDL example follows.

library |EEE;
use | EEE. std_| ogic_1164.all;
use | EEE. std_| ogi c_unsi gned. al | ;

entity three_ex2 is
port (BUS_IN, EN, CLK: in STD LCOd C;
BUS QUT: out STD LOd C);
end three_ex2;

architecture RTL of three_ex2 is
signal BUS IN REG STD LOd C,

begi n
sync: process (CLK, EN)
begi n
if (CLK event and CLK= ‘1') then
BUS I N REG <= BUS I N;
if (EN= *0") then
BUS OUT <= BUS | N REG
el se
BUS QUT <= *Z';
end if;
end if;
end process;

end RTL;

The three_ex2 Verilog example follows.

Xilinx/Synopsys Interface Guide 4-13

Xilinx/Synopsys Interface Guide

4-14

modul e three_ex2(BUS_IN, EN, CLK, BUS QUT) ;
i nput BUS IN ;

i nput EN ;

i nput CLK ;

out put BUS_QUT ;

reg BUS_QUT ;
reg BUS IN Q BUS IN REG;

al ways @ posedge CLK)
begi n
BUS IN.Q = BUS_IN ;
BUS IN_ REG = BUS_IN Q ;
if ('EN) BUS_QUT = BUS | N_REG
el se BUS QUT = 1’ bz;

end
endrodul e
IFD BUS_OUT_TRI_ENABLE
eN > > 2 —
C
OFDT
IFD BUS_IN_REG OFD BUS_ ouT
BUS_IN > 2l Q == D Q
OBUFT
cLock D—[> ¢ C

BUFG

X8559

Figure 4-2 Output Register Inferred

Inserting Bidirectional I/Os

FPGA Compiler has the ability to insert non-registered bidirectional
ports. Describe the 3-state signal that drives the output buffer in the
same hierarchy level as the input signal, as in the bidi_reg.vhd and
bidi_reg.v examples in the following section.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

Instantiating a Registered Bidirectional I/O

The top-level design examples bidi_reg.vhd and bidi_reg.v instantiate
a core design, reg4. In these examples, two clock buffers, CLOCK1
and CLOCK?2, automatically infer a BUFG buffer. The reset and load
signals, RST and LOADA, automatically infer an IBUF when you run
the Set Port Is Pad and Insert Pads commands. However, FPGA
Compiler cannot automatically infer the OFDT_F (3-state registered
output buffers with a FAST slew rate) cells in bidirectional 1/0s.
Therefore, these cells and the IBUF instantiate into the top-level
design.

The bidi_reg.vhd VHDL example follows.

library |EEE;
use | EEE. std_| ogic_1164.all;

entity bidi _reg is
port (SIGA: in STD LOG C VECTOR (3 downto 0);
LOADA, CLOCK1, CLOCK2, RST: in STD LOGE Q) ;
end bidi _reg;

architecture STRUCTURE of bidi _reg is
conponent reg4
port (INX: in STD LOd C VECTOR (3 downto 0);
LOAD, CLOCK, RESET: in STD LC4Q G
QUTX: buffer STD LOGd C VECTOR (3 downto 0));
end conponent;

conmponent OFDT_F
port (D in STD_LOA C,
C. in STD LQOG C
T. in STD LQOG C,
O out STD LOA C);
end conponent;

conponent | BUF
port (l: in STD_LOd C;
O out STD LOG O);
end conponent;

signal I NA, OUTA: STD LOd C VECTOR (3 downto 0);

Xilinx/Synopsys Interface Guide 4-15

Xilinx/Synopsys Interface Guide

begi n
reg4 port map (I NA, LOADA, CLOCK1l, RST, OQUTA);
OFDT_F port map (OUTA(0), CLOCK2, LOADA, SIGA(0));
OFDT_F port map (OUTA(1), CLOCK2, LOADA, SIGA(1));
OFDT_F port map (OUTA(2), CLOCK2, LOADA, SIGA(2));
OFDT_F port map (OUTA(3), CLOCK2, LOADA, SIGA(3));
| BUF port map (SIGA(0), INA(O));

| BUF port map (SIGA(1), INA(L));

| BUF port map (SIGA(2), INA(2));

: I BUF port map (SIGA(3), INA(3));

end STRUCTURE;

ESI5568560

The bidi_reg.v Verilog example follows.
nodul e bidi _reg (SIGA LOADA, CLOCK1, CLOCK2, RST) ;

i nout [3:0] SIGA

i nput LOADA ;

i nput CLOCK1 ;

i nput CLOCKZ2 ;

i nput RST ;

wire [3:0] I NA, QUTA ;
/1 Netlist

regd Us (.INPUT(INA), .LD(LOADA), .CLOCK(CLOCK1), .RESET(RST), \

LQUT(QUTA))

OFDT_F W0 (.D(QUTA[O0]), .C(CLOCK2), .T(LQADA), .Q(SIGAO0])) ;
OFDT_F Ul (.D(QUTA[1]), .C(CLOCK2), .T(LQADA), .Q(SIGA1])) ;
OFDT_F U2 (.D(QUTA[2]), .C(CLOCK2), .T(LQADA), .Q(SIGA2?])) ;
OFDT_F U3 (.D(QUTA[3]), .C(CLOCK2), .T(LQADA), .Q(SIGA3])) ;
| BUF U (.1 (SIGA[0]), -OINAO])) ;

| BUF U6 (.1 (SIGA[1]), -QOINA1])) ;

| BUF U7 (.1 (SIGA[2]), -OINA2])) ;

| BUF Ug (.I1(SIGA[3]), -AINAZ])) ;

endnodul e

The backslash (*“\”) character shows a line break required for
formatting purposes.

4-16 Xilinx Development System

Synthesizing Your Design with FPGA Compiler

Compiling Bidirectional I/0O

Do not use the Set Port Is Pad command for the instantiated 1/0

cells. For example, in the bidi_reg.vhd example, use the following
commands to insert the 1/0s for the LOADA, RST, CLOCK1, and
CLOCK?2 signals only.

set _port_is_pad {LOADA RST CLOCK1 CLOCK2}

i nsert_pads

Before compiling the design, you must place a Dont Touch attribute
on any instantiated 170 cells to prevent their alteration, as shown in
the following example.

dont _touch {U0 Ul U2 U3 U6 U7 U8}

The following example shows the script files used to compile
bidi_reg.vhd and bidi_reg.v.

Xilinx/Synopsys Interface Guide 4-17

Xilinx/Synopsys Interface Guide

/*
*/
/*
*/
/*
/*
/*
*/

/*
*/
/*
/*
/*

/*

/*
*/
/*

/*

/*
/*

The script file for bidi_reg.vhd example follows.

Sanpl e Scri pt for Synopsys to Xi l'inx Usi ng

the FPGA Conpiler */
Bi directional Register Example. */

st L L

Read in the design */
+H+++++H+HH A Y

Set the top-level nodul es nane for the design */

TOP
SuB

bidi _reg
reg4

Set the Designer and Conpany nane for documentation */

designer = “XSI Teant
conpany = “Xilinx, Inc”

Anal yze and El aborate the design file and specify the design file

format */

analyze —format vhdl SUB + “.vhd”
analyze —format vhdl TOP + “.vhd”
el aborate TOP

Set the current design to the top |evel */
current _design TOP

Add pads to the design. Make sure the current design is the */
top-1 evel nodul e */

set _port_is_pad {LOADA RST CLOCK1 CLOCK2}

4-18 Xilinx Development System

Synthesizing Your Design with FPGA Compiler

i nsert _pads
dont _touch {U0 Ul U2 U3 W U6 U7 U8}

[* +++++++H A Y

/* Conpil e the design */

[* +++++++ A Y

/* Set the synthesis design constraints. */
remove_constraint -all

/* Synthesize and optinize the design */

conpile —map_effort ned

A L e o S S S

/* Save the design */
/* +++++++++++H
*/

/* Wite the design report file */

report _fpga > TOP +
report _timng > TOP +

. fpga”
“.timng”

/* Wite out the design to a DB file */
wite —format db —hi erarchy —output TOP + “.db”
/* Replace CLBs and 10Bs with gates */
repl ace_f pga
/* Set the part type */
set _attribute TOP “part” —type string “4013epq208-3”
/* Save design in XNF format as <design>.sxnf */

write —format xnf —hierarchy —output TOP + “.sxnf”

Xilinx/Synopsys Interface Guide 4-19

Xilinx/Synopsys Interface Guide

/*

/*
*/
/*
*/
/*
/*
/*

/*
/*
/*
*/
/*
*/

/*

/*
*/
/*

/*

4-20

Exit the Conpiler. */

exit

The script file for bidi_reg.v example follows.

Sanpl e Scri pt for Synopsys to Xilinx

the FPGA Conpiler */
Bi directi onal Register Exanple. */

++++++++++ A Y
Read in the design */

L o st O SO S

Set t he top- 1 evel nmodul es name for t he desi gn

TOP = bidi_reg
SUB = reg4

Set the Designer and Conpany nane for documentation. */

designer = “XSI Teant
conpany = “Xilinx, Inc”

Analyze and Elaborate the design file and specify

design file format */

analyze —format verilog SUB +
analyze —format verilog TOP +
el aborate TOP

.V
.V

Set the current design to the top | evel */

current _design TOP

t he

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

/*
*/
/*

/*
/*
/*
/*

/*

/*
*/
/*
/*
*/
/*

/*

/*

/*

Add pads to the design. Make sure the current design is the

top-1 evel nodule. */

set _port_is_pad {LOADA RST CLOCK1 CLOCK2}
i nsert _pads
dont touch {U0 U1 U2 U3 W U6 U7 U8}

++++++++++ -+ Y
Conpil e the design */

++++++++++ -+
Set the synthesis design constraints. */

renove_constraint -all
Synt hesi ze and optinize the design */
conpile —map_effort ned
++++++H+

Save the design */
++++++H+

Wite the design report file */

report _fpga > TOP +
report _timng > TOP +

. fpga”
“.timng”

Wite out the design to a DB file

wite —format db —hierarchy —output TOP + “.db”
Repl ace CLBs and 10Bs with gates */

repl ace_f pga

Set the part type */

set_attribute TOP “part” —type string “4013epq208-3”

Xilinx/Synopsys Interface Guide 4-21

Xilinx/Synopsys Interface Guide

/* Save design in XNF format as <design>.sxnf */

wite —format xnf —hierarchy —output TOP +

.sxnf”

/* Exit the Conmpiler. */

exit

Using Unbonded IOBs

In some package and device pairs, not all pads bond to a package pin.
You can use these unbonded I0Bs and the flip-flops inside them in
your design by instantiating them in the HDL code. However,
Synopsys cannot infer unbonded primitives.

A “_U” suffix indicates unbounded primitives. Refer to the “XSI
Library Primitives” appendix for a complete listing of all unbonded
cells.

Adding Pull-Up and Pull-Down Resistors

You can apply pull-up and pull-down resistors to chip-level /0
ports and you can use them internally. Use the following command
to attach pull-up or pull-down resistors to 1/0 ports before you issue
the Insert Pads command.

set _pad_type {—pul lup | —pulldown} port_nane

You can only instantiate internal pull-up and pull-down resistors.
The following table shows which devices require pull-up/pull-down
resistors.

Table 4-2 Instantiating Pull-up/Pull-down Resistors

XC4000EX/ Virtex/E/-Il
XC3000A/L | XC4000E/L XLIXLA/XV XC5200 Spartan-II Spartan/XL
Pull-up Pull-up/ Pull-up/ Pull-up/ Pull-up/ Pull-up/
Pull-down Pull-down Pull-down |Pull-down |Pull-down
Refer to the “XSI Library Primitives” appendix for a listing of all cells
and their pin names for instantiation.
4-22 Xilinx Development System

Synthesizing Your Design with FPGA Compiler

See the “Configuring IOBs” section in this chapter for more
information on pull-up and pull-down resistors for a specific device
family.

Removing the Default Input Delay

The input flip-flops and latches have a default delay preceding the
data to the input flip-flop or latch. This delay prevents any possible
hold-time violations if you have a clock signal that also comes into
the device and clocks the input flip-flop or latch.

You can remove this delay by instantiating a cell that includes the
NODELAY attribute if you need additional input speed and have no
possibility of a hold-time violation. The “XSI Library Primitives”
appendix lists all cells that include a NODELAY attribute. Input flip-
flops or latches with an “_F suffix have a NODELAY attribute
assigned to the cell.

Initializing the 10B Flip-Flop to Preset

You can initialize 10B flip-flops to either Clear or Preset in XC3000A/
L, XC4000, Spartan and Virtex FPGAs. The default is Clear. To
initialize an 170 flip-flop or latch to Preset, use the following
command to attach an INIT=S attribute to the flip-flop.

set_attribute “register_nanme” xnf_init \
“S" type string
Replace register_name with the name of the 1/0 flip-flop.

You can instantiate 170 cells with the INIT=S attribute already
assigned to them. Refer to the “XSI Library Primitives” appendix for
a list of all cells and their pin names for instantiation.

Inserting Clock Buffers

For designs with global signals, use global clock buffers to take
advantage of the low-skew, high-drive capabilities of the primary
global clock buffer (BUFGP) and the secondary global clock buffer
(BUFGS). When you use the | nsert Pads command, FPGA
Compiler automatically inserts a generic global clock buffer (BUFG)
whenever an input signal drives a clock signal. The Xilinx
implementation software automatically selects the clock buffer

Xilinx/Synopsys Interface Guide 4-23

Xilinx/Synopsys Interface Guide

appropriate for your specified design constraints. If you want to use a
specific global buffer, you must instantiate it.

You can instantiate an architecture-specific buffer if you understand
the architecture and want to specify how to use the resources. Each
XC4000E/L device contains four primary and four secondary global
buffers that share the same routing resources. XC4000EX/XL/XLA/
XV devices have eight global buffers; each buffer has its own routing
resources. For all architectures, use the BUFG for up to four
low-skew, high-fanout clock signals.

You can use BUFGS to buffer high-fanout, low-skew signals sourced
from inside the FPGA. To access the secondary global clock buffer for
an internal signal, instantiate the BUFGS_F cell.

Additionally, you can use BUFGP to distribute signals applied to the
FPGA from an external source. A primary global buffer can globally
distribute internal signals, however, the signals must drive an
external pin.

Controlling Clock Buffer Insertion

Because FPGA Compiler assigns a BUFG to any input signal that
drives a clock signal, your design can contain too many clock buffers.
The following examples illustrate how to control clock buffer
insertion.

The following two examples also illustrate a gated clock using VHDL
and Verilog HDL, respectively. By default, Synopsys assigns the
signals IN1, IN2, IN3, IN4, and CLK to a BUFG because they
ultimately connect to a clock pin.

The gate_clock VHDL example follows.

entity gate_clock is
port (INL, IN2, IN3, IN4, IN5, CLK, LOAD: in BIT;
QUTL1: buffer BIT);
end gate_cl ock

architecture RTL of gate_clock is

si gnal GATECLK: BIT;

begi n

GATECLK <= not ((((INL and IN2) and IN3) and I N4) and CLK);
process (GATECLK)
begi n

4-24 Xilinx Development System

Synthesizing Your Design with FPGA Compiler

if (GATECLK event and GATECLK= ‘1’') then
if (LOAD= ‘1') then

QUT1 <= | N5;
el se
QUT1 <= QUTL;
end if;
end if;
end process;

end RTL;
The gate_clock Verilog HDL example follows.
nmodul e gate_clock(I N1, IN2, IN3, IN4, IN5, CLK, LQAD, QUT1) ;

i nput INL ;
i nput N2 ;
i nput IN3 ;
i nput INA;
i nput IN5 ;
i nput CLK ;
i nput LOAD ;
out put QUTZ1;
reg QUT1;

Wi re GATECLK ;
assign GATECLK = ~(IN1 & IN2 & IN3 & N4 & CLK) ;

al ways @ posedge GATECLK)

begi n
if (LOAD == 1' bl)
QUT1 = IN5 ;
end
endnodul e

FPGA Compiler identifies clock ports by tracing back from the clock
pins on the flip-flops. In the following figure, the inputs to the 5-input
NAND gate all have a BUFG inserted.

Xilinx/Synopsys Interface Guide 4-25

Xilinx/Synopsys Interface Guide

4-26

IN5 %l>
IBUF
FDCE
LOAD [:::>f47[%EGEA——————————f D oUT1
Q
ce D>
IN2
BUFG_F c OBUF_S
IN3
BUFG_F
e NV
NAND4 NAND?
BUFG_F
CLK

BUFG_F

INT X4889

BUFG_F

Figure 4-3 Gated Clock After Pad Insertion

If your design contains gated clocks or has more than four input pins
that drive clock pins, disable the input pins to stop insertion of a
BUFG. Refer to the “Preventing the Insertion of Clock Buffers”
section in this chapter.

Determining the Number of Clock Buffers

To determine how many clock buffers FPGA Compiler inserted in
your design, use the Report FPGA command after using the Insert
Pads or Compile command. Enter the Report FPGA command as
follows.

report_fpga

The following example shows the output produced when running
the Report FPGA command on the previous gated clock design.

Although clock pads are 10Bs, this report lists them separately.

E R E S Ik S bk I I R R R I R R I S

Report : fpga

Design : gate_cl ock

Version: v1999. 10

Dat e . Fri Feb 25 14:43:20 2000

EE IR S I kb I I R R I R I R R I O

Xilinx FPGA Design Statistics

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

FG Function Generators 1
H Function Generators 1
Nunmber of CLB cells: 1
Nunber of Hard Macros and

O her Cells: 0
Nunmber of CLBs in

O her Cells: 0
Total Nunber of CLBs: 1
Number of Ports: 8
Nurmber of O ock Pads: 5
Nurmber of | OBs: 3
Nunber of Flip Fl ops: 1
Nurmber of 3-State Buffers: 0

Total Nunmber of Cells: 9

Preventing the Insertion of Clock Buffers

To prevent FPGA Compiler from inserting the BUFG primitive,
specify the Set Pad Type command with the following options before
inserting the pads.

set _pad_type —no_cl ock {cl ock_ports}

Replace clock_ports with the name of the input pins where you do not
want a clock buffer inserted. For the gated clock VHDL and Verilog
examples, enter the following.

set _pad_type —no_clock {IN1, IN2, IN3, IN4, CLK}

Then follow the normal procedures to set the ports as pads and insert
the pads as follows.

set_port_is_pad “*”

i nsert_pads

Using Memory

You can use on-chip RAM for status registers, index registers, counter
storage, distributed shift registers, LIFO stacks, and FIFO buffers.

Xilinx/Synopsys Interface Guide 4-27

Xilinx/Synopsys Interface Guide

4-28

The XC4000 family can efficiently implement RAM and ROM using
CLB function generators. Implement a ROM by describing it
behaviorally as shown in the “Implementing XC4000 RAMS” section.
Alternatively, the XSI XC4000 libraries contain 16 x 1 (16 deep x 1
wide) and 32 x 1 (32 deep x 1 wide) RAM and ROM primitives and 16
x 1 dual-port RAM you can instantiate.

You can also implement memory using the LogiBLOX program.
LogiBLOX can create RAM and ROM between 1-32 bits wide and 2—
256 bits deep. Using LogiBLOX to add RAM or ROM to your design
provides an efficient implementation of your memory in addition to a
simulation model for Register Transfer Level (RTL) simulation.

For VHDL and Verilog examples of instantiating RAM in your
designs using LogiBLOX, refer to the “Using CORE Generator and
LogiBLOX” chapter. Also, refer to the LogiBLOX Guide for more
information on LogiBLOX.

Implementing XC4000 RAMs

Implement RAMs in your HDL with the following methods.

« Instantiate 16 x 1 and 32 x 1 RAMSs from the XSI primitive
libraries.

* Instantiate any size RAM using LogiBLOX.

Behaviorally describing RAMs in VHDL creates combinatorial loops
during compiling.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

Implementing XC4000 ROMs

Implement ROM in your HDL with the following methods.
e Describe ROM behaviorally.

e Instantiate 16 x 1 and 32 x 1 ROM primitives.

e Instantiate any size ROM using LogiBLOX.

To instantiate the ROM16 x 1 and ROM32 x 1 primitives into your
design, connect the input and output pins to the appropriate signals.
Use the DC Shell Set Attribute command to define the ROM value.

set_attribute “instance_nane” \
xnf_init “romvalue” —type string

For example, if you gave the 16 x 1 ROM an instance name of “U1”
and a hex value of F5A3, you can use the DC Shell Set Attribute
command to set the ROM value as follows.

set_attribute “Ul” xnf_init “F5A3" —type string

Compile calculates ROM content values by considering the 16 x 1 or
32 x 1 ROMs 16 or 32 1-bit locations as bits in a 16 or 32 bit word. For
example, for a 32 x 1 ROM, specify an 8-digit hexadecimal (hex) value
in place of the 4-digit hex value. See Figure 4-4.

Refer to the Application Note “Using Select-RAM Memory in XC4000
Series FPGAs” for more information.

ADDR ROM16X1 ROM16X1 ROM16X1 ROM16X1

ROM16X4

=
@
©

ADDR | Value ~ADDR | Value

[

I
7
6
5
4
3
2
1
0

H‘H‘O‘O‘H‘H‘G‘O‘H‘H‘G‘O‘H‘H‘O‘D‘
-
2
8

‘H ‘H ‘H ‘H ‘H ‘H ‘H ‘H ‘G ‘D ‘G ‘D ‘O‘G‘O‘G‘

‘H ‘H ‘H ‘H ‘G ‘O ‘G ‘O ‘H ‘H ‘H ‘H ‘0‘5‘0‘5‘
‘H ‘O ‘H ‘O ‘H ‘O ‘H ‘O ‘H ‘O ‘H ‘O "“ﬁ"“ﬁ‘

x
z
2 ‘
H
5

XNF_INIT XNF_INIT | XNF_INIT
0000000011111111 0000111100001111 0011001100110011 0101010101010101
=DOFFN =DF0FN =3333H :5555H

X8001

Figure 4-4 Implementing ROMs

Xilinx/Synopsys Interface Guide 4-29

Xilinx/Synopsys Interface Guide

The 16 x 4 ROM VHDL and 16 x 4 ROM Verilog HDL examples
illustrate how to define a ROM in VHDL and Verilog HDL,
respectively. FPFGA Compiler creates ROMs from optimized random
logic gates implemented using function generators.

The 16 x 4 ROM RTL VHDL example follows.

-- RTL 16x4 ROM Exanpl e --

ronil6x4_4k. vhd --

entity roml6x4_4k is

port (ADDR in INTEGER range 0 to 15;

DATA: out BIT_VECTOR (3 downto 0));

end roml6x4_4k;

architecture RTL of ronl6x4 4k is

subtype ROM WORD is BI T_VECTOR (3 downto 0);
type ROM TABLE is array (0 to 15) of ROM WORD;
constant ROM ROM TABLE : = ROM TABLE' (

begi n

ROM WORD' (“0000”),
ROM WORD' (“0001”),
ROM WORD' (“0010”),
ROM WORD' (“0100”),
ROM WORD' (“ 1000”),
ROM WORD' (“ 1000”),
ROM WORD' (“1100”),
ROM WORD' (“1010”),
ROM WORD' (“1001”),
ROM WORD' (“1001”),
ROM WORD' (“1010”),
ROM WORD' (“1100”),
ROM WORD' (“1001”),
ROM WORD' (“1001”),
ROM WORD' (“1101"),
ROM WORD' (“1111"),

DATA <= ROM ADDR); -- Read fromthe ROM

end RTL;

4-30

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

The 16 x 4 ROM RTL Verilog example follows.

nodul e roml6x4_4k(ADDR, DATA)
i nput [3:0] ADDR ;
output [3:0] DATA ;

reg [3: 0] DATA ;

al ways @ ADDR)
begi n
case (ADDR)

4’ b0000 :

4’ b0001 :
4’ b0010 :
4’ b0011 :
4’ b0100 :
4’ b0101 :
4’ b0110 :
4’ b0111 :
4’ b1000 :
4’ b1001 :
4’ p1010 :
4’ b1011 :
4’ p1100 :
4’ pb1101 :
4’ p1110 :
4’ b1111 :

endcase
end

endnodul e

Implementing RAM In Virtex Devices
The INIT values for RAM32X 1 and RAM32X1_1 map differently

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

4’ b000O0 ;
4’ b0001 ;
4’ b0010 ;
4’ b0100 ;
4’ b1000 ;
4’ 1000 ;
4’ pb1100 ;
4’ p1010 ;
4’ b1001 ;
4’ b1001 ;
4’ p1010 ;
4’ pb1100 ;
4’ b1001 ;
4’ b1001 ;
4’ pbl101 ;
4’ bl111 ;

from 4000EX/XL/XV and SpartanXL.

Virtex maps the lower INIT values to G and upper INIT values to F
for both RAM32X. 4000EX/XL/XV and SpartanXL map those lower

INIT values to F and upper INIT values to G.

Xilinx/Synopsys Interface Guide

4-31

Xilinx/Synopsys Interface Guide

Performing Boundary Scan

The XC4000, XC5200, Spartan, and Virtex FPGA devices contain
boundary-scan facilities compatible with IEEE Standard 1149.1. Refer
to the Development System Reference Guide for a detailed description of
the XC4000 and XC5200 boundary scan capabilities.

Xilinx parts support external (1/0 and interconnect) testing and have
limited support for internal self-test.

Full access to the built-in boundary-scan logic exists between power-
up and the start of configuration. Optionally, specify boundary scan
in the design to access built-in logic after configuration. During
configuration, you can use the Sample/Preload and Bypass
instructions only.

To make boundary-scan logic active in a configured FPGA device,
include the boundary-scan cell and its related 1/0 cells in the
configuration data of your design. For HDL designs, you must
instantiate the boundary-scan symbol, BSCAN, and the boundary
scan I/0 pins, TDI, TMS, TCK, and TDO.

Warning: Do not use the following FPGA Compiler boundary scan
commands because they do not work with FPGA devices.

set jtag inplenmentation
set jtag instruction
set jtag port

The following figure illustrates the BSCAN symbol instantiated into
an HDL design.

4-32 Xilinx Development System

Synthesizing Your Design with FPGA Compiler

BSCAN

TDI TDI TDO TDO
T™MS T™MS DRCK [—
TCK TCK IDLE [—

To User

From [—]TDO1 SEL1[— Logic
User Logic
— | TDO2 SEL2[
X8560

Figure 4-5 Boundary Scan Symbol Instantiation in XC4000
Family

The following examples show the code used to instantiate the cells in
the previous figure. Additionally, the examples include code samples
for the XC5200 family. The VHDL code for instantiating BSCAN in
the XC5200 family follows.

Note: You must apply a Dont Touch attribute on all of the following
instantiated components.

entity exanple is
port (a, b: in bit; c: out bit);
end exanpl e;

architecture xilinx of exanple is
conponent bscan

port(tdi, tms, tck: in bit; tdo: out bit);
end conponent;

conmponent tck
port (i : out bit);
end conponent;

conponent tdi

port (i : out bit);
end conponent;

Xilinx/Synopsys Interface Guide 4-33

Xilinx/Synopsys Interface Guide

conponent tns
port (i : out bit);
end conponent;

conponent tdo
port (o: in bit);
end conponent;

conmponent i buf
port (i: in bit; o: out bit);
end conponent;

conponent obuf
port(i: in bit; o: out bit);
end conponent;

signal tck _net, tck_net_in : bit;
signal tdi_net, tdi_net_in : bit;
signal tnms_net, tns_net_in : bit;
signal tdo_net, tdo_net_out : bit;
begi n

ul: bscan port map (tdi=>tdi_net, tms=>tns_net,
tck=>tck_net, tdo=>tdo_net_out);

u2: ibuf port map(i=>tck_net_in, o=>tck_net);

u3d: ibuf port map(i=>tdi_net_in, o=>tdi _net);

ud: ibuf port map(i=>tnms_net_in, o=>tns_net);

u5: obuf port map(i=>tdo_net_out, o=>tdo_net);

u6: tck port map (i =>tck_net _in);

u7: tdi port map (i=>tdi _net_in);

ug8: tns port map (i =>tns_net _in);

u9: tdo port nmap (o=>tdo_net);

process(b)

begi n

if(b'event and b="1") then
C <= a;

end if;

end process;

end xilinx;

4-34 Xilinx Development System

Synthesizing Your Design with FPGA Compiler

The following shows the Verilog code for instantiating BSCAN in the
XC5200 family.

modul e exanple (a, b, c);

i nput a, b;

out put c;

reg c;

wire tck_net, tck_net_in;
wire tdi _net, tdi_net_in;
wWire tnms_net, tns_net_in;
wire tdo net, tdo _net out;

BSCAN ul (.TDI(tdi _net), .TWVMS(tms_net),
. TCK(tck_net), .TDQ(tdo_net));

TDl u2 (.I1(tdi_net_in));

TVMS u3 (.1 (tnms_net_in));

TCK u4 (.1 (tck_net_in));

TDO u5 (.Q(tdo_net _out));

IBUF u6 (.1(tdi_net_in), .Q(tdi _net));
IBUF u7 (.1(tnms_net_in), .Q(tns_net));
IBUF u8 (.I1(tck_net_in), .Q(tck_net));

OBUF u9 (.I1(tdo_net), .Q(tdo_net_out));

al ways @ posedge b)
c<=a;
endnodul e

The Verilog code for instantiating BSCAN in XC4000/XC4000E
appears in the following example. Note the use of upper and lower
case in the sample.

nodul e exanple (a,b,c);

i nput a, b;

out put c;

reg c;

wire tck net;

wire tdi _net;

wire tns_net;

wire tdo_net;

BSCAN ul (.TDI(tdi _net), .TWVMS(tms_net),
. TCK(tck_net), .TDQ(tdo_net));

Xilinx/Synopsys Interface Guide 4-35

Xilinx/Synopsys Interface Guide

TDl u2 (.1(tdi_net));
TMS u3 (.1 (tns_net));
TCK ud4 (.1(tck_net));
TDO u5 (. Q(tdo_net));
al ways @ posedge b)

c<=a;
endnodul e

The VHDL code for instantiating BSCAN in XC4000/XC4000E
example follows.

entity exanple is
port (a, b: in bit; c: out bit);
end exanpl e;

architecture xilinx of exanple is
conponent bscan

port(tdi, tms, tck: in bit; tdo: out bit);
end conponent;

conmponent tck
port (i : out bit);
end conponent;

conponent tdi
port (i : out bit);
end conponent;

conmponent tms
port (i : out bit);
end conponent;

conmponent tdo
port (o: in bit);
end conponent;

signal tck _net : bit;
signal tdi_net : bit;
signal tms_net : bit;
signal tdo_net : bit;
begi n

4-36 Xilinx Development System

Synthesizing Your Design with FPGA Compiler

ul: bscan port map (tdi=>tdi_net, tms=>tns_net,
tck=>tck_net, tdo=>tdo_net);

u2: tck port map (i=>tck_net);

ud: tdi port map (i=>tdi_net);

ud: tns port map (i=>tnms_net);

u5: tdo port nmap (o=>tdo_net);

process(b)

begi n

if(b’event and b="1") then
C <= a;

end if;

end process;

end xilinx;

Using the Global Set/Reset Net

All Xilinx FPGA devices have a dedicated Global Set/Reset (GSR) net
that initializes all CLBs and 10B flip-flops. The function of the GSR
net is separate from and overrides the individual flip-flop or latch
Preset (PRE) and Direct Clear (CLR) pins.

If your design includes a signal used to globally initialize all the flip-
flops or latches, use the GSR net to increase design performance by
reducing the overall routing congestion. The GSR net, a dedicated
routing resource, exists outside of the general purpose interconnect.
You can disconnect your design’s global initialization signal from the
flip-flops and latches in your design and implement this function
using the device’s dedicated GSR net.

Xilinx/Synopsys Interface Guide 4-37

Xilinx/Synopsys Interface Guide

CLK —>C

PRE

X8003

Figure 4-6 Emulation of Power-on State “1” with Inverters
(XC3000A/L, XC3100A, and XC5200)

Accessing Global Set/Reset Using STARTBUF

Access an FPGA’s GSR signal by attaching a net to the input pin on
the STARTBUF cell. Asserting the net attached to the STARTBUF
block’s GSR pin also asserts FPGA Global Set/Reset causing every
flip-flop and latch in the device to assume its power-on state.

You must instantiate the STARTBUF block.

The GSR net does not appear in the pre-placed and routed netlist.
Asserting the GSR signal to High (the default) sets every flip-flop and
latch to the same state it had at the end of configuration, illustrated in
the following tables. When you simulate the placed and routed
design, the simulator’s translation program correctly inserts the
functionality.

Any signal can drive the STARTUP block’s GSR pin, however, do not
use flip-flop or latch output signals.

4-38 Xilinx Development System

Synthesizing Your Design with FPGA Compiler

Synthesizing/Simulating for VHDL Global Set/Reset
Emulation

VHDL requires a testbench to control all signal ports. You can
instantiate certain VHDL-specific components, explained in the
following sections, in the RTL and post-synthesis VHDL description
to allow the simulation of the global signals for global set/reset and
global 3-state.

NGD2VHDL creates a port in your back-annotated design entity for
stimulating the global set/reset or 3-state enable signals. This port
does not actually exist on the configured part.

When running NGD2VHDL, you do not need to use the —gp switch
to create an external port if you instantiate a STARTUP block in your
implemented design. The port is already identified and connected to
the global set/reset or 3-state enable signal. If you do not use the —gp
option or a STARTBUF block, you must use special components, as
described in the following sections.

Using STARTBUF in VHDL

STARTBUF replaces STARTUP. With STARTBUF you can
functionally simulate the GSR/GR net in both function and timing
simulation. By connecting the input pin of the STARTBUF to a top-
level port and using STARTBUF as the source for all asynchronous
set/reset signals in a design, Xilinx software can automatically
optimize the design to use the GSR/GR. Because you can use
STARTBUF in functional simulation (unlike STARTUP), when you
use STARTBUF you can map to the GSR/GR in a device. You can still
use STARTUP, but it does not always provide correct GSR/GR in
HDL flows.

The STARTBUF component passes a reset or 3-state signal in the
same way that a buffer allows simulation to proceed and also
instantiates the STARTUP block for implementation. One version of
STARTBUF works for all devices, however, the XC5200 and the
XC4000 STARTUP blocks have different pin names. Implementation
with the correct STARTUP block occurs automatically. The following
shows an instantiation example of the STARTBUF component.

ULl: STARTBUF port map (GSRI N => DEV_GSR_PORT, GTSIN
=>DEV_GTS_PORT, CLKIN => ‘0’, GSROUT => GSR_NET,

Xilinx/Synopsys Interface Guide 4-39

Xilinx/Synopsys Interface Guide

GISQUT => GIS_NET, QOQUT => open, Q@QBOUT => open,
QLAUACQUT => open, DONEI NOUT => open):

You can use one or both of the input ports (GSRIN and GTSIN) of the
STARTBUF component and the associated output ports (GSROUT
and GTSOUT). You can use pins left open to pass configuration
instructions to the implementation tools by connecting the
appropriate signal to the port instead of leaving it open.

Instantiating a STARTUP Block in VHDL

The STARTUP block traditionally instantiates to identify the GR,
PRLD, or GSR signals for implementation. However, simulation can
occur only when the net attached to the GSR or GTS goes off the chip
because the STARTUP block does not have a simulation model. You
can use the new components described below to simulate global set/
reset or 3-state nets whether or not the signal goes off the chip.

Setting Direct Preset or Direct Clear

You can program each flip-flop and latch as either Preset or Clear but
not both. The device’s automatic assertion of its own GSR net
asynchronously sets flip-flops and latches as either Preset or Cleared
upon completion of configuration. Use individual flip-flop and latch
Preset (PRE) and Clear (CLR) pins to set them as preset or cleared.

The power-on state of a register or latch and the selection of PRE or
CLR pin must match. For example, a register with a CLR pin assumes
the value of 0 on power-up. Alternatively, a register with a power-up
state of 0 can only have a CLR pin.

To get an asynchronous set or asynchronous reset flip-flop, describe
the behavior in the RTL code. If you only want to describe the power-
on state of an flip-flop, connect the asynchronous set or asynchronous
reset signal of the RTL flip-flop to the ROCBUF.

Increasing Performance with the GSR Net

Many designs have a net that initializes the majority of the design’s
flip-flops. If this signal initializes all the design’s flip-flops, you can
use the GSR net.

4-40 Xilinx Development System

Synthesizing Your Design with FPGA Compiler

To have your HDL simulation match that of the resulting design,
modify your HDL code so that asserting the GSR signal presets or
clears every flip-flop and latch. You must ensure that this signal does
not get routed around general purpose interconnect but instead uses
the dedicated global routing resource. Disconnect this signal with the
Disconnect Net command after you compile your design but before

you save it.

Alternatively, the Xilinx tools move this signal on to the device’s
dedicated GSR routing network when the following conditions

apply.

* The asynchronous Preset or Clear pin of every register in your

design that has this pin connects to the same net.

* That net connects to the GSR pin of the STARTUP block.
* You use STARTBUF (see the “Using the Global Set/Reset Net”

section).

The following figure illustrates this flow.

STARTUP

GSR CLR

CLK

CLK

FDC

CLR

RESET RESET
PORT NET

IBUF

STARTUP

FDC

CLK
GSR

RESET
PORT

IBUF

Figure 4-7 Increasing Performance with GSR Net

Xilinx/Synopsys Interface Guide

CLK

FDP

CLK

FDC

X8002

4-41

Xilinx/Synopsys Interface Guide

The following VHDL and Verilog examples illustrate a design that
uses the GSR net. The design contains two flip-flops, one reset and
one set when the signal RST is High.

The following example shows VHDL code before using the GSR net.

l'ibrary | EEE;
use | EEE. std | ogic_1164.all;
use | EEE. std_| ogi c_unsigned. al | ;

entity gsr_ex is
port (CLK,RST : in STD LQ4 C;
ST: buffer std_logic_vector (1 downto 0));
end gsr_ex;

architecture EXAMPLE of gsr_ex is

begi n
process (CLK, RST)
begi n
if RST= ‘1" then
ST <= “01”;
elsif (CLK event and CLK= ‘1") then
ST <= ST + “017;
end if;
end process;

end EXAMPLE;
The following example shows Verilog code before using the GSR net.
nmodul e gsr_ex (CLK, RST, ST) ;

i nput CLK ;
i nput RST ;
out put [1:0] ST,

reg [1:0] ST,

al ways @ posedge CLK or posedge RST)

begi n
if (RST == 1’ bl)
ST = 2'b01 ;
el se

4-42 Xilinx Development System

Synthesizing Your Design with FPGA Compiler

ST = ST + 1'bl ;

end

endnodul e
Add the reset signal in your design to the GSR pin of the STARTUP
block. This makes the Xilinx tools move this signal on to the
dedicated routing network if all other conditions are satisfied.
To utilize the GSR net, add the STARTUP block to your design by
instantiation, illustrated in the following examples. The following
example shows VHDL code using the GSR net.

library |EEE;

use | EEE. std_| ogic_1164.all;
use | EEE. std_| ogi c_unsi gned. al | ;

entity top_gsr is
port (CLK,RST : in STD_LOd C,
ST: buffer STD_LOG C _VECTOR (1 downto 0));
end top_gsr;

architecture EXAMPLE of top_gsr is
conmponent STARTUP
port (GSR in STD_LOd O);
end conponent;

conponent gsr_ex
port (CLK RST: in STD LQQ C;
ST : buffer STD LOG C VECTOR (1 downto 0));
end conponent;

begi n

Ul : STARTUP port map (GSR=>RST);
U2 : gsr_ex port map (CLK=>CLK, RST=>RST, ST=>ST) ;
end EXAMPLE;

The following example shows Verilog code using the GSR net.

nmodul e top_gsr (CLK, RST, ST) ;
i nput CLK ;
i nput RST ;

Xilinx/Synopsys Interface Guide 4-43

Xilinx/Synopsys Interface Guide

output [1:0]

ST;

STARTUP Ul (.GSR(RST)) :

gsr_ex U2 (.CLK(CLK),

endnodul e

. RST(RST),

Because the STARTUP block does not use any outputs in this
example, FPGA Compiler removes the STARTUP block unless you
specify the Dont Touch attribute for Ul. You must issue this
command before inserting the 1/0 pads.

Using the Xilinx DesignWare Library

The XC4000, XC5200, Spartan, and Virtex DesignWare libraries
describe adders, subtracters, comparators, incrementers, and
decrementers that map to the fast carry logic structures available in

the target architecture.

Improving Design Area and Speed

For XC4000, XC5200, Spartan, and Virtex designs using VHDL or
Verilog arithmetic operators, take advantage of the Xilinx
DesignWare (XDW) library. This library contains the arithmetic
functions that utilize the XC4000, XC5200, Spartan, and Virtex
dedicated carry logic to improve both the area and speed of the

4-44

design.

The following table lists the VHDL and Verilog arithmetic operators
and the XDW modules to which they map.

Table 4-3 Arithmetic Operators for XDW Modules

Operators XDW Module
+ ADD_SUB

- ADD_SUB

<, <=, >, >= COMPARE
+1 INC_DEC

-1 INC_DEC

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

The XDW library contains twos complement and unsigned binary
modules of widths 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, and 48.
Additionally, you can use available 64-bit widths for the COMPARE
module only. Operands falling between bit ranges map to the next
higher bit-width module. The Xilinx design implementation tools
remove any unused logic when implementing a smaller bit width or
when adding, subtracting, or comparing with a constant value.

The XDW library contains area and speed information for its
modules. This information allows FPGA Compiler and Design
Compiler to compare XDW implementations of arithmetic functions
to other DesignWare libraries available at compile time. XSI then
selects the implementation that best meets your timing and area
constraints.

XC4000, Spartan and Virtex devices accommodate two bits of
arithmetic function per CLB, and XC5200 devices accommodate four
bits per CLB. XC4000, Spartan, and Virtex devices implement
arithmetic functions in one vertical column of CLBs. The carry
propagation direction is upward in XC4000EX/XL/XLA/XV,
Spartan, and Virtex devices and up or down in XC4000E/L devices.
XC5200 devices implement arithmetic functions in two vertical
columns of CLBs and have an upward carry propagation direction.

The Xilinx place and route tools determine the best placement for the
CLB columns in the target device and break or wrap a column if
constrained by the physical boundaries of the device. However, as a
general rule, choose a target device that can accommodate the
“tallest” arithmetic structure in your design without altering the
shape of this structure. Selecting the correct device makes it easier to
place and route predominately data path-based designs.

Creating Timing Specifications

The timing constraints issued to Synopsys to control the synthesis
process pass through to the design implementation tools to control
the place and route process. To get the best possible results, make
these constraints realistic and achievable.

During the synthesis of your design, area and timing constraints can
impact implementation almost as much as changes made to your
HDL code. Carefully apply area and timing constraints. During the
implementation of your design, timing constraints have a direct
impact on run time and performance verification. For example, the

Xilinx/Synopsys Interface Guide 4-45

Xilinx/Synopsys Interface Guide

4-46

run time required to find a place and route solution to support the 40
MHz operation of a design takes longer than that required to find a 4
MHz solution. Meaningful and detailed timing constraints also allow
the design implementation tools to report the status of your design’s
timing in terms of your timing goals.

The DC2NCF program converts timing constraints applied to your
design in the Synopsys environment to equivalent constraints that
control the Xilinx place and route process. Automatic translation of
these constraints offers an advantage because you do not need to
apply the constraints twice (once for Synopsys and again for Xilinx).
The constraints used by Xilinx are equivalent to those applied with
Synopsys.

DC2NCF supports translation of the following Synopsys timing
constraints.

e create_clock

* set_input_delay

e set output_delay
* set_max_delay

» set false path

If you have additional Synopsys timing constraint commands in your
Synopsys script file, DC2NCF issues a warning and does not translate
them.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

DC2NCF translates a Synopsys DC file to a Xilinx Netlist Constraints
File (NCF). The DC file is a Synopsys script file containing the
constraints that have been applied to your design. EDIF2NGD or
XNF2NGD reads the output NCF file. The constraints in the NCF file
become part of the NGO file produced by EDIF2ZNGD or XNF2NGD.
The following example shows how to translate a DC file to an NCF
file.

dc2ncf dc_file[.dc] [-o ncf_file[.ncf]] [—w
—wi | dcar d]

Note Braces “{*, should not be used in the DC2NCF command line
syntax.

When you specify the —w option, DC2NCF creates an NCF file with
wildcards. The —w option can significantly increase run time. An
NCF backup file without wildcards saves as ncf_file.ncf_orig. To use
the original file without wildcards, rename ncf_file.ncf_orig to
ncf_file.ncf.

Following the DC2NCF Design Flow

Before running DC2NCF, apply your timing constraints to your
design and then compile it. Also, when using FPGA Compiler for
XC4000 designs, run the Replace FPGA command, then create a
netlist and a corresponding script file that contains the constraints.

DC2NCEF can incorrectly translate the timing constraint commands in
user-created script files. Always generate script files as described in
the following sections using either DC Shell or Design Analyzer.
Creating the Netlist and Script File (Design Compiler)

You can use DC Shell or Design Analyzer to create your design’s
netlist and the Synopsys constraints script file.

From the DC Shell command line, perform the following steps.

1. Flatten your design’s hierarchy by entering the following.
ungroup —all —flatten

2. Enter the following to create the netlist.

wite —format edif —hierarchy —output \

desi gn_nane. sedi f

Xilinx/Synopsys Interface Guide 4-47

Xilinx/Synopsys Interface Guide

4-48

The “\” indicates you issue this command in one line, not two as
presented here.

3. To write your design’s constraints as a Synopsys script file, enter
the following.

wite_script > design_nane.dc
From Design Analyzer, perform the following steps.
1. SelectFile - Save As
The Save File dialog box appears.

2. Select the EDIF option in the File Format field. Change the
extension to .sedif in the File Name field.

Turn off the Save All Designs in Hierarchy option.
Select OK.

Select Set up - Cormand W ndowto get the command window.

ISEE U

At the command window prompt, enter the following.
ungroup —all —flatten

7. To write your design’s constraints as a Synopsys script file, select
the design setup function, Fi | e ~Save | nfo - Design
Set up.

The Save Design Setup dialog box appears.
8. Select OK.

Creating the Netlist and Script File (FPGA Compiler)

Before you create the netlist or the constraints file, you must flatten
any hierarchy in your design. Flattening your design removes
hierarchy information from the Synopsys internal database.
However, the hierarchical net names and instance names assigned to
objects during compilation are retained and written to the output
netlist. The Xilinx software reconstructs most of your design’s
hierarchy from the information contained in the instance names and
net names.

Use the DC Shell or Design Analyzer to flatten your design, create
your design’s netlist, and create the Synopsys constraints script file.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

To flatten your design’s hierarchy prior to writing a netlist and
constraints file from the DC Shell command line, perform the
following steps.

Xilinx/Synopsys Interface Guide 4-49

Xilinx/Synopsys Interface Guide

4-50

Enter the following to flatten the design.
ungroup —flatten -all

To create your design’s netlist in XNF format, enter the following.
wite —format xnf —output design_namne. sxnf

To write your design’s constraints as a Synopsys script file, enter
the following.

wite_script > design_nane.dc

To flatten your design’s hierarchy from Design Analyzer, perform the
following steps.

1.

8.

Select Set up - Command W ndow

The Command Window appears.

Enter the following at the command line.
ungroup —all —flatten

SelectFi | e — Save As.

The Save File dialog box appears.

Select the XNF option in the File Format field. Change the .xnf
extension to .sxnf in the File Name field.

Turn off the Save All Designs in Hierarchy option.
Select CK.

To write your design’s constraints as a Synopsys script file, select
the design setup function, Fi | e — Save | nfo - Desi gn
Set up. The Save Design Setup dialog box appears.

Select OK.

Understanding DC2NCF Translation Limitations

This section lists the Synopsys commands you can use to create
timing specifications for your Xilinx designs and provides
information about DC2NCF support for the Synopsys timing
commands.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

Limitations of Create Clock

The Creat e O ock command applies a constraint of period_value
nanoseconds to all paths between the registers reached by tracing
forward from the entries on the port_or_pin_list.

create_clock [port_or _pin_list] [—-name cl ock_nane] \
[—period period_val ue] [-waveform edge_li st]
Limitations of the Create Clock command follow.
* Virtual clocks

DC2NCF does not support virtual clocks and therefore does not
support Create Clock statements without a port_or_pin_list.

e Complex clock waveforms

Since DC2NCEF only supports single-cycle clock waveforms, the
waveform edge_list variable can only contain two values.

e Targets for Create Clock

DC2NCEF translates the Create Clock command into the Xilinx
PERIOD constraint, applied to chip-level input (or bidirectional)
ports and to the outputs of primitive Xilinx cells. Therefore, the
port_or_pin_list variable can only include references to these types
of nodes.

Limitations of Set Input Delay and Set Output Delay

The Set Input Delay command specifies that data arriving at the
inputs listed in the port_or_pin_list delays externally by the number of
nanoseconds specified by delay_value.

set _input _del ay del ay_val ue \
[—cl ock clock_name [-clock_fall] \
[l evel _sensitive]] \
[-rise | —fall] [-max] [-m n] [-add_del ay] \
port_or_pin_list
The Set Output Delay command specifies that data arriving at the

outputs listed in the port_or_pin_list drives into an external delay of
delay_value nanoseconds.

set _out put _del ay del ay_val ue \

Xilinx/Synopsys Interface Guide 4-51

Xilinx/Synopsys Interface Guide

[—cl ock clock_name [-clock_fall] \
[l evel _sensitive]] \
[-rise | —fall] [-max] [-min] \

[—add_del ay] port_or_pin_list

Therefore, constrain internal paths starting (Set Input Delay) or
ending (Set Output Delay) at any of the nodes listed in the
port_or_pin_list more tightly to accommodate these external margins.

Limitations of the Set Input Delay and Set Output Delay commands
follow.

4-52

Minimum delay constraints

Normally, the —min switch specifies the minimum value of an
external delay. However, because Xilinx allows constraining only
maximum delays within a device, DC2NCF does not support the
—min switch. (This also makes the —max switch redundant.)

Rising and falling constraints

Because Xilinx does not categorize timing paths by their
sensitivity to rising or falling edges at their inputs, DC2NCF does
not support the Rise, Fall, and Clock_fall switches.

Latch versus register path sources

Because Xilinx does not compute path delays differently
depending on the type of sequential cell that sources the path,
DC2NCF does not support the Level Sensitive switch.

Targets for Set Input Delay and Set Output Delay

DC2NCF translates the Set Input Delay and Set Output Delay
commands into the Xilinx OFFSET constraint, applied only to
chip-level input or bidirectional ports (Set Input Delay) and
output or bidirectional ports (Set Output Delay). Therefore, the
port_or_pin_list variable can only include references to these types
of objects. For example, external delays applied to the ports of
hierarchical sub-modules do not translate.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

Arrival times specified with the —clock clock_name switch must
conform to the OFFSET command usage restrictions. Although
the clock referred to by clock_name can contain chip-level 1/0
ports and cell pin-names, the translation of the Set Input Delay
and Set Output Delay commands applies only to those clocks
assigned to chip-level 170 ports. Therefore, specify arrival times
only with respect to clocks applied externally (not internally).

Limitations of Set Max Delay and Set False Path

The Set Max Delay command specifies the upper delay limits for all
paths that start at nodes listed in the from_list and end at nodes listed
in the to_list.

set _nmax_del ay delay_value [-rise | —fall] \
[-fromfromlist] [-to to_list] \
[—group_path group_nane] [-reset_path]

The Set False Path command specifies that paths starting at nodes
listed in the from_list and ending at nodes listed in the to_list are not
significant for timing.

set _false_path [-rise | —fall] \
[-setup | —hold] [—fromfromlist] [-to to_list] \
[-reset _path]

Limitations of the Set Max Delay and Set False Path commands
follow.

« Rising and falling constraints

Because Xilinx does not categorize timing paths by their
sensitivity to rising or falling edges at their inputs, DC2NCF does
not support the Rise and Fall switches.

e Path Grouping (Set Max Delay)

Synopsys uses a path grouping mechanism for directing the logic
optimizer to certain areas of your design; this does not impact the
resulting timing specification. Therefore, DC2NCF does not
support the —group_path group_name switch.

e Iterative path constraints

Xilinx/Synopsys Interface Guide 4-53

Xilinx/Synopsys Interface Guide

4-54

You can use the —reset_path switch prior to compilation to
remove a constraint between the indicated path start and end
points. Because DC2NCF reads script files generated after
compilation, the —reset_path switch does not appear in the
output script file. Therefore, DC2NCF does not support the —
reset_path switch.

Targets for Set Max Delay and Set False Path

DC2NCEF translates the Set Max Delay and Set False Path
commands to several Xilinx timing constraint commands, adding
elements in the from_list and the to_list to Xilinx timegroups
using the TIMEGROUP command. Issue a constraint between the
two timegroups using the FROM:<group>:TO:<group>:<delay>ns
(Set Max Delay) and FROM:<group>:TO:<group>:TIG; (Set False
Path) commands.

Xilinx allows only certain nodes for path start points and end
points. These nodes include RAMs, latches, registers and 1/0
ports. Therefore, from_list and to_list can only include references
to these types of objects.

The Replace FPGA command removes Set Max Delay and Set
False Path constraints (FPGA Compiler only).

The Replace FPGA command removes any Set Max Delay or Set
False Path constraints. As a result, when you use the Write Script
command after Replace FPGA. Write Script does not include in
the DC file it creates any Set Max Delay or Set False Path
constraints applied before Replace FPGA. To include these
constraints in the DC file, you must re-apply them after you use
the Replace FPGA command. Also, you must use the full
hierarchical names with the Set Max Delay and Set False Path
commands.

The VHDL Set Max Delay and Set False Path example follows.

anal yze —f vhdl filel.vhd
anal yze —f vhdl file2.vhd

el aborate TOPLVLENTI TY
set_port_is_pad “*”

i nsert _pads

/* Set Timing Constraints */

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

create_cl ock. .

set _max_del ay. .
set _fal se_path..
set _i nput _del ay. .
set _out put _del ay. .

conpile
repl ace_f pga
ungroup —all —flatten

/ *Reapply Timng Constraints */
report_port

al | _cl ocks

all _registers

set _max_del ay. .

set _fal se_path..

wite_script > “top.dc”

sh dc2ncf “top.dc”

exi t

The Verilog Set Max Delay and Set False Path example follows.

read —f verilog filel.v
read —f verilog file2.v

read —f verilog filen.v
set_port_is_pad “*”

i nsert _pads

/* Set Timng Constraints */
create_cl ock. .

set _max_del ay

set _false_path

conpi l e
repl ace_f pga
ungroup —all —flatten

/* Reapply Timng Constraints */
report_port

al | _cl ocks

all _registers

set _max_del ay. .

set _fal se_path..

wite_ script > “top.dc”

sh dc2ncf “top.dc”

exi t

Xilinx/Synopsys Interface Guide 4-55

Xilinx/Synopsys Interface Guide

4-56

Set Multicycle Path

DC2NCF does not support translation of the Set Multicycle Path
command. However, you can achieve equivalent functionality with
the Set Max Delay command. These two constraints differ in the
interpretation of their numerical field.

The syntax of the two commands follows.
set_multicycle_path path_multiplier,[-rise | —fall] \
[-setup | —hold] [-start | —end] \
[-fromfromlist] [-to to_list] [-reset_path] \
set _max_del ay delay_value [-rise | —fall] \
[-fromfromlist] [-to to_list] \
[—group_path group_nane] [-reset_path]

Delay_value specifies the absolute delay value in nanoseconds for the
path between the indicated start and end points. The period of the
clock that controls the path between the indicated start and end
points multiplies path_multiplier and specifies the path delay.

You can use the Set Max Delay command instead of the Set
Multicycle Path command by using the clock period multiplied by
the path_multiplier for the delay_value. The following example
illustrates this command substitution.

create_clock ny_clock_port —period 50 \
set_nulticycle_path 2 -fromfind(cell,“a_reg”) \
—-to find(cell,“b_reg”)

Alternatively, you can express this as shown in the following
example.

create_clock ny_clock _port —period 50 \
set _max_delay 100 —from find(cell,“a reg”) \

—-to find(cell,“b_reg”)

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

Note: When DC2NCEF translates Synopsys timing commands into
Xilinx syntax, point-to-point exception commands (such as Set Max
Delay and Set False Path) result in timegroup statements in the
resulting NCF file. For identification purposes, the names allocated to
timegroups include the line number of the related command in the
Synopsys script file. The following example shows the translation of a
line of a Synopsys script file.

set _max_delay 57 —from find(cl ock, cl ocka)
The DC2NCF output NCF file appears as follows.

TI MEGROUP tg_5_dest = FFS: LATCHES: RAMS: PADS;
ts_01 = FROM cl ocka: TO.tg_5 dest:57;

Compiling Your Design

After you insert the 1/0 pads, you can optimize your design for area,
speed, or a combination of both. To get the most effective results from
FPGA Compiler, apply accurate and achievable constraints. For
example, if you set a timing goal of 0 ns on all ports, FPGA Compiler
attempts to meet this goal by duplicating logic to reduce critical
paths. This can result in a significant and possibly unwarranted
increase in CLB and interconnect usage.

The following sections describe the commands you use to compile
and optimize your HDL design.

Optimizing Logic Across Hierarchical Boundaries

CLBs contain Boolean logic implemented in both function generators
and flip-flops. Compiling a hierarchical design or a design that uses a
DesignWare module does not optimize the logic across the
hierarchical boundary because DesignWare modules exist inside
their own hierarchical boundaries. Therefore, some CLBs only
implement flip-flops and contain unused function generators and
other CLBs only implement function generators and contain unused
flip-flops. Additionally, the Boolean logic in one hierarchy is not
optimized with that in another to reduce the CLB area or logic levels.

The choice of hierarchical boundaries can have a significant impact
on the area and speed of the synthesized design. Using FPGA
Compiler, you can optimize a design while preserving these
hierarchical boundaries.

Xilinx/Synopsys Interface Guide 4-57

Xilinx/Synopsys Interface Guide

4-58

The TOP design, illustrated in the following figure, references two
sub-blocks, one completely combinatorial (blockl) and one
completely sequential (block2).

TOP
BLOCK1 BLOCK 2
IN1
D FDC Q
OR2 C
cLock |

X4887

Figure 4-8 Sequential and Combinatorial Design

FPGA Compiler cannot move logic across levels of hierarchy. To
maintain the hierarchy you need two CLBs to implement the TOP
design. FPGA Compiler uses one CLB to implement the OR gate and
another to implement the FDC flip-flop.

However, if FPGA Compiler merges two subdesigns into a single
level of hierarchy, you need only one CLB to implement the TOP
design, illustrated in the following figure. FPGA Compiler can merge
the combinatorial and sequential logic into one CLB.

TOP
CLB
IN1
D FDC Q
N2 %Di > oun
OR2 c

CLOCK >———————

X4894

Figure 4-9 Merging into a Single Level of Hierarchy

To check if FPFGA Compiler can combine the combinatorial and
sequential logic across hierarchical boundaries, optimize the design
with and without hierarchy, and then compare the results as
described in the following sections.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

By default, FFGA Compiler does not flatten your design hierarchy.
You must use the Compile command with the Ungroup All option to
flatten your design. However, FPGA Compiler only partially
optimizes logic across hierarchical modules. Full optimization is
possible across those parts of your design hierarchy ungrouped in
FPGA Compiler. Flatten or reconstruct hierarchy artificially prior to
using the Compile command by issuing the Group and Ungroup
commands. Follow the guidelines for controlling flattening in the
Synopsys Design Compiler Family Reference Manual.

Using a Flattening Optimization Strategy

Flattening eliminates the existing logic structure. In general, you can
flatten random control logic because automatic structuring usually
improves upon manual structuring. For FPGA designs, flatten
designs when the number of CLBs needed to implement a Boolean
function seems too high or there are too many logic levels. You
probably do not need to flatten regular or highly structured designs
such as adders and ALUs designed with an explicit structure.

Flattening works especially well for the FPGA CLB structure because
FPGA Compiler has a built-in optimizer for Boolean logic. This
algorithm works efficiently when the structure decomposes
sufficiently so that the Boolean logic can map into the CLB function
generators.

Compiling the Design with Hierarchy

To compile the design and maintain its hierarchy, enter the following
command.

conpile —map_effort [l ow nmed| high] \

—boundary_optim zation
This command enables some logic optimization to occur across

hierarchical boundaries. For more information on this option, refer to
the Synopsys Design Compiler Family Reference Manual.

Even a flat design can end up containing hierarchical blocks after
compiling. These hierarchical blocks contain either Synopsys
DesignWare modules or XDW modules mapped during the
optimization process.

Xilinx/Synopsys Interface Guide 4-59

Xilinx/Synopsys Interface Guide

4-60

Compiling the Design without Hierarchy

To compile the design without hierarchy, enter the following
command.

conpile —map_effort [l ow nmed| hi gh] —ungroup_all
This command creates a flattened design and then optimizes it.

If your design contains Synopsys DesignWare modules (after the first
compile), re-compile your design using the Ungroup All option. This
command does not optimize XDW modules but instead optimizes the
entirely combinatorial Synopsys DesignWare modules. You cannot
optimize XDW modules because FPGA Compiler interprets them as
“black boxes.” The CLBs that implement the XDW parts have unused
flip-flops but the Xilinx design implementation tools can correct this
later on in the implementation flow.

Using the Ungroup command with the All Flatten option and then
compiling differs substantially from invoking the Compile command
with the Ungroup All option. If you run the Ungroup command
before using the Compile command, DesignWare components
inferred during compilation retain their hierarchy and can cause the
usage of unnecessary CLBs. See your Synopsys documentation for
more information on the Ungroup command.

Compiling a Design with Instantiated 1/O Cells

This section describes the design flow if your design contains
instantiated 170 cells. If you instantiate all /0 buffers (FPGA
Compiler does not need to automatically insert 1/0 buffers), do not
use the Set Port Is Pad and Insert Pads commands. Place a Dont
Touch attribute on all instantiated 170 buffers.

If your design contains some instantiated 1/0 buffers and you want
FPGA Complier to automatically insert the rest of the 1/0 buffers, do
the following.

e Usethe Set Port Is Pad command only on the I/0s that you want
the FPGA Compiler to insert.

¢ Place a Dont Touch attribute on all instantiated 170 buffers
before the design is compiled.

e Issue the Insert Pads command.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

See the bidi_reg.vhd and bidi_reg.v examples in the “Inserting

Bidirectional 1/0s” section for designs that contain both instantiated
I/0s and 1/0s inserted using FPGA Compiler. The bidi_reg.script

(VHDL) in the “Inserting Bidirectional 1/0s” section provides an

example script file illustrating the correct design flow.

Compiling XC4000, Spartan, and Virtex Designs

The following sample script file demonstrates how to compile your
XC4000 designs using FPGA Compiler.

/* s s s s s s s s s s p———
/* Sanple Script for Synopsys to Xilinx Using

/* FPGA Conpil er

/* Targets the Xilinx XC4028EX-3 and assunes a VHDL
/* source file by way of an exanpl e.

/* For general use with XC4000E/ EX architectures.
/* Not suitable for use with XC3000A/ XC5200

/* archi tectures.

/* s s s s s s s s s s p———
/* e —_——————————————pp—p————————— by

/* Set the nane of the design’s top-I|evel
/* (Makes the script nore readable and portable.)

/* Al so set some useful
/* designer and conpany

/ * s s s s s s s s s

TOP = calc

MOD1 = cl ockgen

MOD2 = count 3

MOD3 = st at mach

MOD4 = stack

MOD5 = bardec

MOD6 = seg7dec

MOD7 = alu

MOD8 = control

MODQ = switch7

MOD10 = debounce
designer = “XSI Teant
conpany = “Xilinx, Inc”

Xilinx/Synopsys Interface Guide

vari ables to record the
nane.

nodul e.

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

4-61

Xilinx/Synopsys Interface Guide

/* S S S o */
/* Analyze and El aborate the design file and specify */
/* the design file format. */
/* S S S o */
analyze —format vhdl MOD1 + “.vhd”
anal yze —format vhdl MOD2 + “.vhd”
anal yze —format vhdl MOD3 + “.vhd”
anal yze —format vhdl MOD4 + “.vhd”
anal yze —format vhdl MOD5 + “.vhd”
anal yze —format vhdl MOD6 + “.vhd”
analyze —format vhdl MJD7 + “.vhd”
anal yze —format vhdl MOD8 + “.vhd”
anal yze —format vhdl MOD9 + “.vhd”

anal yze —format vhdl MOD10 + “.vhd”
analyze —format vhdl TOP + “.vhd”
el aborate TOP

/* s e sy —_———— */
/* Set the current design to the top |evel. */
/* s s s sy g ————————————— */

/* s S S S T, T, T, T, T T, T, T T T T . T T T T S . S T T T S T S S S S S S S S S S S = */
/* Set the synthesis design constraints. */
/* s S S S T, T, T, T, T T, T, T T T T . T T T T S . S T T T S T S S S S S S S S S S S = */

renove_constraint -all

/* s s s sy g ————————————— */
/* Apply dont_touch attributes to instantiated prins */
/* s s s sy g ————————————— */

dont touch STARTUPBLK
dont touch “OSClI LLATOR/ OSCI LLATOR’
dont touch “OSCl LLATOR/ CLOCK_ BUF"

/* s S S S T, T, T, T, T T, T, T T T T . T T T T S . S T T T S T S S S S S S S S S S S = */
/* Indicate those ports on the top-Ilevel nodule that */
/* shoul d becone chip-level 1/0 pads. Assign any |/O */
/* attributes or paraneters and performthe I/0O */

4-62 Xilinx Development System

Synthesizing Your Design with FPGA Compiler

/*
/*

/*
/*
/*

/*
/*
/*

/*
/*
/*

/*
/*
/*
/*

/*
/*
/*

synt hesi s.

set _port_is_pad “*”
set _pad_type —slewrate H GH al | _out puts()
i nsert _pads

report_fpga > TOP + “.fpga”
report _timng > TOP + “.timng”

Wite out the design to a DB file. (Post conpile)

wite —format db —hierarchy —output TOP +

Repl ace CLBs and 1 0OBs with gates for non-Virtex

*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

ed. db”

*/
*/

parts. For Virtex parts do not use replace_fpga */

Xilinx/Synopsys Interface Guide

*/

4-63

Xilinx/Synopsys Interface Guide

/* Wite out the design to a DB. (Post replace_fpga) */
/* s s s s s b —p———— */

wite —format db —hierarchy —output TOP + “.db”

/* s s s s s s b —p———— */
/* Flatten the design's hierarchy to rationalize */
/* netlist and constraints files */
/* s s s s s s b —p———— */

ungroup —all —flatten

/* e —_——————————— e —————————pp——————————————————— */
/* Save design in EDIF format as <design>.sedif */
/* e —_——————————— e —————————pp——————————————————— */

write —format xnf —hierarchy —output TOP + “.edif”

/* e —_————————————————————————————————p—————————— */
/* Wite-out the tining constraints that were */
/* applied earlier. */
/* e —_————————————————————————————————p—————————— */

/* s s s s ey —p—————— */
/* Call the Synopsys-to-Xilinx constraints translator*/
/* utility DC2NCF to convert the Synopsys constraints*/

/* to a Xilinx NCF file. You nmay want to view */
/* dc2ncf.log to review the translation process. */
/* s s s ey —p—————— */
/* sh dc2ncf TOP + “.dc” */
/* e —_————————————————————— e ———————————————— */
/* Exit the Conpiler. */
/* s . . T, T, T, . T, T, T T . T T T T T T T T T T T T T T T T T T */
exi t

4-64 Xilinx Development System

Synthesizing Your Design with FPGA Compiler

/* s s s s s b —p———— */
/* Now run the Xilinx design inplenmentation tools. */
/* s s s s s b —p———— */

Creating the Area Report

FPGA Compiler reports area with the Report FPGA command as
follows.

report_fpga

The statistics reported by this command include the number of the
following elements used in your design.

* F G, and H function generators
« XDW cells

* Instantiated cells

» 3-state buffers

e Flip-flops

« 10Bs

The Report FPGA command also reports the number of CLBs used
for the design on the basis of the mapping performed by FPGA
Compiler.

The Report FPGA command provides an accurate CLB count when
FPGA Compiler provides packing information to the place and route
tools. However, the Synopsys output netlist suppresses packing data.
As a result, the actual CLB count can vary between FPGA Compiler’s
Report FPGA count and MAP’s mapping report. The Synopsys
output netlist suppresses packing data because it impacts the
routability of the design. For better results with the Xilinx tools,
ensure that the software controls the allocation of flip-flops and
function generators to CLBs. You can reactivate the Synopsys
packing data.

The reported number of CLBs can vary during design
implementation, however, the number of flip-flops, F, G, and H
function generators does not. Therefore, you can accurately assess a
design’s area in these terms. Use the Synopsys CLB count as a
conservative estimate.

Xilinx/Synopsys Interface Guide 4-65

Xilinx/Synopsys Interface Guide

Run the Report FPGA command after compiling your design
because the Compile command maps the logic into CLBs and 10Bs.
Also, run this command before replacing the CLB and IOBs with
gates (before running the Replace FPGA command).

The area utilization report below illustrates the Report FPGA output
for the bidi_reg design. The report shows the number of CLBs used.

LR R R I R R R R I I

Report : fpga

Design : bidi_reg

Ver si on: v1999. 10

Dat e . Fri Feb 25 14:43:20 2000

E R R S Sk bk I I R R R I R R I O

Xilinx FPGA Design Statistics

FG Function Generators 2
H Function Generators 0
Nurmber of CLB cells: 2
Nurmber of Hard Macros and

O her Cells: 4
Nurmber of CLBs in

O her Cells: 0
Total Nunber of CLBs: 2
Nunber of Ports: 8
Nunber of O ock Pads: 2
Nunmber of | OBs: 2
Nunmber of Flip Flops: 4
Nunber of 3-State Buffers: 4
Total Nunber of Cells: 14

Evaluating Timing Delays

4-66

The Synopsys tools report all delays in nanoseconds. The reported
delays include logic-level and interconnect delays. Because FPGA
Compiler synthesizes CLBs and 10Bs (XC4000, Spartan, and Virtex
devices) or LUTs and flip-flops (XC3000A, XC3100A/L, XC5200, and

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

XC9000 devices), it reports logic-level delays with a higher degree of
accuracy than Design Compiler. Because Design Compiler
synthesizes only logic gates, it provides only estimates of logic-level
delays. Logic-level delays are worst case.

Both FPGA Compiler and Design Compiler estimate possible
interconnect delays on the basis of a net’s fanout. These estimates
allow you to evaluate your design’s performance prior to performing
place and route. FPGA Compiler applies the wire-load model only to
nets between CLBs and 10Bs (XC4000 devices) or between LUTSs, 1/
Os, and flip-flops (XC3000A, XC3100A/L, and XC5200 devices).
Design Compiler’s estimates of interconnect delays based on fanout
match FPGA Compiler’s. However, because Design Compiler does
not have information on how your design maps and packs into LUTs
or CLBs, it applies the wire-load model to every net in your design.
This results in a less accurate net contribution to overall path delays.
You can use either average or worst-case wire-load models.

To evaluate the timing results, use the Report Timing command.
report_timng

Refer to the Synopsys Design Compiler Family Reference Manual for
information on other report options.

Run the Report Timing command after compiling the design because
the Compile command maps the logic into CLBs and 10Bs, and
before running the Replace FPGA command, which replaces the
CLBs and 10Bs with gates.

Only XC4000 and Spartan designs require the Replace FPGA
command.

Synopsys assigns a default “average case” wire-load model to all nets
in your design. Refer to the “Setting the Wire-Load Model” section at
the beginning of this chapter for more information.

Generating Reports for Debugging

FPGA Compiler includes additional commands that provide CLB
and IOB information for debugging purposes.

Use the following commands before using the Replace FPGA
command to replace CLBs and 10Bs with gates.

Xilinx/Synopsys Interface Guide 4-67

Xilinx/Synopsys Interface Guide

Generating a Configuration Report

You can generate a report that gives you CLB and IOB configuration
information similar to the reports generated with the Xilinx software.
This report contains information cell configuration and the logic
function it implements.

To generate a CLB and I0OB configuration report, first generate a
symbol or schematic view for the design using either of the following
methods.

¢ From Design Analyzer Menu, select Tool s - FPGA Conpi | er
- Report - Cell - Apply.

e From the DC shell prompt, ent er report_cell, ENTER

The system displays the following output in the Command window.

LR I R R R R R I I

Report : cell

Design : count8

Version: v1999. 10

Dat e . Fri Feb 25 14:55:16 2000

LR R R R R R I R

Attributes:
b - black box (unknown)
BO - reference all ows boundary optim zation
h - hierarchical
n- nonconbi nati onal
r - renovabl e
u- contains unmapped | ogic

Cel | Ref er ence Li brary Area Attributes
u62 i ob_4000 xf pga_4000-5 1.00 n
u64 i ob_4000 xf pga_4000-5 1.00 n
u66 i ob_4000 xf pga_4000-5 1.00 n
ue8 i ob_4000 xf pga_4000-5 1.00 n
u7o i ob_4000 xf pga_4000-5 1.00 n
ur2 i ob_4000 xf pga_4000-5 1.00 n
ur4 i ob_4000 xf pga_4000-5 1.00 n
u76 i ob_4000 xf pga_4000-5 1.00 n

4-68 Xilinx Development System

Synthesizing Your Design with FPGA Compiler

urs i ob_4000 xf pga_4000-5 1.00 n
uso i ob_4000 xf pga_4000-5 1.00 n
us2 BUFG F Xpri m 4000-5 0. 00 n
us3 cl b_4000 xf pga_4000-5 1.00 n
uss cl b_4000 xf pga_4000-5 1.00 n
us7 cl b_4000 xf pga_4000-5 1.00 n
us9 cl b_4000 xf pga_4000-5 1.00 n
add_21/ pl us/ LEFT_UNSI GNED_ARG 799
count8 inc_dec_ub 8 0 4. 00 BO, h, n

Total 16 cells 18. 00

Det ai | ed FPGA Configuration | nformation:
Cell Nanme: U62 TYPE: | OB

aJT: O

PAD: FAST I 1: | 2: TRI :

Cell Name: U64 TYPE: | OB
QUJT: O
PAD: FAST | 1: | 2: TRI :

Cel | Nane: U66 TYPE: 10B
aJt: O
PAD: FAST I 1: | 2: TRI :

Cell Nanme: U68 TYPE: | OB
QUJT: O
PAD: FAST | 1: | 2: TRI :

Cell Nanme: U70 TYPE: | OB
QUT: O
PAD: FAST | 1: | 2: TRI :

Cel | Nane: U72 TYPE: 10B
aJT: O
PAD: FAST I 1: | 2: TRI :

Cel | Nanme: U74 TYPE: |1 0B

QuT: O
PAD: FAST 1 1: | 2: TRI :

Xilinx/Synopsys Interface Guide 4-69

Xilinx/Synopsys Interface Guide

Cell Nanme: U76 TYPE: | OB

QuT: O

PAD: FAST | 1:
Cel |l Nanme: U78 TYPE: | OB

QuT: O

PAD: FAST | 1:
Cell Nane: UB0 TYPE: | OB

QuT: O

PAD: FAST | 1:
Cel | Nane: U83 TYPE: CL

X Y:

H1: DI N: C1

DX: DI N DY: G

EQUATE G = (Gl)

FFEX_NAME: QOUT_r eg<1>
Cel | Nane: U85 TYPE: | OB

X Y:

H1: DI N: C1

DX: DI N DY: G

EQUATE G = (Gl)

FFEX_NAME: QOUT_r eg<3>
Cel |l Nanme: U87 TYPE: | OB

X: Y:

H1: DIN: Cl1

DX: DI N DY: G

EQUATE G = (Gl)

FFX_NAME: QOUT_r eg<5>
Cel | Nane: U89 TYPE: | OB

X Y:

H1: DI N: C1

DX: DI N DY: G
4-70

FF

FF

FF

TRI:
TR :
TRI:
XQ QX YQ Q¥
SR C2 EC: C3

FFEX: EC. RESET: K
FFY: EC. RESET: K

Y_NAME: QOUT_r eg<0>

XQ QX YQ Qv
SR C2 EC: C3
FFX: EC: RESET: K
FFY: EC: RESET: K

Y_NAME: QOUT_r eg<2>

XQ QX YQ Q¥
SR C2 EC: C3
FFX: EC: RESET: K
FFY: EC: RESET: K

Y_NAME: QOUT_r eg<4>
XQ QX YQ QY
SR C2 EC. C3

FFEX: EC. RESET: K
FFY: EC. RESET: K

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

EQUATE G = (Gl)
FFX_NAME: QOUT_r eg<7> FFY_NAME: QOUT_r eg<6>

Generating a Hierarchical Schematic

As an alternative to interpreting the Report Cell output listing, you
can direct FPGA Compiler to replace all CLB and 10B cells with an
equivalent set of logic from the target libraries. Use the generated
schematic to determine what logic implemented the CLBs and 10Bs.

To generate a hierarchical CLB and 10B schematic, perform the
following steps.

1. Save your original design as a DB file using one of the following
methods. You do this because the commands used to generate
the hierarchical CLB and IOB schematic alter your design’s
hierarchy and logical representation.

SelectFil e -~ Save As - File Format ‘DB from the
Design Analyzer menu then click CK, or enter the following in the
command window.

wite —format db —hi erarchy —out put design. db

2. Select Tool s — FPGA Compiler — FPGA Cells to Gates
Opt i ons from the Design Analyzer menu, or enter the following
in the command window.

repl ace_fpga
After you finish viewing the hierarchical schematic, read in the
original DB file using one of the following methods.

SelectFile - Read - File Format ‘DB from the Design
Analyzer menu, specifying the appropriate file name. Then click
OK, or enter the following in the command window.

read —format db desi gn. db

Creating a Level for Each CLB and 10B

Create a hierarchy level for each CLB and 10B or a hierarchy level for
each function generator to assist you in locating logic or signals for
debugging purposes. To create levels of hierarchy in Design
Analyzer, select Tool s -~ FPGA Conpil er - FPGA Cells to
Gates Options - Create a Level of Hierarchy for each
CLB and | OB.

Xilinx/Synopsys Interface Guide 4-71

Xilinx/Synopsys Interface Guide

You can also enter the following at the DC Shell prompt.
repl ace_fpga —group_cells

After you select these options, the resulting logic does not accurately
reflect the timing of the actual CLB and IOB implementation. Timing
or area reports then produce inaccurate results.

Generating a Level for Each Function Generator

Generate hierarchical schematics that show the logic in each function
generator it implements. This process replaces each CLB by an F, G,
or H function generator, along with the used flip-flops. The function
generators add an additional level of hierarchy. To create a level of
hierarchy for each function generator, select Tool s - FPGA
Conpiler - FPGA Cells to Gates Options - Create a
Level of Hierarchy for each “Tabl e-I ookup” from the
Design Analyzer menu.

You can also enter the following at the DC Shell prompt.
repl ace_fpga —group_tlus

You can now view the implementation of the function generators.

Writing and Saving Your Design

4-72

After your design meets your timing and area requirements, you can
save the design as a DB file. For XC4000, Spartan, and Virtex devices
and FPGA Compiler only, replace the CLBs and 10Bs with gates. For
FPGA Compiler, set the design part type and any other supporting
information. Then, write and save your design as a netlist in either
XNF (FPGA Compiler non-Virtex architectures) or EDIF (FPGA
Compiler and Design Compiler for Virtex architectures) formats.

Saving the DB File

Save the Synopsys database file before converting your design to
gates by running the Replace FPGA command (XC4000, Spartan, and
FPGA Compiler only). If you use the Replace FPGA command
options for debugging, such as Group TLUS and Group Cell, save the
DB file before running these debugging options.

To save the DB file, choose one of the following methods.

* Enter the following from the Design Analyzer menu.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

File - Save As

File name: design_name.db

File Format: db

Save all Designs in Hierarchy: on
OK

* Type the following at the command line. (Select the top level of
your design.)

wite —format db —hi erarchy —output desi gn_nane. db

Replacing CLBs and IOBs with Gates

This section applies to XC4000 and Spartan devices and FPGA
Compiler.

After compiling with FPGA Compiler, XC4000 and Spartan designs
contain CLB and IOB elements used to determine the best
implementation of a design for a given set of constraints. Before
writing an output netlist, you must convert these CLBs and 10Bs into
gates recognizable by the Xilinx software. The mapping information
passes to the netlist with the FMAP, HMAP, and, optionally, BLKNM
parameters, so you can map your design according to FPGA
Compiler’s directions.

Invoking the Replace FPGA Command

Enter the following command at the command line at the top level of
your design.

repl ace_f pga

Replacing CLBs and IOBs in Designs with Hierarchy

Running the Replace FPGA command with either the Group Cells or
the Group TLUS option and then writing the netlist file generates
netlists for each level of hierarchy in your design. If you use the
Group Cells option, each CLB transforms into a level of hierarchy
with a netlist created for each CLB. Similarly, if you use the Group
TLUS option, each function generator transforms into a level of
hierarchy.

If you use these options, perform the following steps.

Xilinx/Synopsys Interface Guide 4-73

Xilinx/Synopsys Interface Guide

4-74

1. Delete the design from memory.

2. Read in the saved DB file saved prior to the Replace FPGA
command.

3. Run the Replace FPGA command without any options.

Controlling the Synopsys Mapping

This section applies only to FPGA Compiler.

By default, the FPGA Compiler XNF Writer contains information on
how it should map the logic into the CLB and 10Bs. FPGA Compiler
uses the FMAP and HMAP symbols to map Boolean logic into F and
H function generators, and the BLKNM attribute to group flip-flops
and function generators into a CLB.

When the XNF Writer includes FPGA Compiler’s mapping
information in the netlist, the accuracy of the estimated timing
information increases.

FPGA Compiler provides efficient mapping information, so leave the
mapping on. However, using FPGA Compiler to perform mapping
decreases the MAP program’s processing time.

Block names can restrict placement and routing. For this reason,
FPGA Compiler by default does not write the BLKNM attributes.

The following section describes how to remove FMAP and HMAP
information and restore BLKNM attributes.

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

Removing FMAP and HMAP Symbols

To remove the FMAP and HMAP mapping, enter the following at the
command line.

set_attribute find(design,"*") \

"xnfout_wite_map_synbol s" —type bool ean FALSE

Restoring BLKNM Attributes

To restore the creation of BLKNM attributes, enter the following at
the command line.

set _attribute find(design,"*") \

"xnfout _use_bl knanes" —type bool ean TRUE

Setting the Design Part Type

Type the following command at the command line to select a specific
part for the design. The following example uses a 4005EPC84-4
device.

set_attribute design_nanme "part" \
—type string "4005epc84-4"
You can also specify the part type when running NGDBuild.

Saving the Design Netlist File
Follow the instructions in the appropriate section below to save your
design netlist file.
Saving your Netlist in EDIF Format (Design Compiler)

Save your design netlist file in EDIF format with a .sedif extension to
denote its source. NGDBuild processes netlists from Synopsys in a
slightly different way than other netlists. The .sedif extension
indicates to NGDBuild to use the Synopsys design flow.

You can save your design as an SEDIF file by either of the following
methods.

Xilinx/Synopsys Interface Guide 4-75

Xilinx/Synopsys Interface Guide

4-76

e Select your design and then select the following from the Design
Analyzer menu.

File - Save As

File name: design_name.sedif

File Format: edif

Save all Designs in Hierarchy: on
XK

» Enter the following at the command line. (Select the top level of
your design.)

wite —format edif -hierarchy —output \

design_name.sedif

Saving your Netlist in XNF Format (FPGA Compiler)

Save your design netlist file in XNF format with a .sxnf extension to
denote its source. NGDBuild processes netlists from Synopsys in a
slightly different way than other netlists. The .sxnf extension
indicates to NGDBuild to use the Synopsys design flow.

The XNF netlist format can convey your design’s logical hierarchy
only with hierarchical instance names and net names. Therefore,
flatten your design’s hierarchy prior to writing out a netlist in XNF
format. Although this removes the design hierarchy from the
Synopsys design database, hierarchical net and instance names
remain unchanged. As a result, the XNF file still conveys your
design’s hierarchy. After you have flattened your design, you can
then write out the netlist.

You can save your design as an SXNF file by either of the following
methods.

» Select your design and then select the following from the Design
Analyzer menu.
Set up —» Command W ndow

ungroup —all —flatten

File - Save As

Xilinx Development System

Synthesizing Your Design with FPGA Compiler

File name: design_name.sxnf

File Format: xnf

Save all Designs in Hierarchy: off

0.4

Enter the following at the command line. (Select the top level of
your design.)

ungroup —all —flatten

wite —format xnf —output design_nane. sxnf

Using the Xilinx Development System

To translate your design to a bit file so the Xilinx tools can program
your device, perform the following steps.

1.
2.

N oo o &

Run NGDBuild on the SXNF or SEDIF file to create an NGD file.

Run the MAP program on the NGD file to create a mapped NCD
file.

Run the TRACE program to determine if PAR will meet your
timing goals.

Run PAR on the NCD file to place and route your design.
Run TRACE again on your placed and routed design.
Run NGDAnNnNo on your routed design to create an NGA file.

Run either NGD2VHDL or NGD2VER on the NGA file to create a
VHD or VER file that can be simulated with the appropriate
simulators.

Run the BitGen program to create a bitstream for programming
the FPGA.

Xilinx/Synopsys Interface Guide 4-77

Xilinx/Synopsys Interface Guide

4-78 Xilinx Development System

Chapter 5

Using CORE Generator and LogiBLOX

CORE Generator is a graphic user interface (GUI) tool for creating
RLOC’d cores. CORE Generator optimizes core layout to the target
FPGA architecture, allowing higher performance. CORE Generator
differs from LogiBLOX but this information is included here because
both provide a GUI toolset you can use to create your design.

Refer to the CORE Generator documentation for more information
about using that product with XSI.

LogiBLOX is a GUI tool for creating high-level modules such as
counters, shift registers, and multiplexers. LogiBLOX includes both a
library of generic modules and a set of tools for customizing them.
You can also use the modules you create in your HDL designs.
LogiBLOX generates a simulation model (VHDL, EDIF, or Verilog)
for each LogiBLOX module during design entry. This enables
immediate simulation of LogiBLOX designs without logic
implementation.

Refer to the LogiBLOX Guide for a complete explanation of LogiBLOX.
Note LogiBLOX does not support Virtex or its derivatives.

This chapter includes the following sections.

e “Using CORE Generator”

e “Specifying Inputs and Outputs in LogiBLOX”

e “Using LogiBLOX in the HDL Design Flow”

e “Instantiating RAM”

Xilinx/Synopsys Interface guide 5-1

Xilinx/Synopsys Interface guide

Using CORE Generator

The basic flow of using CORE Generator with XSI involves selecting a
core in CORE Generator, entering parameters, then generating the
core. You then instantiate the cores in your XSI design.

The CORE Generatordocumentation provides details about how to
use CORE Generatorwith XSI.

Apply a Don’t Touch attribute to all CORE Generator cores used in
XSI.

Specifying Inputs and Outputs in LogiBLOX

5-2

Use the LogiBLOX Module Selector GUI, shown in the following
figure, to create LogiBLOX modules. Specifying a LogiBLOX module
consists of selecting or deselecting optional pins on the symbol, and
specifying various module attributes, resulting in a module
customized for a specific function.

Xilinx Development System

Using CORE Generator and LogiBLOX

rLI LogiBELOX Module Selector L
 Selection oI |
Module Mame Module Type Eus YWidth
I |ﬂ |.ﬁ.ccumulat0rs ﬂ E4 ﬂ Cancel |
~ Details setp |
AddfSub Help |
I Carry Input =

¥
j— D [_0uT
B +-

I Feg'd Overflow

- Load
o I Feg'd Carry Output

7 Clock Enable
Clack

I Owerflow
I Carry Output

A Async. Control
- Sync. Control

© Walue = |
Operation = [Add/Subtract ¥
Style = [Maximum Speed A
Encoding = [Unsigned A

Async. val = |

Figure 5-1 Module Selector

After you complete the module specification, LogiBLOX uses its
symbol generator, model generator, and netlist generator to create
the following three outputs and store them in the current project
directory.

* Aschematic symbol for inclusion on the schematic

The symbol generator creates a symbol definition file that your
third-party interface converts into a schematic symbol.

For Synopsys or synthesis tools, the symbol generator creates a
Verilog/VHDL instantiation template.

e AnRTL HDL simulation model

The model generator creates an RTL HDL simulation model for
the LogiBLOX module.

Xilinx/Synopsys Interface guide 5-3

Xilinx/Synopsys Interface guide

The RTL model permits immediate simulation of your design in
those environments that support mixed schematic and RTL
simulation.

e Gate-level netlists, produced as an alternative simulation
medium

The netlist generator creates a gate-level netlist for the LogiBLOX
module converted to the third-party’s simulation format. These
netlists permit immediate simulation of the design in gate-level
simulation environments.

Using LogiBLOX in the HDL Design Flow

5-4

You can instantiate LogiBLOX components in your HDL code to take
advantage of their high-level functionality.

Express each LogiBLOX module in HDL code with a component
declaration describing the module type and a component
instantiation describing how the module connects to the other design
elements.

Follow these steps to use the LogiBLOX program.

1. Invoke the Module Selector from an icon or from the command
line.

2. Configure your project directory using the LogiBLOX Setup
window. The default directory is your current directory.

3. Select a base module type (for example, Counter, Memory, or
Shift-register)

4. Customize the module by selecting pins and specifying
attributes.

5. Press OK after completely specifying a module. Pressing OK
initiates the generation of a component instantiation declaration,
an RTL model, and an implementation netlist.

6. Deposit the HDL module declaration or instantiation into your
HDL design.

7. Complete the signal connections of the instantiated LogiBLOX
module to the rest of your HDL design.

Xilinx Development System

Using CORE Generator and LogiBLOX

8. Conduct functional simulation on your design. The HDL
simulator reads the component declaration and looks for an RTL
model.

9. Apply a Dont Touch attribute to all LogiBLOX modules.

10. Implement your design by invoking the Xilinx implementation
tools.

11. Simulate your post-layout design by converting your design back
to a timing netlist and invoking the back-annotation flow.

Instantiating RAM

You can implement memory using LogiBLOX, creating RAM and
ROM between 1 to 32 bits wide and 2 to 256 bits deep. Using
LogiBLOX to add RAM or ROM to your design provides an efficient
implementation of your memory in addition to a simulation model
for RTL simulation.

Note: For Verilog designs, use the Remove Design command on
instantiated LogiBLOX memory before writing out the design.

You can instantiate RAM in your designs using LogiBLOX, as shown
in the following VHDL and Verilog examples. A sample script file
follows each example. Refer to the LogiBLOX Guide for more
information about using LogiBLOX.

The following example shows how to instantiate RAM using
LogiBLOX with VHDL.

library |EEE;
use | EEE. std_| ogic_1164.all;

entity test is

port (ADDRESS: IN std_logic_vector(5 dowto 0);
DATAQUT: OUT std_l ogic_vector(3 downto 0);
DATAIN: IN std_|logic_vector(3 dowto 0);
VWRI TEN: I N std_I ogic;
CLK: IN std_l ogic);

end test;

architecture inside of test is

conponent testram

Xilinx/Synopsys Interface guide 5-5

Xilinx/Synopsys Interface guide

port (A IN std_logic_vector(5 dowmto 0);
DO OUT std_logic_vector(3 downto 0);
Di: INstd_|ogic_vector(3 dowto 0);
WR_EN: I N std_| ogic;
WR CLK: IN std_logic);
end conponent;

begi n

U0: testram port nap(A=>ADDRESS, DO=>DATAQUT, DI =>DATAI N,
VWR_EN=>WRI TEN, WR_CLK=>CLK)

end i nsi de;

/*:::*/
/* Sanple Script for Synopsys to Xilinx Using */
/* FPGA Conpiler with Logi BLOX Menory */

/* Targets the Xilinx XC4028EX-3 and assunes a */

/* VHDL source file by way of an example. */

/* */
/* For general use with XCA4000E/ EX architectures.*/
/* Not suitable for use with XC3000A/ XC5200 */
/* archi tect ures. */
/*:::*/
/* s s s s s s ———————— */

/* Set the nanme of the design’s top-Ilevel nodule.*/
/* (Makes the script nore readable and portable.)*/
/* Also set some useful variables to record the */

/* desi gner and company narne. */

/* ::*/
TOP = test

/* o ——————=——=—=—=—=— */

/* Note: Assunes design file- */
/* nane and entity nane are */
/* the same (m nus extension) */
/* o ——————=——=—=—=—=— */

"XSlI Teant
"Xilinx, Inc"

desi gner
conpany

5-6 Xilinx Development System

Using CORE Generator and LogiBLOX

/*
/*
/*
/*

/*
/*

/*

/*
/*
/*
/*

part = "4028expg299- 3"

s s T, T, T, T, T, T T T, T T T T T T T T T T T T T */
Anal yze and El aborate the design file and specify */
the design file format. */

analyze —f vhdl TOP + ".vhd"
el aborate TOP

renmove_constraint -all

Sone exanpl e constraints */
create_cl ock <clock_port_name> —period 50
set i nput _delay 5 —cl ock <cl ock_port_name> \
{ <a_list_of _input_ports>}
set _out put _delay 5 —cl ock <cl ock_port_nane> \
{ <a_list_of _output_ports>}
set _max_del ay 100 —from <source> —to <desti nation>
set _false_path —from <source> —-to <destination> */

Pl ace dont _touch on Logi BLOX instantiation */
set _dont _touch {U0}

s s s s s s s s s */

I ndi cate those ports on the top-level nodule that */
shoul d becone chip-level 1/0O pads. Assign any 1/0O */
attributes or paranmeters and performthe 1/0O */

Xilinx/Synopsys Interface guide 5-7

Xilinx/Synopsys Interface guide

/* synthesis. */
/* s s s s s s s sy —p———— */

set _port_is_pad "*"

/* Some exanple 1I/0O paraneters */
/* set_pad_type —pullup <port_nane>
set _pad_type —no_clock all _inputs()
set _pad_type —cl ock <cl ock_port_nane>
set _pad_type —exact BUFGS_F <hi _fanout_port_name>
set _pad_type —slewate H CH all _outputs() */

/* s s s */
/* Note: Synopsys slewcontrol= */
/* HGH is the same as Xilinx's */
/* slewate=SLON Synopsys slew */
/* control =LOWis same as Xilinx */
/* sl ewr at e=FAST. */
/* s s */

/* s s T, T, T, T, T T T, T, T T, T T, T T T T T T T T */
/* Synthesize and optinize the design */
/* s p—————— */

/* s p———————— */
/* Wite the design report files. */
/* s p———————— */
report_fpga > TOP + ".fpga"
report _timng > TOP + ".timng"
/* s s e s s g —————— */

/* Wite out the design to a DB file. (Post conpile) */

/* s p———————— */
wite —format db —hierarchy —output TOP + " _conpil ed. db"

5-8 Xilinx Development System

Using CORE Generator and LogiBLOX

/*
/*

/*
/*
/*

/*
/*
/*
/*
/*
/*

/*

/*
/*
/*

/*

/*
/*
/*
/*
/*
/*

/*

s s T, T, T, T, T T, T, T, T, T T T, T T T T T T T T */

Optional attribute to renove the FPGA Conpiler's */
mappi ng structures fromthe design. This permts */
The Xilinx design inplenmentation tools to map the */
desi gn i nst ead. */

set _attribute find(design,"*") "xnfout_wite_map_synbol s" \
—type bool ean FALSE */

set _attribute <port_nane> "pad_l ocation" \
—type string "<pad_l ocation>" */

Wite-out the timing constraints that were */

applied earlier. (Note that any design hierarchy */
needs to be flattened before the constraints are */
written-out.) */

ungroup —all —flatten
wite_script > TOP + ".dc"

Wite out the design as a .sxnf file */

Xilinx/Synopsys Interface guide 5-9

Xilinx/Synopsys Interface guide

wite —f xnf —=h —o TOP + ".sxnf"

/* s s T, T, T, T, T T, T, T, T, T T T, T T T T T T T T */
/* Call the Synopsys-to-Xilinx constraints translator*/
/* utility DC2NCF to convert the Synopsys constraints*/

/* to a Xilinx NCF file. You may like to view */
/* dc2ncf.log to review the translation process. */
/* S S S */

sh dc2ncf TOP + ".dc"

/* s s T, T, T, T, T T, T, T, T, T T T, T T T T T T T T */
/* Exit the Compiler. */
/* s s, T, T, T, T, T, T T, T, T, T T, T T T T T T T T T T T */
exit
/* s s s s s e sy —p———— */
/* Now run the Xilinx design inplenentation tools. */
/* s s s s s e sy —p———— */

The following example shows how to instantiate RAM using
LogiBLOX with Verilog.

nmodul e test (address, dataout, datain, witen,clk);

i nput [5:0] address;
out put [3:0] dataout;
i nput [3:0] datain;

i nput witen;

i nput clk;

testram U0
(. A(address),
. DQ(dat aout),
. Dl (dat ai n),
. VR _EN(writen),
.MR_CLK(cl k));

endnodul e

5-10 Xilinx Development System

Using CORE Generator and LogiBLOX

11
11
11
11
11
/1
/1

Logi BLOX SYNC_RAM Mbdul e "testrant
Created by Logi BLOX version M. 2.11
on Sun May 18 19: 34: 35 1997

Attributes
MODTYPE = SYNC _RAM
BUS W DTH = 4
DEPTH = 64

modul e testram(A, DO, DI, WR EN, WR CLK);

i nput [5:0] A
output [3:0] DG
i nput [3:0] DI;

i nput WWR_EN;

i nput WR_CLK;

endnodul e

/* e —_————————p———————— g —

/* Sanpl e Script for Synopsys to Xilinx Using

/* FPGA Conpiler with

/* Logi BLOX Menory

/ *

/* Targets the Xilinx XC4028EX-3 and assunes a

/* Verilog source file by way of an exanple.

/ *

/* For general use with XC4000E/ EX architectures.

/* Not suitable for use with XC3000A/ XC5200

/* archi tect ures.

/* s S S . T, T, T, T, T, T T . T T T T . T . T S S . T S T S T S S S S S S S S S S S S =

/* s s s s s g g ————————————

/* Set the nanme of the design’s top-Ilevel nodule.

/* (Makes the script nore readable and portable.)

/* Also set sonme useful variables to record the

/* desi gner and company nane.

/* s s s s s g g ————————————
TOP = test

Xilinx/Synopsys Interface guide

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

5-11

Xilinx/Synopsys Interface guide

/* s

/* Note: Assunes design file- */

/* name and entity nane

are */

/* the same (m nus extension) */

/* s

designer = "XSI Teant
conpany = "Xilinx, Inc"
part = "4028expg299- 3"

/* o S o

===== */

===== */

/* Analyze and El aborate the design file and specify */

/* the design file format.

/* o S o

read —f verilog "testramv"
read —f verilog TOP + ".v"

/ * - - - - - - - - - T

/* Set the current design to the top |evel

/ * - - - - - - - - - T

/ * - - - - - - - - - T

/* Set the synthesis design constraints.

/ * s s s s s s s s

renove_constrai nt -al

/* Some exanple constraints */
/* create_cl ock <clock_port_nanme> —period 50
set _input_delay 5 —clock <clock_port_nane> \
{ <a_list_of _input_ports>}
set _output_delay 5 —cl ock <cl ock_port_name>
{ <a_list_of _output_ports>}

===== */

===== */
*/
===== */

===== */
*/

\

set _max_delay 100 —from <source> —to <desti nati on>

set _false_path —from <source> —to <destinati
*/

5-12

on>

Xilinx Development System

Using CORE Generator and LogiBLOX

/* Place dont_touch on Logi BLOX instantiation
set _dont _touch {U0}

/* s s s s s b —p————
/* Indicate those ports on the top-level nodul e that
/* shoul d beconme chip-level 1/0 pads. Assign any |1/0O
/* attributes or paraneters and performthe I/0

/* synthesis.

/* s s s s s b —p————

set _port_is_pad "*"

/* Some exanple |1/O paraneters
/* set_pad_type —pullup <port_nane>
set _pad_type —no_clock all _inputs()
set _pad_type —cl ock <cl ock_port_nane>
set _pad_type —exact BUFGS_F <hi _fanout _port_name>
set _pad_type —slewate H CGH all _out puts()

/* s e s s s s p—p— */
/* Note: Synopsys slewcontrol =
/* HGH is the sanme as Xilinx's
[* sl ewrate=SLON Synopsys sl ew
/* control =LOWis same as Xilinx
/* sl ewr at e=FAST.

i nsert _pads
/* s s s sy —p——————

/* S S o o o - - o ooz

/* s s s s s s s s e

/* s s s s s s s s e

Xilinx/Synopsys Interface guide

*/

*/
*/
*/
*/
*/
*/

*/

*/

*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/

5-13

Xilinx/Synopsys Interface guide

report_fpga > TOP + ".fpga"

report _timng > TOP + ".timng"
/* e —_———————————————p e —————————— g */
/* Wite out the design to a DB file. (Post conpile) */
/* e —_———————————————p e —————————— g */
wite —format db —hi erarchy —output TOP + " _conpil ed. db"
/* e —_—————————————p——p————————— e ———————————————— */
/* Replace CLBs and I 0OBs with gates. */
/* e —_—————————————p——p————————— e ———————————————— */
repl ace_f pga
/* s s s s s s s b p———— */
/* Set the part type for the output netlist. */
/* s s s s s s s b p———— */

/* s s s s s s b p———— */
/* Optional attribute to renove the FPGA Conpiler's */
/* mapping structures fromthe design. This permts */
/* The Xilinx design inplenentation tools to map the */
/* design instead. */
/* s s s s s s b p———— */

/* set_attribute find(design,"*") "xnfout_write_nap_synbol s" \

—type bool ean FALSE */
/* e —_—————————————p——p———————— e ————————————————— */
/* Add any I/ O constraints to the design. */
/* e —_—————————————p——p———————— e ————————————————— */
/* set _attribute <port_nane> "pad_|l ocation" \

—type string "<pad_l ocation>" */

5-14 Xilinx Development System

Using CORE Generator and LogiBLOX

/*
/*
/*
/*
/*

/*
/*
/*

/*

/*
/*
/*
/*
/*
/*

/*
/*
/*

/*
/*

Wite-out the timng constraints that were */
applied earlier. (Note that any design hierarchy */
needs to be flattened before the constraints are */
written-out.) */
s s s s s b —p———— */

ungroup —all —flatten
wite_script > TOP + ".dc"

Renove the Logi BLOX Menory from the Environment */
This is done to prevent insure that the */
.ngo file from Logi BLOX i s used. */

renove_desi gn testram

Wite out the design as a .sxnf file */
wite —f xnf -h —o TOP + ".sxnf"

e —_——————————————————————p———————————p—p—p——————— */
Call the Synopsys-to-Xilinx constraints translator*/
utility DC2NCF to convert the Synopsys constraints*/

toa Xilinx NCF file. You may like to view */
dc2ncf.log to review the transl ati on process. */

sh dc2ncf TOP + ".dc"

S S S o . o */
Exit the Conpiler. */
S S S o */
exit

e —_——————————————————————p———————————p—p—p——————— */
Now run the Xilinx design inplenentation tools. */
e —_—————————————p——————————p—p——————————p———————— */

Xilinx/Synopsys Interface guide

5-15

Xilinx/Synopsys Interface guide

5-16

Instantiating RAM or ROM with FPGA Compiler

Use the following procedures and examples to instantiate a
LogiBLOX RAM or ROM in Verilog or VHDL with FPGA Compiler.

1.

Create a LogiBLOX RAM/ROM with the LogiBLOX GUI.

When specifying options for LogiBLOX, specify the vendor type
as Synopsys. Also specify in the LogiBLOX GUI whether you
need Verilog or VHDL files.

For Verilog, create an NGC, VEI, and V file. For VHDL, create a
NGC, VHI, and VHD file.

The V and VHD files are simulation models. The VEI and VHI
files are templates which assist in instantiating the LogiBLOX
into your HDL. The NGC file is the actual LogiBLOX module for
your design.

For the Verilog flow, use the name of the NGC file as the name of
the module instantiation in the Verilog code.

The VEI file contains the module name, pin names, and port
names needed to instantiate the LogiBLOX memory. Do not just
rename the VEI file to a V file. Use the VEI file as a template for
instantiating the LogiBLOX memory in your design.

For the Verilog flow, make an empty Verilog file for the
LogiBLOX module to tell the Synopsys netlist writer the pin
directions for the LogiBLOX module.

A module with pin names and pin directions exists in the .vei file
produced by LogiBLOX. Cut this empty module out and place it
in a Verilog file with the same name as the LogiBLOX module
you created.

Read this file into Synopsys during the compile of your design.

For the Verilog flow, after instantiating the LogiBLOX into your
design, place a Dont Touch attribute on every instantiated
LogiBLOX instance.

For the Verilog flow, synthesize the design with the normal XSI
run script.

Note Before writing out the netlist file, remove the LogiBLOX
memory from the Synopsys memory. This prevents Synopsys
from overwriting the LogiBLOX module.

Xilinx Development System

Using CORE Generator and LogiBLOX

8. For VHDL, use the name of the NGC file as the name of the
component instantiation in the VHDL code. The VHI file contains
an example of how to instantiate the LogiBLOX into VHDL.

9. For VHDL, after instantiating the LogiBLOX into your VHDL
code, place a Dont Touch attribute on every instantiated
LogiBLOX instance.

10. For VHDL, synthesize the design. The synthesis run script for
VHDL is the same as the standard XSl run script.

The following example shows the testram LogiBLOX module V file
created from the VEI file.

nmodul e testranm(A, DO DI, WR EN, WR CLK);
input [5:0] A

out put [3:0] DG

input [3:0] Di;

i nput WR_EN;

i nput WR _CLK;

endnodul e

The following example shows the instantiation of a LogiBLOX design
in Verilog code.

nodul e test(address, dataout, datain,witen,clk);
i nput [5:0] address;
out put [3:0] dataout;
i nput [3:0] datain;
i nput witen;
i nput clk;
testram W0
(. A(address)
. DQ(dat aout),
. Dl (dat ai n),
.VR_EN(writen),
VMR _CLK(clk));
endnodul e

The following example shows the run script for compiling a
LogiBLOX design in Verilog.

read -f verilog “testramv” read -f verilog
“test.v”

set _port_is_pad “*” insert_pads

conpi l e

Xilinx/Synopsys Interface guide 5-17

Xilinx/Synopsys Interface guide

5-18

repl ace_f pga

ungroup -all -flatten
write_script test.dc

sh dc2ncf test.dc
remove_design testram

wite -f xnf -h -0 “test.sxnf”

The following example shows an instantiation of a LogiBLOX design
in VHDL code.

library |EEE;
use | EEE. std_| ogic_1164.all;
entity test is
port (ADDRESS: IN std_logic_vector(5 dowto 0);
DATAQUT: OUT std_l ogic_vector(3 downto 0);
DATAIN. IN std_ |l ogic_vector(3 dowto 0);
VWRI TEN: I N std_I ogic;
CLK: IN std_l ogic);
end test;
architecture inside of test is
conmponent testram
port (A: IN std_logic_vector(5 dowto 0);
DO OUT std_ | ogic_vector(3 downto 0);
Di: INstd_|ogic_vector(3 downto 0);
WR_ EN: I N std_I ogic;
WR CLK: IN std | ogic);
end conponent;
begi n
U0: testram port
map(A=ADDRESS, DO=DATAQUT, DI =DATAI N,
WR_EN=VRI TEN, WR_CLK=CLK) ;
end insi de;

The following example shows a run script for instantiated LogiBLOX
designs in VHDL code.

analyze -f vhdl “test.vhd” el aborate test
set_port_is_pad “*” insert_pads

conpi l e
repl ace_fpga
ungroup -all -flatten

wite script test.dc
sh dc2ncf test.dc
wite -f xnf -h -0 “test.sxnf”

Xilinx Development System

Using CORE Generator and LogiBLOX

Instantiating RAM or ROM with FPGA Compiler Il

Use the following procedures to instantiate a LogiBLOX RAM or
ROM in Verilog or VHDL with FPGA Compiler Il.

1. Create a LogiBLOX RAM or ROM with the LogiBLOX GUI.

When specifying options for LogiBLOX, specify the vendor type
as Synopsys. Also specify in the LogiBLOX GUI whether you
need Verilog or VHDL files.

2. For Verilog, create an NGC, VEI, and V file. For VHDL, create an
NGC, VHI, and VHD file.

The V and VHD files are simulation models. The VEI and VHI
files are templates which assist in instantiating the LogiBLOX
into your HDL. The NGC file is the actual LogiBLOX module for
your design.

3. For the Verilog flow, use the name of the NGC file as the name of
the module instantiation in the Verilog code.

The VEI file contains the module name, pin names, and port
names needed to instantiate the LogiBLOX memory. Do not
rename the VEI file to a V file. Use the VEI file as a template for
instantiating the LogiBLOX memory in your design.

4. For the Verilog flow, make an empty Verilog file for the
LogiBLOX module to tell the Synopsys netlist writer the pin
directions for the LogiBLOX module.

Xilinx/Synopsys Interface guide 5-19

Xilinx/Synopsys Interface guide

5-20

In the VEI file produced by LogiBLOX, there is a module with pin
names and pin directions. Cut this empty module out and place it
in a Verilog file with the same name as the LogiBLOX module
you created.

Read this file into FPGA Compiler Il during the compiling of
your design.

After implementing the design files in FPGA Compiler Il, notice
in the Warnings window a number of warnings about the
instantiated LogiBLOX module. FPGA Compiler Il reports that it
cannot link to the instantiated design. Also, FPGA Compiler Il
can report that some of the wires attached to the instantiated
LogiBLOX have multiple drivers. Ignore these warnings.

Additionally, after implementing the design, in the modules view
in the Edit Constraints view, all instantiated LogiBLOX modules
are tagged as UNLINKED, a normal situation. UNLINKED
means that FPGA Compiler Il cannot find a library cell in its
synthesis library that matches, a normal situation because the
instantiated LogiBLOX is a black-box.

After implementing the design, if the implementation icon
contains a “!I” mark, optimize (synthesize) the design and write
out the netlist file.

For VHDL, use the name of the NGC file as the name of the
component instantiation in the VHDL code.

The VHI file contains an example of how to instantiate the
LogiBLOX into VHDL.

After implementing the design files in FFGA Compiler Il, notice
in the Warnings window a number of warnings about the
instantiated LogiBLOX module. FPGA Compiler Il reports that it
cannot link to the instantiated design. Also, FPGA Compiler Il
can report that some of the wires attached to the instantiated
LogiBLOX have multiple drivers. Ignore these warnings.

Additionally, after implementing the design, in the modules view
in the Edit Constraints view, all instantiated LogiBLOX modules
are tagged as UNLINKED, a normal situation. UNLINKED
means that FPGA Compiler Il cannot find a library cell in its
synthesis library that matches, a normal situation because the
instantiated LogiBLOX is a black-box.

Xilinx Development System

Using CORE Generator and LogiBLOX

10. After implementing the design, if the implementation icon
contains a “!” mark, optimize (synthesize) the design and write
out the netlist file.

The following examples shows the testram LogiBLOX module V file
created from the VEI file.

modul e testram(A, DO, DI, WR EN, WR CLK);
i nput [5:0] A

out put [3:0] DG

input [3:0] Di;

i nput WR_EN;

i nput WR _CLK;

endnodul e

The following example shows the instantiation of a LogiBLOX design
in Verilog code.

nodul e test(address, dataout, datain, witen,clk);
i nput [5:0] address;
out put [3:0] dataout;
i nput [3:0] datain;
i nput witen;
i nput clk;
testram W0
(.A(address),
. DQ(dat aout),
. Dl (dat ai n),
.VR_EN(writen),
VMR _CLK(clk));
endnodul e

The following examples shows an instantiation of a LogiBLOX design
in VHDL code.

library |EEE;

use | EEE. std_| ogic_1164.all;

entity test is

port (ADDRESS: IN std_logic_vector(5 dowto 0);
DATAQUT: OUT std_l ogic_vector(3 downto 0);
DATAIN: IN std_|logic_vector(3 dowto 0);
VWRI TEN: I N std_I ogic;
CLK: IN std_l ogic);

end test;

architecture inside of test is

Xilinx/Synopsys Interface guide 5-21

Xilinx/Synopsys Interface guide

conponent testram
port (A IN std_logic_vector(5 dowmto 0);

DO QUT std_|ogic_vector(3 dowto 0);
Di: INstd_|logic_vector(3 downto 0);
WR_EN: IN std_| ogic;
WR CLK: I N std_logic);

end conponent;

begi n

U0: testram port

map(A=ADDRESS, DO=DATAQUT, DI =DATAI N,
WR_EN=WRI TEN, WR_CLK=CLK) ;
end insi de;

5-22 Xilinx Development System

Chapter 6

Simulating Your Design

You can efficiently verifyyour design changes with the XSI VHDL
and Verilog simulation options described in this chapter. VHDL
simulation supports the VHDL Initiative Towards ASIC Libraries
(VITAL) standard, which allows you to simulate with any VITAL-
compliant simulator, including Synopsys VSS. Built-in Verilog
support allows you to simulate with Cadence Verilog-XL and other
compatible simulators.

XSl simulation options provide the following.

* Fast, timing-accurate, gate-level HDL simulation with the VHDL,
VITAL-compliant, or Verilog versions of the SimPrim Library

« RTL or post-synthesis, functional verification of designs
containing instantiated Xilinx Unified Library components, using
either the VITAL or Verilog versions of the UniSim Library

e Support for FPGA architecture features such as Global Set/Reset,
Oscillator, RAM, and ROM

This chapter includes the following sections:
e “Simulation Design Flow Overview”

e “Using Simulation Libraries”

« “Working with the VITAL Standard”

e« “VHDL and Verilog Simulation Flow”

e “Synthesizing/Simulating for VHDL Global Set/Reset
Emulation”

* “NGDBuild Support of Multiple Device Architectures”
« “Recommended VSS Simulation Strategy”

e “VSS Simulation Flow”

Xilinx/Synopsys Interface Guide 6-1

Xilinx/Synopsys Interface Guide

e “Editing the VSS Setup File”
e “Creating a Testbench File”
e “Using RTL Simulation”

* “Implementing Your Design”

Simulation Design Flow Overview

A typical single chip VHDL or Verilog simulation design flow
includes the following steps, illustrated in Figure 6-1

Generation of a VHDL RTL description
VHDL RTL simulation

Synthesis implementation

1
2
3
4. Optional unit delay gate-level functional simulation
5. Xilinx Implementation

6

Timing simulation

6-2 Xilinx Development System

Simulating Your Design

Original HDL Source Testbench

C)C ')

I VHDLAN -i |I VHDLAN -i |

VSS v1998.08

or later

(VITAL) f

VHDLAN -i (.synopsys_vss.setu p)

- UniSim source code for RTL
W simulation of instantiated

unified library primitives.
(VITAL)

X9246

Figure 6-1 HDL Simulation Design Flow

Using Simulation Libraries

This section provides information on the libraries needed to simulate
your VHDL and Verilog designs.

UniSim Library

To make an RTL simulation FPGA-specific, the design must contain
instantiated Unified Library or LogiBLOX components. To support
these instantiations, Xilinx provides a functional UniSim library and
a behavioral LogiBLOX library. The VHDL and Verilog versions of

Xilinx/Synopsys Interface Guide 6-3

Xilinx/Synopsys Interface Guide

the UniSim library differ because of variations in language features
and methodologies. You can also use the UniSim library for post-
synthesis, gate-level simulation as discussed in the “VHDL and
Verilog Simulation Flow” section.

UniSim Library Structure

Use the UniSim Library for functional simulation only; it contains
default unit delays. Structures differ for the library directories for
VHDL and Verilog. Only one VHDL library exists for all Xilinx
technologies. However, some components contain configuration
statements to select the appropriate functionality for a specific
architecture. A single library makes it easier to switch between
technologies. Because Verilog does not have configuration
statements, separate libraries are provided for each technology.

The UniSim Library contains all the Xilinx Unified Library
components inferred by most synthesis tools. In addition, the UniSim
Library contains commonly instantiated components such as 10s and
memory components. Use your synthesis tool’s module generators or
LogiBLOX to generate higher order functions such as adders,
counters, and RAM.

Schematic macros are not provided because schematic vendors
usually provide the lower-level netlist when a synthesis tool imports
a design. This lower-level netlist for a schematic macro is required for
implementation as well.

Compile the VHDL library using the Xilinx-supplied source files in
SXILINX/vhdl/src/unisims. Compile the source files into a library
named UNISIM.

6-4 Xilinx Development System

Simulating Your Design

You need to compile the Verilog library only if your Verilog simu-
lator supports compiled simulation. Some Xilinx device families, (for
example, XC3000), have some library components with a slightly
different functionality than the same library components of other
Xilinx device families. Separate libraries are provided for those
device families. The Verilog libraries located in $XILINX/verilog/
src/unisims are in upper case. If needed, you can find the lower case
versions of these libraries in the Xilinx Cadence Interface located in
$XILINX/cadence/data.

A few differences exist between the upper and lower case versions of
the Verilog UniSim libraries. For example, because buf, pullup, and
pulldown are reserved words in Verilog, the lower case version of the
UniSim library uses buff, pullupl, and pulldown1, and the upper
case version uses BUF, PULLUP, and PULDOWN.

UniSim Library Files

You can compile the UniSim VHDL Library to any physical location
on your system. You can find the VHDL source files in $XILINX/
vhdl/src/unisims, listed below in the order in which you must
compile them with the Synopsys VSS compiler.

1. unisim_VCOMP.vhd (component declaration file)

2. unisim_VCOMP52K.vhd (substitutional component declaration
file for XC5200 designs)

3. unisim_VPKG.vhd (package file)
4. unisim_VITAL.vhd (model file)
5. unisim_VITAL52K.vhd (additional model file for XC5200

designs)

6. unisim_VCFG4K.vhd (configuration file for XC4000 edge
decoders)

7. unisim_VCFG52K.vhd (configuration file for XC5200 internal
decoders)

Xilinx/Synopsys Interface Guide 6-5

Xilinx/Synopsys Interface Guide

6-6

You can find the uppercase Verilog components in individual
component files in the following directories.

o $XILINX/verilog/src/uni3000 (Series 3000)
o $XILINX/verilog/src/uni5200 (Series 5200)
o $XILINX/verilog/src/uni9000 (Series 9000)
o $XILINX/verilog/src/unisims (All other devices)

UniSim Library Component Instantiation

You must refer to the compiled UniSim Library in your VHDL code
to instantiate components from this library in your design for RTL
simulation. The VHDL simulation tool must map the logical library
to the physical location of the compiled library. Verilog must also
map to the UniSim Verilog library. Even though VHDL component
declarations are provided in the library, component declarations are
required in the RTL code for synthesis.

SimPrim Library

Use the SimPrim (simulation primitive) library for post-NGDBuild,
post-map partial timing, and full timing back-annotated simulation.

LogiBLOX Library

Use the LogiBLOX module generator to create schematic-based
modules such as adders, counters, and large memory blocks. For
your HDL designs, use LogiBLOX to generate large blocks of
memory for instantiation. Refer to the “Using CORE Generator and
LogiBLOX” chapter and LogiBLOX Guide for more information.

LogiBLOX Library Compilation

You can compile the LogiBLOX VHDL library to any physical
location. You can find the VHDL source files in $XILINX/vhdI/src/
logiblox, listed below in the order in which you must compile them.

1. mvlutil.vhd
2. mvlarith.vhd
3. logiblox.vhd

Xilinx Development System

Simulating Your Design

LogiBLOX Library Component Instantiation

Simulate LogiBLOX components with behavioral code not intended
for synthesis. The synthesizer processes the component as a “black
box.” The implementation software reads the NGO file created by
LogiBLOX. You can find the source libraries for LogiBLOX in
$XILINX/vhdl/src/logiblox. The LogiBLOX tool creates the actual
models. You must compile the package files into a library called
LOGIBLOX. You should compile the LogiBLOX component model in
your working directory with your design.

Working with the VITAL Standard

VITAL was created to promote the standardization of VHDL libraries
and simulators from different vendors. VITAL also defines a standard
for back-annotation of timing information to VHDL simulators.

The IEEE-STD 1076.4 VITAL standard accelerates gate-level
simulations. Check with your simulator company to verify they
support this standard. Also, make sure you use the proper settings
and VHDL packages for this standard.

Your simulator can also accelerate IEEE-1164, the standard logic
package for Types. VITAL libraries require overhead for timing
checks and back-annotation styles. The UniSim Library turns off
these timing checks because they do not apply to unit delay
functional simulation. The SimPrim back-annotation library by
default turns on these timing checks. However, you can turn them off
by editing and recompiling the SimPrim components file.

VHDL and Verilog Simulation Flow

HDL simulation can occur at five different steps in the design flow, as
listed below. Subsequent sections describe each step in more detail.

The following figure illustrates the design flow.
* Register Transfer Level (RTL)

» Post-synthesis, pre-NGDBuild

* Post-NGDBuild, pre-MAP

» Post-MAP partial timing (CLB and IOB block delays only; no net
delays)

Xilinx/Synopsys Interface Guide 6-7

Xilinx/Synopsys Interface Guide

e Post-route full timing (block and net delays)

VHDL or Verilog
UniSim Library
Testbench
Stimulus

VHDL or
Verilog SimPrim
Library

Synthesis

Libraries

VHDL or
Verilog Designs
| Synthesis

Simulation |

-

NGDBuild

NGD
NCD & Constraints

CPLD Fitter

Partial Timing

Full Timing

NCD & Constraints

X9379

Figure 6-2 VHDL and Verilog Simulation Flow

Simulating at Register Transfer Level (RTL)

RTL simulation allows you to verify or simulate your HDL design at
the system or chip level. High-level RTL language constructs usually
describe the system or chip at this level. You can use VHDL and
Verilog simulators to check your design’s functionality before you
implement it in gates.

6-8 Xilinx Development System

Simulating Your Design

Use a testbench to model the environment of the system or chip. At
this level, you can use the UniSim library to instantiate components
from the Xilinx Unified Library. You can also instantiate LogiBLOX
components if you do not want to use modules generated by your
synthesis tool.

Conducting a Post-Synthesis (pre-NGDBuild) Gate-
Level Functional Simulation

After synthesizing the system or chip to gates, re-use the testbench in
post-synthesis, gate-level functional simulation to simulate the
synthesized result. Check consistency with your original design
description. In the Xilinx design flow, post-synthesis, gate-level
simulation includes any simulation performed after any of the
synthesis, map, or place and route steps.

A post-synthesis, pre-NGDBuild gate-level functional simulation
allows you to directly verify your design after synthesis. Any
differences in the behavior of the original RTL description and the
synthesized design can indicate a problem with your synthesis tool.
Not all synthesis tools support post-synthesis simulation. The
synthesis tool must be able to write VHDL or Verilog output in terms
of the UniSim library.

LogiBLOX components remain behavioral models, expanded and
represented as gates. The library usage guidelines for RTL simulation
also apply to post-synthesis gate-level functional simulation.

Conducting a Post-NGDBuild (Pre-Map) Gate-Level
Functional Simulation

If your synthesis tool cannot write UniSim-compatible VHDL or
Verilog netlists, you cannot simulate the synthesis output. In this
case, use post-NGDBuild (pre-MAP) gate-level functional simulation
with generic SimPrim library models. As with the post-synthesis, pre-
NGDBuild simulation, this type of gate-level simulation allows you
to verify that your design synthesized correctly.

Xilinx/Synopsys Interface Guide 6-9

Xilinx/Synopsys Interface Guide

Conducting a Post-Route Full Timing (Block and Net
Delays) Simulation

After using PAR to route your design, you can simulate it with the
actual block and net timing delays with the same testbench used in
the earlier behavioral simulation. The back-annotation process
produces a netlist of SimPrims annotated with the appropriate block
and net delay data from the place and route process.

Different simulation libraries are required to support simulation
before and after you run NGDBuild on your design. Prior to
NGDBuild, designs are expressed as netlists containing Unified
Library components. After NGDBuild, designs are expressed as
netlists containing SimPrims. While the impact of these library
changes are not apparent, designs need different simulation libraries
for pre- and post-implementation simulation. Additionally, pre- and
post-implementation netlists include different gate-level components.

Synthesizing/Simulating for VHDL Global Set/Reset

Emulation

6-10

VHDL requires a testbench to control all signal ports. You can
instantiate certain VHDL-specific components, explained in the
following sections, in the RTL and post-synthesis VHDL description
to allow the simulation of the global signals for global set/reset and
global 3-state.

NGD2VHDL creates a port in your back-annotated design entity for
stimulating the global set/reset or 3-state enable signals. This port
does not actually exist on the configured part.

When running NGD2VHDL, you do not need to use the —gp switch
to create an external port if you instantiated a STARTUP block in your
RTL design. The port is already identified and connected to the global
set/reset or 3-state enable signal. If you do not use the —gp switchor
did not instantiate a STARTUP block, you must use special
components, as described in the following sections.

Note Xilinx recommends that you do not use GSR to reset user Flip-
flops on Virtex/Spartan-II

Xilinx Development System

Simulating Your Design

Using STARTBUF in VHDL

STARTBUF replaces STARTUP. With STARTBUF, you can
functionally simulate the GSR/GR net in both functional and timing
simulation. By connecting the input pin of the STARTBUF to a top-
level port and using STARTBUF as the source for all asynchronous
set/reset signals in a design, the Xilinx software can automatically
optimize the design to use the GSR/GR in a device. Also, unlike
STARTUP, when you instantiate STARTBUF in your design, you can
perform functional simulation of the GSR/GR net.

The STARTBUF component passes a reset or 3-state signal in the
same way that a buffer allows simulation to proceed and also
instantiates the STARTUP block for implementation. One version of
STARTBUF works for all devices, however, the XC5200 and the
XC4000 STARTUP blocks have different pin names. Implementation
with the correct STARTUP block occurs automatically. The following
shows an instantiation example of the STARTBUF component.

Ul: STARTBUF port map (GSRIN => DEV_GSR_PORT, GISIN
=>DEV_GTS PORT, CLKIN => ‘0’, GSROUT => GSR_NET,
GISQUT => GIS_NET, QQUT => open, @QUT => open,
QLAQUT => open, DONEI NOUT => open):

You can use one or both of the input ports (GSRIN and GTSIN) of the
STARTBUF component and the associated output ports (GSROUT
and GTSOUT). You can use pins left “open” to pass configuration
instructions to the implementation tools by connecting the
appropriate signal to the port instead of leaving it open.

Instantiating a STARTUP Block in VHDL

The STARTUP block is traditionally instantiated to identify the GR,
PRLD, or GSR signals for implementation. However, simulation can
occur only when the net attached to the GSR or GTS goes off the chip
because the STARTUP block does not have a simulation model. You
can use the new components described below to simulate global set/
reset or 3-state nets whether or not the signal goes off the chip.

Xilinx/Synopsys Interface Guide 6-11

Xilinx/Synopsys Interface Guide

Generating a Reset-On-Configuration in VHDL

The Reset-On-Configuration (ROC) component generates a reset
pulse during back-annotation if you do not use the —gp option or
STARTUP block options. Therefore, you can instantiate the ROC in
the front end to match for functionality with GSR, GR, or PRLD (done
in both functional and timing simulation). During back-annotation,
the entity and architecture for the ROC component are placed in your
design’s output VHDL file.

In the front end, the entity and architecture reside in the UniSim
Library, and require a component declaration and instantiation.

The ROC component generates a one-time initial pulse to drive the
GR, GSR, or PRLD net starting at time “0” for a user-defined pulse
width. You can set the pulse width with a generic in a configuration
statement. The default value of the generic “width” is 0 ns, which
disables the ROC component and holds the global set/reset net low.

The ROC component allows you to simulate with the same testbench
as in RTL simulation, and also allows you to control the width of the
GSR signal in your implemented design.

One of the easiest methods for mapping the generic involves
configuring your testbench. An example testbench configuration for
setting the generic follows.

CONFI GURATION cfg_ny_timng testbench OF ny_testbench IS
FOR ny_testbench_architecture
FOR ALL: ny_desi gn USE ENTI TY wor k. nmy_desi gn(structure);
FOR structure
FOR ALL:roc ENTITY work.roc (roc_v);
GENERI C MAP (wi dth => 100 ns)
END FOR
END FOR;
END FOR;
END FOR;
END cfg _nmy_timng_testbench;

The following shows an instantiation example of the ROC
component.

Ul: ROC port map (O => GSR_NET);

6-12 Xilinx Development System

Simulating Your Design

Using ROCBUF in VHDL

The ROCBUF component allows you to provide a stimulus for the
ROC signal through a testbench. However, the port connected to it
does not implement as a chip pin. Use the —gp switch with
NGD2VHDL to use the port in timing simulation. The following
example shows an instantiation of the ROCBUF component.

ULl: ROCBUF port map (I => SIM GSR_PORT, O => GSR_NET);

Generating a 3-State-On-Configuration in VHDL

The 3-State-On-Configuration (TOC) component generates a pulse on
the design’s 3-state net if you do not use the —tp option or STARTUP
block options. The entity and architecture for the TOC component are
placed in your design’s output VHDL file.

The TOC component generates a one-time initial pulse to drive the
design’s 3-state net starting at time ‘0’ for a user-defined pulse width.
You can set the pulse width with a generic in a configuration
statement. The default value of “width,” 0 ns, disables the TOC
component and causes the 3-state enable to be held low.

The TOC component allows you to simulate with the same testbench
as in the RTL simulation, and also allows you to control the width of
the 3-state enable signal in your implemented design.

The TOC components require a value for the generic width, usually
specified with a configuration statement. Otherwise, you must
include a generic map as part of the component instantiation. You
can set the generic width with any generic mapping method. Set the
“width” generic after consulting The Programmable Logic Data Book
for the particular part and mode you have implemented. For
example, a XC4000E part can vary from 10 ms to 130 ms. Use the
TPOR (Power-On Reset) parameter found in the Configuration
Switching Characteristics tables for Master, Slave, and Peripheral
modes.

One of the easiest methods for mapping the generic is to configure
your testbench. An example testbench configuration for setting the
generic follows.

Xilinx/Synopsys Interface Guide 6-13

Xilinx/Synopsys Interface Guide

CONFI GURATION cfg_ny_timng _testbench OF ny_testbench IS
FOR ny_testbench_architecture
FOR ALL: ny_desi gn USE ENTI TY wor k. nmy_desi gn(structrue);
FOR structure
FOR ALL:toc ENTITY work.toc (toc_v);
GENERI C MAP (wi dth => 100 ns)

END FOR
END FOR;

END FOR;
END FOR;

END cfg _ny_timng_testbench;

The following example shows an instantiation of the TOC
component.

U2: TOC port map (O => GIS_NET);

Using TOCBUF in VHDL

The TOCBUF allows you to provide a stimulus for the global 3-state
signal (GTS) through a testbench. However, the port connected to it
does not implement as a chip pin. Use the —tp switch with
NGD2VHDL to use the port in timing simulation. The following
example shows an instantiation of the TOCBUF component.

U2: TOCBUF port map (I =>SIM GIS _PORT, O =>GIS_NET);

Using Oscillators in VHDL

6-14

The SimPrim library does not include a generic oscillator component
because the oscillator components in the UNISIM library are device
dependent. After back-annotation, your VHDL design output
contains the oscillator entity and architectures. The UniSim Library
instantiates and simulates oscillators for functional simulation. You
must set the period of the base frequency for simulation because the
default period of 0 ns disables the oscillator. The oscillator’s
frequency can vary significantly with process and temperature.

Before setting the base period parameter, consult The Programmable
Logic Data Book for the part you are using. For example, for a XC4000
on-chip oscillator, the base frequency ranges from 4 MHz to 10 MHz,
and is nominally 8 MHz. Therefore, the base period generic
“period_8m” for the XC4000E OSC4 VHDL model ranges from 250 ns
to 100ns, as shown in the following example.

Xilinx Development System

Simulating Your Design

CONFI GURATI ON cfg_ny_functional _testbench OF ny_testbench IS
FOR ny_testbench_architecture
FOR ALL: ny_design USE ENTITY work. my_design (ny_design_rtl);
FOR ny_design_rtl
FOR ALL: ny_subnodul e USE ENTI TY wor k. my_subnodul e
(my_subnodul e_rtl);
FOR ny_subnodul e_rtl
FOR all: osc4 USE ENTITY work.osc4 (structure)
GENERI C MAP (period_8m => 125 nS);
END FOR,
END FOR,
END FOR,
END FOR;
END FOR
END FOR
END cfg_ny_functional _testbench;

Using Global Set/Reset Emulation in Verilog

For more information, refer to the Xilinx/Concept-HDL Interface Guide.

Using Global 3-State Emulation in Verilog

For more information, refer to the Xilinx/Concept-HDL Interface Guide.

Using Oscillators in Verilog

For more information, refer to the Xilinx/Concept-HDL Interface Guide.

NGDBuild Support of Multiple Device Architectures

Note Refer to Figure 6-2

NGDBuild processes multiple device architectures with the same
core map and place and route software. NGDBuild performs two
functions during design implementation.

» NGDBuild stores your design’s elements in a single database so
that subsequent operations, such as mapping and routing, are
performed on the entire design.

» NGDBuild creates an native generic database (NGD) netlist,
which consists of technology-independent primitives common to
all FPGAs (SimPrims).

Xilinx/Synopsys Interface Guide 6-15

Xilinx/Synopsys Interface Guide

The MAP program reads this NGD file and creates a native circuit
description (NCD) file, a physical description of your design in terms
of the target device.

Next, the PAR program places and routes the NCD file. NGDAnno
creates an NGA file, a back-annotated NGD file.

Recommended VSS Simulation Strategy

6-16

Because of the flexibility of the simulation environment, you can
verify your design using various methods. The following steps,
explained in subsequent sections, show you one recommended flow
for FPGA simulation.

1. Create a .synopsys_vss.setup file.

Before you can begin simulation, you must create a simulation
setup file.

2. Specify the initial states of your registers in your VHDL source
file.

If you use attributes at the DC Shell command line or in Design
Analyzer to control the initial states of the registers in your
design, RTL simulation does not reflect those initial states.

3. Create atest bench file.

By following the guidelines described in this section, you can use
the same test bench for both RTL and timing simulation.

4. Perform RTL simulation.

This step allows you to debug the behavior of your source design
before implementing it in an FPGA.

5. Implement the design in an FPGA.

This step provides the necessary physical resource information
necessary for timing simulation.

6. Prepare the timing model.

The NGD2VHDL program prepares a back-annotated timing
model of your design for simulation.

7. Perform timing simulation.

Xilinx Development System

Simulating Your Design

By re-using the RTL simulation test bench file, you can easily
compare results and prevent errors caused by accidental
differences between separate test bench files.

VSS Simulation Flow

The VSS simulation flows appear in the following two figures.

Original HDL Source Testbench

e)C)

I VHDLAN -i |I VHDLAN -i |

VSS v1998.08

or later

(VITAL) f

VHDLAN -i (.synopsys_vss.setu p)

- UniSim source code for RTL
W simulation of instantiated

unified library primitives.
(VITAL)

X9246

Figure 6-3 RTL Simulation

Xilinx/Synopsys Interface Guide 6-17

Xilinx/Synopsys Interface Guide

Testbench Back-annotation
netlist and timing

G GO

VHDLAN -i VHDLAN -i
.sim .sim

C)

(synopsys_vss.setup) VHDLAN -i

Source Core SimPrims

(Back-Annotation % (VITAL)

Simulation Primitives)

X9247

Figure 6-4 Back-annotation Simulation

Editing the VSS Setup File

To properly analyze and simulate Xilinx designs using VSS, you must
edit your Synopsys VSS setup file, .synopsys_vss.setup. You can find
a sample VSS setup file in $XILINX/synopsys/examples/
template.synopsys_vss. setup. You can copy this file to your project
directory and rename it .synopsys_vss.setup.

The following example shows the sample VSS setup file in $XILINX/
synopsys/examples/template.synopsys_vss. setup. Make sure you
have included the information in this file in your VSS setup file.

6-18 Xilinx Development System

Simulating Your Design

-- Tenplate .synopsys_vss.setup file for Xilinx design --
- - For use with Synopsys VSS. - -

CS_COWPI LED = FALSE
TI MEBASE = NS
TI ME_RES_FACTOR = 0.1

-- Define a work library in the current project dir --
-- to hold temporary files and keep the project area --
-- uncluttered. Note: You must create a subdirectory --
-- in your project directory called WORK --

WWORK > DEFAULT
DEFAULT : ./WORK

-- Note that the following simulation libraries are --
-- provided ready-anal yzed with VSS v9701. If you're --

-- using a later version of VSS then refer to the --
-- autonmatic conpile scripts provided in the --
-- appropriate library’'s source directory, e.g. --
-- $XI LI NX/ synopsys/libraries/sinlsrc/unisins --

UNI SI M : $XI LI NX/ synopsys/libraries/sinflib/unisins

-- VITAL SinPrimlibraries provided to support back- --
-- annotated sinulation only. --

SIMPRI M : $XI LI NX/ synopsys/libraries/simlib/sinprins

-- Packages used by Logi BLOX functional simulation --
-- nodels only. |I.e. To support behavioral simulation --
-- of VHDL designs with instantiated Logi BLOX cells. --

LOd BLOX : $XI LI NX/ synopsys/libraries/sinflib/logiblox

-- Xilinx XC9000 FTGS simulation libraries. - -

Xilinx/Synopsys Interface Guide 6-19

Xilinx/Synopsys Interface Guide

XC9000

$XI LI NX/ synopsys/libraries/simlib/xc9000/ftgs

Creating a Testbench File

Follow the instructions in the testbench.vhd file included with the
stopwatch tutorial to create a testbench file for your design. See the
XSI tutorial at http://support.xilinx.com/support/techsup/
tutorials/index.htm for more information about creating a testbench
for Xilinx devices. You can use the same testbench for RTL and timing
simulation.

After you have created a testbench file, you can begin using the VSS
simulator for RTL simulation.

Using RTL Simulation

6-20

Use RTL simulation to debug your logic before fitting your design
into an FPGA.

Generally RTL level simulation does not require VITAL or Verilog
unified library models because VHDL simulators can simulate
behavioral code. However if your design contains instantiated
components (such as RAMs, ROMs, input registers, INFF, clock
buffers), the simulator must have access to VITAL or Verilog models
for these front end unified library components.

During simulation, analyze your design’s modules according to
hierarchical precedence with the lowest first (analyze the testbench
last). Analyze the RTL models for all instantiated primitives, followed
by the design files, with the Synopsys VHDLAN command.

vhdl an —i nodul e. vhd

vhdl an —i testbench. vhd

Xilinx Development System

http://support.xilinx.com/support/techsup/tutorials/index.htm
http://support.xilinx.com/support/techsup/tutorials/index.htm

Simulating Your Design

Note: Use the —i option on the VHDLAN command. While this
option can result in a slight increase in simulation time, it is not
dependent on any operating system or C compilers. Additionally,
VHDLAN can analyze your design in compiled or interpretive
modes. While the compiled mode usually accelerates simulation run
times, it reduces debugger visibility into the simulation. For more
information, refer to the Synopsys documentation.

After analyzing all your design modules (including the testbench),
start the simulator. The simulator comes in two versions, a graphic
debugging environment, VHDLDBX, and a command-line driven
simulator, VHDLSIM. VHDLDBX allows you to select the desired
configuration from a graphic window. VHDLSIM requires you to
specify the desired configuration at the command line. In either case,
select the configuration name associated with your testbench entity.

For example, consider a testbench with the following entity and
architecture statements.

entity ny_testbench is
end ny_t est bench;
architecture my_vectors of ny_testbench is

begi n

end ny_vectors;

At a minimum, you then require a configuration of the following
type.

Configuration my_configuration of ny_testbench is
for my_vectors
end for;

end ny_configuration;

To start VHDLDBX on this design, perform the following steps.

1. Enter the following at the UNIX command line.

vhdl dbx
2. Select my_configuration from the command list.
3. Press K.

Xilinx/Synopsys Interface Guide 6-21

Xilinx/Synopsys Interface Guide

To start VHDLSIM on this design, enter the following command at
the UNIX command line.

vhdl si m ny_configuration

For an example of how to use these tools, refer to the XSI tutorial at
http://support.xilinx.com/support/techsup/tutorials/index.htm.
Also, see the Synopsys user documentation for more information.

The stopwatch tutorial provides the behv_sim.csh script file. This
script illustrates the necessary steps to perform an RTL simulation on
the stopwatch design. You can modify behv_sim.csh to use with your
designs. This script analyzes the VHDL files, and starts the VSS
VHDL Debugger (VHDLDBX). During simulation, the testbench
applies stimulus to the design, and monitors and records its outputs.

Implementing Your Design

6-22

After debugging your design using RTL simulation, you can compile
it using synthesis and implement it in an FPGA using the Xilinx
software. You must implement your design before performing timing
simulation.

Use DC Shell commands or Design Analyzer, as described in the
“Synthesizing Your Design with FPGA Compiler and Design
Compiler” chapter, to create the XNF or EDIF netlist file required by
the Xilinx software. This gate-level netlist file contains components
from the appropriate library but not timing information. The Xilinx
software processes the netlist file and places the logical design into
the physical architecture of your target FPGA.

After the Xilinx software implements the design, the actual target
device timing information is available for timing simulation.

Using the stopwatch design as an example, the following steps
provide an overview of the implementation procedure.

1. Compile the design, targeting the appropriate libraries, and
create an XNF or EDIF netlist by executing the following
command at the command line.

dc_shell —f watch. script
During processing, the system displays informational messages.

2. Run NGDBuild to process the netlist. NGDBuild translates the
Synopsys-generated netlist to a Xilinx netlist.

Xilinx Development System

http://support.xilinx.com/support/techsup/tutorials/index.htm

Simulating Your Design

ngdbuild —p parttype watch

3. Run the MAP program. MAP allocates the logic to CLBs and
IOBs.

map wat ch

4. Run PAR, which produces a placed and routed design. The —-w
option specifies the output file name.

PAR wat ch —w watch_rout ed

5. Run NGDAnNnNo, which relates the placed and routed design with
the original design to ensure the retention of as many of the
original component and net names as possible.

ngdanno wat ch_routed watch

6. Run NGD2VHDL, which creates a structural VHDL netlist for
use as a simulation model and a corresponding SDF file
containing timing information.

ngd2vhdl wat ch_rout ed

When simulating, you must analyze your design’s modules
according to hierarchical precedence with the lowest first (structural
netlist first, followed by the testbench).

vhdl an —i routed_desi gn. vhd
vhdl an —i testbench. vhd

Note: VHDLAN can analyze your design in compiled or interpretive
modes. While the compiled mode usually accelerates simulation run
times, it reduces debugger visibility into the simulation. For more
information, refer to the Synopsys documentation.

The VHDL Simulator launches and reads in the testbench, the back-
annotated VHDL model for your placed and routed design, and the
associated SDF file.

For timing simulation, the simulator starts in the same way as for RTL
simulation, but with the addition of the following two command line
options.

» The name of the SDF file that contains the timing information

» The instance in the testbench where you apply timing
information

Xilinx/Synopsys Interface Guide 6-23

Xilinx/Synopsys Interface Guide

The following examples illustrate these two command line options.
e VHDLSIM Example
vhdl sim —sdf _top ny_testbench/instance_nane \
—sdf routed_design.sdf ny_configuration
 VHDLDBX Example
vhdl dbx —sdf _top ny_testbench/i nstance_nane \
—sdf routed_design.sdf nmy_configuration

Where instance_name is the instance name of the unit under test in
your testbench.

Note: You can also specify the —sdf_top and —sdf options in the
arguments field of the initial window that appears when you start
VHDLDBX.

The stopwatch tutorial provides the tim_sim.csh script file. This
script provides the necessary steps to perform a timing simulation
with the VSS simulator. You can modify this script to use with your
designs. You can use the same testbench you used to perform an RTL
simulation to perform a timing simulation.

6-24 Xilinx Development System

Chapter 7

Using Files, Programs, and Libraries

This chapter describes the files, programs, and Xilinx-supplied
libraries you need to translate your HDL design using Synopsys
FPGA Compiler or Design Compiler.

This chapter includes the following sections.

« “Understanding the XSI Directory Structure”
e “Using File Descriptions”

e “Using Program Descriptions”

e “Using Supplied Libraries Descriptions”

Understanding the XSI Directory Structure

This section describes the XSI directory tree. This directory tree
allows you to easily find XSl files, programs, and libraries.

$XI LI NX/ synopsys/
| -- data (contains at the m ni mum synopsys.acd and nbexpand. acd

files)

I

|-- libraries

| |-- sim

| | |-- lib

| | | -- logiblox (conpiled LOd BLOX sinul ation |ibrary)
I I I I |-- sparc

I I I I

| | | | -- simprims (conpiled SIMPRI M sinmulation
library)

I I I I | -- sparc

I I I I

| | | | -- xc9000

Xilinx/Synopsys Interface Guide 7-1

Xilinx/Synopsys Interface Guide

7-2

E o S

|-- ftgs (conpiled FTGS sinul ation |ibrary)

| -- xdw (conpil ed xdw sinulation |ibrary)

- Src

| -- sparc

| -- logiblox (LOG BLOX sinulation |ibrary source)

| -- sinmprims (SIMPRIMsinulation library source)

syn

d
I

w
|--
I

I

I

I

I

I

I

I

I

I

I

I

I

I
|--

| -- xc9000

|-- ftgs (FTGS sinulation library source)

| -- xdw (XDW simul ation library source)

e

.sdb (conpiled synbol libraries)
.sldb (compiled synthetic libraries)
.db (conpiled synthesis libraries)

xc4000e (conpil ed Design Ware library)
xc4000ex
xc4000lI
xc4000x|
xc4000xv
xc5200
xc9000
Spart an
Spart anXL
Spartan-11
Virtex
Virtex2
VirtexE

xc4000e (Design Ware library source)
xc4000ex

xc4000l

xc4000xI

Xilinx Development System

Using Files, Programs, and Libraries

xc4000xv
xc5200
xc9000
Spart an
Spart anXL
Spartan-11
Virtex
Virtex2

Vi rtexE

-- exanpl es (exanple setup files)

I
I
I
I
I
I
I
I
I
I
I
| | -- training
I I
| | -- bscan
| | | -- vhdl
| | | -- verilog
I I
| | -- bi gadder
| | | -- vhdl
| | | -- verilog
I I
| | -- bufg
| | | -- vhdl
| | | -- verilog
I I
| | -- ram
| | | -- vhdl
| | | -- verilog
I I
| | -- resource
| | | -- vhdl
| | | -- verilog
I I
| | -- tbufmux
| | -- vhdl
| | -- verilog
I
| -- tutorial
I
-- fpga

Xilinx/Synopsys Interface Guide

7-3

Xilinx/Synopsys Interface Guide

dc

| -- vhdl
cpld

| -- verilog
| -- vhdl

Using File Descriptions

This section describes the files you need to translate, map, place, and
route your design using the XSI and Synopsys tools.

Table 7-1 File Descriptions

FPGA Compiler

File Description or Design
Compiler
design_name.script | The design_name.script file is user-created and | Both
contains the commands for Synopsys FPGA
Compiler or Design Compiler. These
commands specify the operating conditions,
the name and format of the design file, and
synthesis directives. Script files can have
extensions other than .script.
design_name.v The .v extension indicates the Verilog HDL Both
format.
design_name.vhd The .vhd extension indicates the VHDL format. | Both
.synopsys_dc.setup | The .synopsys_dc.setup file is the startup file Both
for the Synopsys synthesis tools. It must reside
in your home directory or working directory.
XC4000e.sdb The XC4000e.sdb file contains XC4000E Both
schematic symbols for Synopsys.
XC4000ex.sdb The XC4000ex.sdb file contains XC4000EX Both
schematic symbols for Synopsys.
XC4000xv.sdb The XC4000xv.sdb file contains XC4000XV Both
schematic symbols for Synopsys.
XC5200.sdb The XC5200.sdb file contains XC5200 schematic | Both
symbols for Synopsys.
7-4 Xilinx Development System

Using Files, Programs, and Libraries

Table 7-1 File Descriptions

FPGA Compiler

File Description or Design
Compiler

XC3000a.sdb The XC3000a.sdb file contains XC3000A Both
schematic symbols for Synopsys.

spartan.sdb The spartan.sdb file contains Spartan schematic |Both
symbols for Synopsys.

spartanxl.sdb The spartanxl.sdb file contains SpartanXL Both
schematic symbols for Synopsys.

virtex.sdb The virtex.sdb file contains Virtex schematic Both
symbols for Synopsys.

XC9000.sdb The XC9000.sdb file contains XC9000 schematic |Both
symbols for Synopsys.

.sim VSS simulation uses SIM files. Both

design_name.sxnf

The design_name.sxnf file is the synthesized
design generated by the Synopsys synthesis
tools.

FPGA Compiler

design_name.sedif

The design_name.sedif file is the synthesized
design generated by the Synopsys synthesis
tools using the EDIF syntax.

Design Compiler

design_name.ncf

DC2NCEF creates the design_name.ncf file.
DC2NCF converts timing constraints applied to
your design in the Synopsys environment to
equivalent constraints that control the Xilinx
place and route process.

Both

design_name.ngo

EDIF2NGD or XNF2NGD create the
design_name.ngo file, which contains a logical
description of your design in terms of its
original components and hierarchy.

Both

design_name.ngd

The NGDBuild program generates the
design_name.ngd file, a binary file containing a
logical description of your design in terms of
both its original components and hierarchy, and
the NGD primitives to which your design is
reduced.

Both

Xilinx/Synopsys Interface Guide

7-5

Xilinx/Synopsys Interface Guide

Table 7-1 File Descriptions

FPGA Compiler

File Description or Design
Compiler
design_name.ncd The MAP program generates the Both

design_name.ncd file, a physical description of
your design in terms of the components in the
target Xilinx device.

design_routed.ncd

The design_routed.ncd file, generated by PAR, is |Both
your placed and routed design.

design_name.nga

NGDAnNnNo generates the design_name.nga file, a | Both
back-annotated NGD file.

design_name.vhd

This file is the VHDL timing simulation model |Both
created by the NGD2VHDL program.

design_name.sdf

This file is the timing back-annotation file Both
created by the NGD2VHDL program.

Using Program Descriptions

This section describes the programs you use when translating,
mapping, placing, and routing your design using the XSI and
Synopsys tools. You can use the following programs with both
Design Compiler and FPGA Compiler

Table 7-2 Program Descriptions

Program Description

Design Analyzer |Design Analyzer is the Synopsys graphic interface to the Synopsys
synthesis tools.

DC Shell DC Shell is the Synopsys UNIX command-line interface for entering
commands, arguments, and options to the Synopsys synthesis tools.

Synlibs This program displays the target and link libraries for the specified
part type and speed grade. You can append the output of the Synlibs
command to the .synopsys_dc.setup file.
You must list the libraries in your setup file in the order that they appear in
the Synlibs output.

VHDLAN The VHDLAN program analyzes a VHD source file for simulation.
Use the —i option with this program.

7-6 Xilinx Development System

Using Files, Programs, and Libraries

Table 7-2 Program Descriptions

Program Description

VHDLDBX The VHDLDBX program is the VHDL Debugger, a graphic interface
to the VHDL simulator. Through its dialog box, you can issue
simulator commands, view command output, and view source code.

NGDBUILD This program reads a netlist file in XNF or EDIF format and creates
an NGD file describing a logical design.

DC2NCF This program translates a Synopsys DC file to a netlist constraints
file (NCF) file. The DC file is a Synopsys file containing your design
constraints.

MAP This program maps a logical design to a Xilinx FPGA.

TRACE This program provides static timing analysis of your design based on
input timing constraints.

PAR This program takes an NCD file, places and routes the design, and
outputs an NCD file, which is then used by the BitGen program.

NGDAnNNo This program distributes delays, setup and hold times, and pulse
widths found in the physical NCD design file back to the logical
NGD file.

NGD2VHDL or | These programs convert Xilinx NGD format into structural HDL for

NGD2VER gate-level simulation. Netlist consists of SimPrims.

BitGen This program produces a bitstream for Xilinx device configuration. It

takes a fully routed NCD file as its input and creates a configuration
bitstream.

Using Supplied Libraries Descriptions

This section describes the Xilinx-supplied libraries and supported
part types and speed grades. Table 7-3 contains the following
variables.

o family refers to the family of Xilinx devices, for example, 4000e,
4000ex, or 3000a.

» parttype refers to the specific Xilinx device, for example, 4003e,
4005e, or 3120a.

» 4dkparttype refers to the specific Xilinx XC4000 device, for example,
4003e or 4005e.

Xilinx/Synopsys Interface Guide 7-7

Xilinx/Synopsys Interface Guide

—s indicates the part type’s speed grade, for example, 5. Not all
speed grades are available for all part types. Run Synlibs with the
—h option to get a listing of all available part type and speed

grade combinations.

Table 7-3 Library Descriptions

Library

Description

FPGA Compiler
or Design
Compiler

xgen_3000a.db

The xgen_3000a.db library describes the
XC3000a cells that do not contain timing
information, for example, CLBMAP, PULLUP,
net flags, and VCC.

Both

xgen_3000l.db

The xgen_30001.db library describes the
XC3000I cells that do not contain timing
information, for example, CLBMAP, PULLUP,
net flags, and VCC.

Both

xgen_31001.db

The xgen_31001.db library describes the
XC31001 cells that do not contain timing
information, for example, CLBMAP, PULLUP,
net flags, and VCC.

Both

xgen_4000e.db

The xgen_4000e.db library describes the
XC4000e cells that do not contain timing
information, for example, FMAP, PULLUP,
and VCC.

Both

xgen_4000l.db

The xgen_40001.db library describes the
XC4000I cells that do not contain timing
information, for example, FMAP, PULLUP,
and VCC.

Both

xgen_4000ex.db

The xgen_4000ex.db library describes the
XC4000ex cells that do not contain timing
information, for example, FMAP, PULLUP,
and VCC.

Both

xgen_4000x1.db

The xgen_4000xI.db library describes the
XC4000xI cells that do not contain timing
information, for example, FMAP, PULLUP,
and VCC.

Both

7-8

Xilinx Development System

Using Files, Programs, and Libraries

Table 7-3 Library Descriptions

Library

Description

FPGA Compiler
or Design
Compiler

xgen_4000xla.db

The xgen_4000xla.db library describes the

XC4000xla cells that do not contain timing
information, for example, FMAP, PULLUP,
and VCC.

Both

xgen_4000xv.db

The xgen_4000xv.db library describes the
XC4000xv cells that do not contain timing
information, for example, FMAP, PULLUP,
and VCC.

Both

xgen_5200.db

The xgen_5200.db library describes the
XC5200 cells that do not contain timing
information, for example, FMAP, PULLUP,
and VCC.

Both

xprim_family-s.db

The xprim_family-s.db libraries describe the
Xilinx XC4000E/L/EX/XL/XLA/ZXV,
XC3000A/L, XC3100A/L, and XC5200 gates,
flip-flops, input/output buffers, and other
simple circuit elements whose delays do not
vary with the density of the part. These files
contain worst-case commercial (WCCOM)
timing information.

Both

Xprim_parttype-s.db

The xprim_ parttype-s.db libraries describe
the Xilinx XC4000E/L/EX/XL/XLA/XYV,
XC3000A/L, XC3100A/L, and XC5200 3-state
buffers, clock buffers, 1/0 decoders, and
other simple circuit elements whose delays
vary with the density of the part. These files
contain WCCOM timing information.

Both

xio_4kparttype-s.db

The xio_4kparttype—s.db libraries describe the
Xilinx XC4000E/L/EX/XL/XLA/XV input/
output buffers whose delays vary with the
device type. These files contain WCCOM
timing information.

Both

Xilinx/Synopsys Interface Guide

7-9

Xilinx/Synopsys Interface Guide

Table 7-3 Library Descriptions

FPGA Compiler
Library Description or Design
Compiler

xio_5kparttype-s.db | The xio_5kparttype—s.db libraries describe the |Both
Xilinx XC5200 input/output buffers whose
delays vary with the device type. These files
contain WCCOM timing information.

xfpga_family-s.db The xfpga_family—s.db libraries describe the | FPGA Compiler
Xilinx XC4000E/L/EX/XL/XLA/XV,
XC3000A/L, XC3100A/L, and XC5200 CLB
and IOB primitives, which allow the FPGA
Compiler to directly map to CLBs and 10Bs.
These files contain WCCOM timing

information.

xdc_family-s.db The xdc_ family—s.db libraries contain Boolean | Design Compiler
functions to which the Synopsys tools map.

xdw_4000e.sldb The xdw_4000e.sldb library contains the Both

DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to Xilinx
DesignWare modules.

xdw_40001.sldb The xdw_4000l.sldb library contains the Both
DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to Xilinx
DesignWare modules.

xdw_4000ex.sldb The xdw_4000ex.sldb library contains the Both
DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to Xilinx
DesignWare modules.

xdw_4000xl.sldb The xdw_4000xl.sldb library contains the Both
DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to Xilinx
DesignWare modules.

7-10 Xilinx Development System

Using Files, Programs, and Libraries

Table 7-3 Library Descriptions

Library

Description

FPGA Compiler
or Design
Compiler

xdw_4000xla.sldb

The xdw_4000xla.sldb library contains the
DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to Xilinx
DesignWare modules.

Both

xdw_4000xv.sldb

The xdw_4000xv.sldb library contains the
DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to Xilinx
DesignWare modules.

Both

xdw_5200.sldb

The xdw_5200.sldb library contains the
DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to Xilinx
DesignWare modules.

Both

xdw_spartan.sldb

The xdw_spartan.sldb library contains the
DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to Xilinx
DesignWare modules.

Both

xdw_spartanxl.sldb

The xdw_spartanxl.sldb library contains the
DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to Xilinx
DesignWare modules.

Both

xdw_virtex.sldb

The xdw_virtex.sldb library contains the
DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to Xilinx
DesignWare modules.

Both

xprim_family/*.ngl

Data files containing XSI library component
expansion for NGDBuild.

Both

Xilinx/Synopsys Interface Guide

7-11

Xilinx/Synopsys Interface Guide

Finding Supported Part Types and Speed Grades

Run Synlibs with the —h option to get a listing of all available part
type and speed grade combinations. You can also refer to the Xilinx
online Data Book at http://www.xilinx.com for current speed grade

information.

Finding Unsupported Part Types and Speed Grades

If designing for a part type or speed grade for which no libraries are
available, use the libraries for the closest part type or speed grade in
the same family. Indicate the part type or speed grade actually used
when you run PAR. The timing constraints in the NCF file can need

adjustment.

Note: For more information on specifying the part type, refer to the
Development System Reference Guide.

7-12 Xilinx Development System

http://www.xilinx.com

Appendix A

XSI Library Primitives

You can find the XSI primitives in the XSI-supplied libraries in FPGA
Compiler and FPGA Express; you can instantiate them in your VHDL
or Verilog HDL file. Use the synlibs program to list the appropriate
libraries for a specific part type. Refer to the “Getting Started” chapter
for information on how to use synlibs.

In the primitive tables in this appendix, the names of the inputs and
outputs follow the primitive names, the applicable architecture, and
any important notes. All primitives in the libraries contain timing
parameters. The Notes column includes specific timing details and
additional functional information.

Although Synopsys cannot synthesize some primitives (primitives
with the Dont Touch and Dont Use attributes), you can instantiate
them. An asterisk (*) next to the primitive name indicates that you
can instantiate it. Refer to the Synopsys documentation for more
information on the Dont Touch and Dont Use attributes. Use the
name of a primitive to instantiate it. In addition, you must identify
the signals connected to the input and output pins when instantiating
a primitive.

In general, pins are organized with data pins before control pins.
When several pins are part of a bus, they are listed with the MSB first.
Buses of four or more bits follow bus notation, for example, A<7:0>.
Buses with fewer bits are kept as separate signals.

Synopsys FPGA Compiler 1l does not recognize the underscore
character (“_") as valid.

Xilinx/Synopsys Interface Guide A-1

Xilinx/Synopsys Interface Guide

The following sections are included in this appendix.

“Generating a List of XSI Library Primitives”
“Obtaining XSI Library Primitive Pin Order”
“Understanding Virtex-Specific Cell Names”
“Xilinx DesignWare Modules”

“Post-Configuration Initialization States”

Generating a List of XSl Library Primitives

You can use the following procedure to generate a list of the XSI
library primitives provided in this appendix.

A-2

1.

Start DC Shell or Design Analyzer in a directory that contains
your .synopsys_dc.setup file. Ensure this setup file points to the
libraries you need to synthesize your designs in the XSI design
flow.

In the command window of Design Analyzer or in DC Shell,
enter the following command.

read —f db link library

In the command window of Design Analyzer or in DC Shell,
enter the following command.

list —files

This command lists all the library files in memory.

For each item in the list, enter the following command.
find cell filename/*

filename is the .db library file.

For example, for the library file xfpga_4000e-3.db the Find Cell
command lists the following.

xfpga_4000e-3/clb_4000
xfpga_4000e-3/iob_4000
The library file lists first, followed by the library primitive.

Xilinx Development System

XSI Library Primitives

Obtaining XSI Library Primitive Pin Order

Positional notation allows you to instantiate a primitive without
explicitly specifying the pins for that component. To use this
notation, you must know the pin order of the primitive. You can use
the following procedure to obtain the pin order for any of the XSI
library primitives provided in this appendix.

1. Start DC Shell or Design Analyzer in a directory that contains
your .synopsys_dc.setup file.

2. In DC Shell or in the command window of Design Analyzer,
enter the following command.

read —f db link library

3. In DC Shell or in the command window of Design Analyzer,
enter the following command.

list —files

This command lists all the library files in memory. Know which
file contains the relevant primitive.

4. In DC Shell or in the command window of Design Analyzer,
enter the following command.

find (pin, “dbfilenanme/cellname/*")

dbfilename is the name of the .db file that contains the primitive
and cellname is the relevant primitive.

For example, the following command finds the pin order of the
OR2 primitive in the XC4000EX library.

find (pin, “xprim4000ex-3/0R2/*")
This results in the following pin order.
{#O” “I11” “10"}

Alphabetical List of Primitives for All Architectures

This section lists the XSI primitives in alphabetical order with their
associated output, input, and bidirectional pins. In addition, the pins
are listed in the order used for positional notation. For example, the
pins for ACLK are listed with the O pin first, followed by the | pin.
Therefore, you can instantiate ACLK with only the signal (wire)

Xilinx/Synopsys Interface Guide A-3

Xilinx/Synopsys Interface Guide

names; you do not need to declare the ACLK pins. You can also find
the applicable architecture and any notes in the tables included in this
section.

Using the Dont Touch Attribute

An asterisk (*) next to a primitive name indicates that you must
instantiate it. Also, you must apply the Dont Touch attribute to
instantiated primitives. Refer to the Synopsys documentation for
more information on the Dont Touch attribute.

Synopsys FPGA Compiler Il does not recognize the underscore
character (“_”) as valid.

Setting the INIT Attribute

Before you can apply the INIT attribute to instantiated RAM and
ROM primitives, you must modify the Synopsys dc.setup_dc file,
which resides in $XILINX/synopsys/examples/
template.synopsys_dc_setup_fc. Change the following line in that
file.

edi fout_wite _properties_list = “instance_nunber \
pad_| ocation part”

The new line, after the changes, appears as follows.

edi fout_wite _properties_list = “instance_nunber \
pad_| ocation part” “INT”

Primitive Name Suffixes

The following table lists the primitive name suffixes and their
corresponding descriptions.

Table A-1 Primitive Name Suffixes

Suffix Description
| Inverted global reset (INIT=S)

F Fast implementation of clock buffer (using dedicated
input clock pad) or fast slew rate for output buffers;
NODELAY attribute added for input registers

A-4 Xilinx Development System

XSI Library Primitives

Table A-1 Primitive Name Suffixes

Suffix

Description

M

Medium implementation of clock buffer (using
dedicated input clock pad) or medium slew rate for
output buffers; MEDDELAY attribute added for input
registers

Slow slew rate

Unbonded pad

Inverted clock or gate on flip-flop or latch

Net/pin constraints

TTL-compatible level

CMOS-compatible level

Capacitive slew rate

Resistive slew rate

Inverted output in a bidirectional buffer

Virtex-Specific Primitive Name Suffixes

The following table lists the Virtex primitive name suffixes and their
corresponding descriptions.

Table A-2 Virtex Primitive Name Suffixes

Suffix

Description

D

Both local and general output pin

L

Single local output pin

_AGP

Advanced graphic port

_CTT

Center tap terminated, low-level, high-speed interface
standard

_GTL

Gunning transistor logic

_GTLP

Gunning transistor logic plus

_HSTL_I

High speed transceiver logic, Class 1: 1.5 volt output
buffer supply voltage-based interface standard

_HSTL_III

High speed transceiver logic, Class 1l

_HSTL_IV

High speed transceiver logic, Class IV

Xilinx/Synopsys Interface Guide

A-5

Xilinx/Synopsys Interface Guide

Table A-2 Virtex Primitive Name Suffixes

Suffix Description

_LVCOMS2 | Low-voltage CMOS, 2.5 volt or lower

_PCI33_3 Peripheral Component Interconnect (33 MHz, 3.3 V)

_PCI33 5 Peripheral Component Interconnect (33 MHz, 5V)

_PCl66_3 Peripheral Component Interconnect (66 MHz, 3.3 V)

_SSTL2 | Stub series terminated logic for 2.5 volts, Class |

_SSTL2_Il | Stub series terminated logic for 2.5 volts, Class 1l

_SSTL3 | Stub series terminated logic for 3.3 volts, Class |

_SSTL3 Il | Stub series terminated logic for 3.3 volts, Class 1l

_F x Fast slew where drive (x) equals 2, 4, 6, 8, 12, 16, or 24
in units of milliamps (Ma)

S x Slow slew where drive (x) equals 2, 4, 6, 8, 12, 16, or 24
in units of milliamps (ma)

_Sx Single-port synchronous block RAM, where x equals
the port bit width

_Sx_Sy Dual-port synchronous block RAM, where x equals
the first port bit width and y equals the second port
bit width

_VIRTEX Virtex-specific component for use in STARTUP,
STARTBUF, CAPTURE, and BSCAN

Architecture Abbreviations

This appendix uses the architecture abbreviations listed in the
following table.

Table A-3 Architecture Abbreviations

Architecture Abbreviation
XC3000A/L and XC3100A/L 3

XC4000E and XC4000L 4E
XC4000EX/ XL/ XLAZ XV 4X

XC5200

XC9000

A-6 Xilinx Development System

XSI Library Primitives

Table A-3 Architecture Abbreviations

Architecture

Abbreviation

Spartan/ XL

S

Virtex/-11/E and Spartan-11 \%

Primitive Tables

The following tables describe the XSI primitives.

Table A-4 “A”
Name Output Input Architecture Notes
ACLK* 0] | 3 Alternate
ACLK _F O | 3 Alternate;
using
dedicated
pad
AND?2 o] 11,10 3,4E, 4X,5,9,S,V
AND3 O 12,11, 10 3,4E, 4X,5,9,S,V
AND4 @] 13,12, 11, 10 3,4E, 4X,5,9,S,V
AND5 o] 14,13,12,11, 10 3,4E, 4X,5,9, S,
AND12 @] 111, 110, 19, 18, 17, |5, (macros
16,15, 14,13,12, 11, only)
10
AND16 @] 115, 114,113, 112, |5, (macros
111, 110, 19, 18, 17, only)
16,15,14, 13,12, 11,
10

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Xilinx/Synopsys Interface Guide

A-7

Xilinx/Synopsys Interface Guide

Table A-5 “B”
Name Output Input Architecture Notes
BSCAN TDO, DRCK, |TDI, TMS, 4E, 4X,5,S No delay. RESET,
What about |IDLE, SEL1, TCK, TDO1, UPDATE, and
BSCAN_Spa |SEL2, RESET, |TDO?2 SHIFT outputs are
rtan-11 & UPDATE, only applicable to
BSCAN_VI |SHIFT the XC5200.
RTEX?
BUF @] | 3,4E, 4X,5,S,V No delay
BUFFCLK O | 4X
BUFG* o] | 3,4E, 4X,5,S,V No pad delay
included
BUFGE O | 14X
BUFG_F 0] | 3,4E, 4X,5, S, Fastimplementation
of BUFG,; using
dedicated pad
BUFGLS @) | 4X and SpartanXL
BUFGP_F 0] | 4E, Spartan (not Fastimplementation
SpartanXL), of BUFGP; using
dedicated pad
BUFGS* 0] | 4E, Spartan (not No pad delay
SpartanXL) included
BUFGS_F @] | 4E, Spartan (not Fastimplementation
SpartanXL) of BUFGS; using
dedicated pad
BUFT 0] T 3,4E,4X,5,5,V,9 Synopsys tools
(not XC9500XL and |synthesize an
XC9500XV) internal 3-state
condition using
BUFTs.
BYPOSC* | 5

An asterisk (*) next to a primitive name indicates that you must instantiate it.

A-8

Xilinx Development System

XSI Library Primitives

Table A-6 “C”
Name Output Input Architecture Notes
C_FLAG* | 3,4E/L/EX/XL/ |Signalisona
XLA/ZXV, 5, S critical path.
CK_DIVv* 0SC1,0sc2 |C 5
CLBMAP_PLC* A,B,C D,E, |3 Pins locked to
K, EC, DI, external signals;
RD, X, Y function generator
closed to additional
logic
CLBMAP_PLO* A,B,C D,E, |3 Pins locked to
K, EC, DI, external signals;
RD, X, Y function generator
open to additional
logic
CLBMAP_PUC* A,/B,CD,E, |3 Pins unlocked from
K, EC, DI, signals; function
RD, X, Y generator closed to
additional logic
CLBMAP_PUO* A,B,CD,E, |3 Pins unlocked from
K, EC, DI, signals; function
RD, X, Y generator open to
additional logic
CY_MUX* CcO DI, CI, S 5 Carry chain
multiplexer.

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-7 “D”
Name Output Input Architecture |Notes
DEC_CC4* @] C_IN, A3...A0 |5, 4-bit internal
(No primitives, | decoder built using
macros only.) | C4_MUXes and
lookup tables
DEC_CC8* @) C_IN, A7...A0 |5, 8-bit internal

(No primitives,
macros only.)

decoder built using
CY_MUXes and
lookup tables

Xilinx/Synopsys Interface Guide

A-9

Xilinx/Synopsys Interface Guide

Table A-7 “D”
Name Output Input Architecture | Notes
DEC_CC16* O C_IN, Al5...A0 |5, 16-bit internal
(No primitives, |decoder built using
macros only.) |C4_MUXes and
lookup tables
DECODEL INT* |O | 4E/L/EX/XL/ |1-bit edge decoder;
XLA/ZXV no pull-up resistor;
input from internal
logic
DECODEL I0* |O | A4E/L/EX/XL/ |1-bit 170 edge
XLA/ZXV decoder; no pull-up
resistor
DECODE4* O A3....A0 4E, 4X, 5, 4-bit 1/0 edge
No primitives, |decoder;no pull-up
macros only.) resistor. In 4E/L/
EX/XL/XV a 4-bit
internal decoder
built using
CY_MUXes and
lookup tables (5)
DECODES8* o] AT7...A0 4E, 4X, 5, 8-bit 170 edge
No primitives, |decoder; nopull-up
macros only.) | resistor. In 4E/L/
EX/XL/XV an 8-bit
internal decoder
built using
CY_MUXes and
lookup tables (5)
DECODE16* O Al5...A0 4E, 4X, 5, 16-bit I/0 edge
No primitives, |decoder; nopull-up
macros only.) | resistor. In 4E/L/
EX/XL/XV a 16-bit
internal decoder
built using
CY_MuUXes and
lookup tables (5)
A-10 Xilinx Development System

XSI Library Primitives

Table A-7 “D”
Name Output Input Architecture | Notes
DECODE32* O A3l....A0 5, In 4E/L/EX/XL/
No primitives, | XV a32-bit internal
macros only.) | decoder built using
CY_MUXes and
lookup tables (5)
DECODE®64* O A63....A0 5, In4E/L/EX/XL/
No primitives, | XV a 64-bit internal
macros only.) | decoder built using
CY_MuUXes and
lookup tables (5)

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-8 “F”
Name Output Input Architecture Notes
F5_MUX* @) 11,12, DI 5 Used to connect two
FMAPSs to form a 5-
input function.
FS5MAP_PUC* 15,14,13,12, |5 Pins unlocked from
11,0 signals; function
generator closed to
additional logic.
FDC Q D, C,CLR (3,4E, 4X,5, S, 9 are | With Clear Direct;
all macros.) V is initial startup value
only primitive. is0
FDC 1 Q D, C,CLR (3, 4E, 4X,5,S,9 are
all macros.) V is
only primitive.
FDCE Q D, C, CE, 3,4E, 4X,5,S,9,V |Clock Enable with
CLR Clear Direct; initial
startup value is 0
FDCE_1 Q D, C, CE, (3, 4E, 4X,5, S, are
CLR all macros.) V is
only primitive.

Xilinx/Synopsys Interface Guide

A-11

Xilinx/Synopsys Interface Guide

Table A-8 “F”
Name Output Input Architecture Notes
FDP Q D, C, PRE (4E, 4X,5,S,9are | With Preset Direct;
all macros.) V is initial startup value
only primitive. isl
FDPE Q D, C, CE, 4E, 4X,S,V, 9 Clock Enable with
PRE 5 - macro Preset Direct; initial
startup value is 1
FDPEI Q D, C, CE, 3,5 Clock Enable with
PRE Preset Direct; initial
startup value is 1
FDPEI_1 Q D, C, CE, 3,5
PRE

FDPI Q D, C, PRE 3,5 With Preset Direct;
initial startup value
isl

FDPI 1 Q D, C, PRE 3,5

FMAP_PLC* 14,13,12,11,0 | 4E, 4X,5,S, V Pins locked to
external signals;
function generator
closed to additional
logic.

FMAP_PLO* 14,13, 12,11, 0 | 4E, 4X,5,S,V Pins locked to
external signals;
function generator
open to additional
logic.

FMAP_PUC* 14,13, 12,11, 0 | 4E, 4X,5, S,V Pins unlocked from
signals; function
generator closed to
additional logic.

FMAP_PUO* 14,13,12,11,0 | 4E, 4X,5,S, V Pins unlocked from
signals; function
generator open to
additional logic.

An asterisk (*) next to a primitive name indicates that you must instantiate it.

A-12

Xilinx Development System

XSI Library Primitives

Table A-9 “G”

Name Output Input Architecture Notes

GCLK* O | 3 Global

GCLK_F o | 3 Global; using
dedicated pad

GND G 3,4E, 4X,5,5,9,V

GXTL* @] 3- macro only Crystal; no
delay

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-10 “H”

Name Output Input Architecture Notes

HMAP_PUC* 13,12,11,0 |4E, 4X,S

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-11 “I”

Name Output [In-out |Input |Architecture Notes

IBUF O | 3,4E, 4X,5,9,S,V
(refer to Table A-2)

IBUF_F* @] | 3,4E, 4X,5,9,S,V Includes
NODELAY
attribute

IBUF_U* @] I 3,4E, 4X,5,9, S, Unbonded pad

IBUFN (0] | | 3, 4E/L/EX/XL/ Slow output
XLA/XV, 5, S slew rate

IFD Q D,C |3
(4E, 4X,5,9, V are
macros)

IFD_F Q D,C |3 Includes
(4E, 4X,5,9,V are NODELAY
macros) attribute

IFD_M* Q D,C |3 Includes
(4E, 4X,5,9, V are MEDDELAY
macros) attribute

Xilinx/Synopsys Interface Guide

A-13

Xilinx/Synopsys Interface Guide

Table A-11 “I”
Name Output [In-out |Input |Architecture Notes
IFD_U* Q D,C |3 Unbonded pad
_ P
(4E, 4X, 5,9, V are
macros)
IFDI* Q D,C |4E, 4X, S,V areonly INIT=S;
macros. inverted Global
Reset
IFDI_F* Q D,C |4E,4X, S,V are only Includes
macros. NODELAY
attribute;
INIT=S;
inverted Global
Reset
IFDI_M* Q D,C |4E, 4X, S,V areonl Includes
- y
macros. MEDDELAY
attribute
IFDI_U* Q D,C |4E,4X, S,V are only Unbonded pad;
macros. INIT=S;
inverted Global
Reset
IFDX* Q D,C, |4E 4X,S
CE Virtex-macro only
IFDX_F* Q D,C, |4E, 4X,S NODELAY
CE Virtex-macro only attribute added
IFDX_M* Q D,C, |4E, 4X,S Includes
CE Virtex-macro only MEDDELAY
attribute
IFDX_U* Q D,C, |4E, 4X,S
CE Virtex-macro only
IFDXI* Q D,C, |4E, 4X,S
CE Virtex-macro only
IFDXI_F* Q D,C, |4E, 4X,S NODELAY
CE Virtex-macro only attribute added
IFDXI_M* Q D,C, |4E, 4X,S Includes
CE Virtex-macro only MEDDELAY
attribute
A-14 Xilinx Development System

XSI Library Primitives

Table A-11 “I”
Name Output [In-out |Input |Architecture Notes
IFDXI_U* Q D,C, |4E, 4X,S
CE Virtex-macro only
ILD Q D,G |3
(4E, 4X,5,S, ,9 are
macros only)
ILD 1 Q D,G |[(3,4E, 4X,5,S, are
macros only)
ILD_1F Q D,G |(3,4E, 4X,5,S,are NODELAY
macros only) attribute added
ILD_1M* Q D,G |[(3,4E, 4X,5,S, are Includes
macros only) MEDDELAY
attribute
ILD_1U* Q D,G |[(3,4E, 4X,5,S, are Unbonded pad
macros only)
ILDI_1* Q D,G |(4E, 4X, S, are macros |InvertedGlobal
only) Reset
ILDI_1F* Q D,G |[(4E, 4X, S, are macros | NODELAY
only) attribute
added,;
initializes High
ILDI_1M* Q D, G |[(4E, 4X, S, are macros |Includes
only) MEDDELAY
attribute
ILDI_1U* Q D,G |4E, 4X, S, are macros |Unbonded pad,;
inverted Global
Reset
ILDX_1* Q D, G, |4E4X,S
GE V are macros
ILDX_1F* Q D, G, |4E, 4X,S NODELAY
GE are macros attribute added
ILDX_1M* Q D,G, |4E, 4X,S Includes
GE are macros MEDDELAY
attribute
Xilinx/Synopsys Interface Guide A-15

Xilinx/Synopsys Interface Guide

Table A-11 “I”
Name Output [In-out |Input |Architecture Notes
ILDX_1U* Q D, G, |4E, 4X,S Unbonded pad
GE are macros
ILDXI_1* Q D, G, 4E 4X,S
GE are macros
ILDXI_1F* Q D, G, |4E, 4X,S NODELAY
GE are macros attribute added
ILDXI_1M* Q D, G, |4E,4X,S Includes
GE are macros MEDDELAY
attribute
ILDXI_1U* Q D, G, |4E, 4X,S Unbonded pad
GE are macros
ILFFX_F* Q D, GF, |4X, SpartanXL NODELAY
CE, C attribute added
ILFFX_M* Q D, GF, |4X, SpartanXL Includes
CE, C MEDDELAY
attribute
ILFFXI_F* Q D, GF, |4X, SpartanXL NODELAY
CE, C attribute added
ILFEXI_M* Q D, GF, |4X, SpartanXL Includes
CE,C MEDDELAY
attribute
ILFLX_F* Q D, GF, |4X, SpartanXL NODELAY
GE, G attribute added
ILFLX_M* Q D, GF, |4X, SpartanXL Includes
GE, G MEDDELAY
attribute
ILFLX _1F* Q D, GF, |4X, SpartanXL NODELAY
GE, G attribute added
. , GF, , Spartan ncludes
ILFLX _1M* Q D, GF, |4X,S XL Includ
GE, G MEDDELAY
attribute
ILFLXI_1F* Q D, GF, | 4X, SpartanXL NODELAY
GE, G attribute added
A-16 Xilinx Development System

XSI Library Primitives

Table A-11 “I”
Name Output [In-out |Input |Architecture Notes
ILFLXI_1M* Q D, GF, |4X, SpartanXL Includes
GE, G MEDDELAY
attribute
INV 0] I 3,4E, 4X,5,S,9,V No delay
IOBUF (0] 10 T 3, 4E/L/EX/XL/ Slow slew rate
XLA/XV, 5, S, V (refer
to Table A-2)
IOBUF_F (0] 10 T 4XV Fast output
slew rate
IOBUF_S (0] 10 T 4XV Slow output
slew rate
IOBUF_N_F 0] 10 I, T 3,4E/L/EX/XL/XLA, | Fast output
5S slew rate
;output is
inverted
IOBUF_N_S O 10 LT 3,4E/L/EX/XL/XLA, | Slow output
58S slew rate
;output is
inverted
IOBUF_24 @] 10 T 4XV Slow output
slew rate
IOBUF_F 24 @] 10 I, T 4XV Fast output
slew rate
IOBUFD @] 10 I 3, 4E/L/XLA/EX/ Slow output
XL/XV, 5,S slew rate
;Input, output,
or both can be
invertedandan
open drain
output
is generated.
IOBUFD_24 (0] 10 | 4XV Slow output
slew rate
Xilinx/Synopsys Interface Guide A-17

Xilinx/Synopsys Interface Guide

Table A-11 “I”
Name Output [In-out |Input |Architecture Notes
IOBUFDN o] 10 | 3, 4E/L/XLA/EX/ Slow output
XL/XV, 5,S slew rate
;Input, output,
or both can be
invertedandan
inverted open
drain output is
generated
IOBUFDN_24 O 10 | 4XV Slow output
slew rate
IOBUFD_F 0] (0] I 3, 4E/L/XLA/EX/ Fast output
XL/XV, 5,5 slew rate
IOBUFD_F_24 O 10 | 4XV Fast output
slew rate
IOBUFD_S 0] 10 I 3, 4E/L/XLA/EX/ Slow output
XL/XV, 5,5 slew rate
IOBUFD_S 24 (0] 10 | 4XV Slow output
slew rate
IOBUFDN_F O 10 | 3, 4E/L/XLA/EX/ Fast output
XL/XV, 5,S slew rate
IOBUFDN_F_24 @] 10 | 4XV Fast output
slew rate
IOBUFDN_S 0] 10 | 3, 4E/L/XLA/EX/ Slow output
XL/XV, 5,5 slew rate
IOBUFDN_S_24 (@) 10 | 4XV Slow output
slew rate
IOBUFN 0] [0] I, T 3, 4E/L/XLA/EX/ Slow output
XL/XV, 5,5 slew rate
IOBUFN_24 O 10 I, T 4XV Slow output
slew rate
;Inverts the
input (first N)
IOBUFN_F @] [} I, T 3, 4E/L/XLA/EX/ Fast output
XL/XV, 5,S slew rate
A-18 Xilinx Development System

XSI Library Primitives

Table A-11 “I”
Name Output [In-out |Input |Architecture Notes
IOBUFN_F_24 @] 10 I, T 4XV Fast output
slew rate
IOBUFN_S o 10 I, T 3, 4E/L/XLA/EX/ Slow output
XL/XV, 5,5 slew rate
IOBUFN_S 24 (0] 10 LT 4XV Slow output
slew rate
IOBUFND O 10 | 3, 4E/L/XLA/EX/ Slow output
XL/XV, 5,5 slew rate
;Inverts the
input (first N)
and generates
an open drain
output
IOBUFND_24 @] 10 | 4XV Slow output
slew rate
IOBUFND _F 0] 10 | 3, 4E/L/XLA/EX/ Fast output
XL/XV, 5,5 slew rate
IOBUFND_F_24 O 10 | 4XV Fast output
slew rate
IOBUFND_S 0] 10 | 3,4E/L/XLA/EX/ Slow output
XL/XV, 5,5 slew rate
IOBUFND_S 24 0] 10 | 4XV Slow output
slew rate
IOBUFNDN @] 10 I 3, 4E/L/XLA/EX/ Slow output
XL/XV, 5,5 slew rate
;Inverts the
input (first N)
and generates
an inverted
open
draing output
IOBUFNDN_24 O 10 | 4XV Slow output
slew rate
IOBUFNDN_F 0] 10 | 3, 4E/L/XLA/EX/ Fast output
XL/XV, 5,5 slew rate
Xilinx/Synopsys Interface Guide A-19

Xilinx/Synopsys Interface Guide

Table A-11 “I”
Name Output [In-out |Input |Architecture Notes
IOBUFNDN F 24 |O 10 | 4XV Fast output
slew rate
IOBUFNDN_S (@] 10 | 3, 4E/L/XLA/EX/ Slow output
XL/XV, 5,S slew rate
IOBUFNDN_S 24 |O 10 | 4XV Slow output
slew rate
IOBUFNN (@] 10 | 3,4E/L/XLA/EX/ Slow output
XL/XV, 5,S slew rate
:Inverts the
input (first N)
and inverts the
output
IOBUFNN_24 O 10 | 4XV Slow output
slew rate
IOBUFNN_F 0] 10 | 3, 4E/L/XLA/EX/ Fast output
XL/XV, 5,S slew rate
IOBUFNN_F 24 @] 10 | 4AXV Fast output
slew rate
IOBUFNS 0] 10 | 3, 4E/L/XLA/EX/ Slow output
XL/XV, 5,S slew rate
IOBUFNS_F 0] 10 | 3, 4E/L/XLA/EX/ Fast output
XL/XV, 5,S slew rate
IOBUFNS _F 24 (@] 10 | 4XV Fast output
slew rate
IOBUFNS_S 0] 10 | 3, 4E/L/XLA/EX/ Slow output
XL/XV, 5,S slew rate
IOBUFNS_S 24 o 10 | 4XV Slow output
slew rate
IOBUFNS_24 @] 10 | AXV Slow output
slew rate
IOBUFNSN 0] (0] I 3,4E/L/XLA/EX/ Slow output
XL/XV, 5,S slew rate
IOBUFNSN_24 (0] 10 | 4XV Slow output
slew rate
A-20 Xilinx Development System

XSI Library Primitives

Table A-11 “I”
Name Output [In-out |Input |Architecture Notes
IOBUFNSN_F O 10 | 3, 4E/L/XLA/JEX/ Fast output
XL/XV, 5,S slew rate
IOBUFNSN_F 24 |O 10 | 4XV Fast output
slew rate
IOBUFNSN_S 0] 10 | 3,4E/L/XLA/EX/ Slow output
XL/XV, 5,5 slew rate
IOBUFNSN_S 24 |O 10 | 4XV Slow output
slew rate
IOBUFS 0] 10 I 3, 4E/L/XLA/EX/ Slow output
XL/XV, 5,5 slew rate
;Input, output
or both can be
inverted and an
open source
output
is generated
IOBUFS_24 O 10 | 4XV Slow output
slew rate
IOBUFS_F O 10 | 3, 4E/L/XLA/JEX/ Fast output
XL/XV, 5,S slew rate
IOBUFS_F 24 @] 10 | 4XV Fast output
slew rate
IOBUFS_S 0] 10 | 3, 4E/L/XLA/EX/ Slow output
XL/XV, 5,5 slew rate
IOBUFS_S_24 O 10 | 4XV Slow output
slew rate
IOBUFSN 0] 10 | 3,4E/L/XLA/EX/ Slow output
XL/XV, 5,5 slew rate
;Generates an
inverted open
source output
IOBUFSN_24 O 10 | 4XV Slow output
slew rate
Xilinx/Synopsys Interface Guide A-21

Xilinx/Synopsys Interface Guide

Table A-11 “I”
Name Output [In-out |Input |Architecture Notes
IOBUFSN_F O 10 | 3, 4E/L/XLA/EX/ Fast output
XL/XV, 5,S slew rate
IOBUFSN_F_24 O 10 | 4XV Fast output
slew rate
IOBUFSN_S o 10 3, 4E/L/XLA/EX/ Slow output
XL/XV, 5,5 slew rate
IOBUFSN_S 24 @) 10 | 4XV Slow output
slew rate

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-12 “L”

Name Output Input Architecture Notes

L FLAG* | 3 Rout signal along a

longline.

LD Q D, G V 3: built from gates; not
(4X,5, 9, SpartanXL | recommended; use D flip-
are macros only) flops.

4EX/XLXYV, 5: built into
CLB; programmable as D
flip-flop or latch.

LD 1 Q D, G \% 4E/L: built from gates;
(4X, 5, SpartanXL are | not recommended; use D
macros only) flip-flops.

4EX/XL/XV ,5: built into
CLB; programmable as D
flip-flop or latch.

LDC Q D,G,CLR |V With Clear Direct.3: built
(4X, 5, SpartanXL are |from gates; not
macros only) recommended; use D flip-

flops. 5: built into CLB,;
programmable as D flip-
flop or latch.

A-22 Xilinx Development System

XSI Library Primitives

Table A-12 “L”
Name Output Input Architecture Notes
LDC_1 Q D,G,CLR |V With Clear Direct. 4E/L:
(4X, 5, SpartanXL are | built from gates; not
macros only) recommended; use D flip-
flops.
4EX/XL/XV, 5: built into
CLB; programmable as D
flip-flop or latch.
LDCE Q D, G GE, |5V
CLR 4X, SpartanXL are
macros only
LDCE_1 Q D, G, GE, |4X, SpartanXL,V
CLR 5 is macro only
LDP Q D, G,PRE |V With Preset Direct. Built
from gates; not recom-
mended. Use D flip-flops.
LDP_1 Q D,G,PRE |V With Preset Direct. 4E/L:
built from gates; not
recommended. Use D flip-
flops.
4EX/XL/XV, ,5: built into
CLB; programmable as D
flip-flop or latch.
LDPE Q D,G,GE, |V
PRE (4X, SpartanXL is
macro only)
LDPE_1 Q D, G, GE, |4X, SpartanXL,V
PRE
An asterisk (*) next to a primitive name indicates that you must instantiate it.
Table A-13 “M”
Name Output Input Architecture Notes
MDO0* | 4E, 4X, 5 Input pad for BSCAN.
5: This pin is in-out.
MD1* (0] 4E, 4X,5 Output pad for BSCAN.
5: This pin is in-out.

Xilinx/Synopsys Interface Guide

A-23

Xilinx/Synopsys Interface Guide

Table A-13 “M”
Name Output Input Architecture Notes
MD2* | 4E, 4X,5 Input pad for BSCAN.
5: This pin is in-out.

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-14 “N”
Name Output Input Architecture Notes
N_FLAG* | 3, AE/L/EX/XL/ Signal timing is not
XLA/ZXV, 5, S critical.
NAND?2 (@] 11,10 3,4E, 4X,5,9,S5,V
NAND3 (@] 12,11, 10 3,4E, 4X,5,9,S,V
NAND4 (@] 13,12, 11, 10 3,4E, 4X,5,9,S5,V
NAND5 (@] 14,13, 12,11, 10 3,4E, 4X,5,9, S,
NAND12 @] 111,110, 19,18, 17, | no primitives
16, 15, 14, 13,12, |5, are macros
11, 10
NAND16 @] 115, 114, 113, 112, | no primitives
111,110, 19,18, 17, | 5, are macros
16, 15, 14, 13, 12,
11, 10
NOR2 @] 11,10 3,4E, 4X,5,5,V, 9
NOR3 (0] 12,11, 10 3,4E,4X,5,5,V, 9
NOR4 (0] 13,12, 11, 10 3,4E, 4X,5,5,V, 9
NOR5 (0] 14,13, 12, 11, 10 3,4E, 4X,5,S,9
NOR12 0] 111,110, 19,18, 17, | no primitives
16, 15, 14, 13,12, |5, are macros
11, 10
NOR16 0] 115, 114, 113, 112, |no primitives
111,110, 19,18, 17, | 5, are macros
16, 15, 14, 13, 12,
11, 10

An asterisk (*) next to a primitive name indicates that you must instantiate it.

A-24

Xilinx Development System

XSI Library Primitives

Table A-15 “O”
Name Output Input Architecture Notes
OAND2* O F 10 4X, SpartanXL
OBUF o] | 3,4E, 4X,5,S,9,V
(refer to Table A-2.
OBUF_24 o] | 4XV
OBUF_F @) | 3,4E, 4X,5, S,9,V Fast slew rate
OBUF_F 24 @] | 4XV Fast slew rate
OBUF_S @] | 3,4E, 4X,5,S,9,V Slow slew rate
OBUF_S 24 O | 4XV Slow slew rate
OBUF_U* 0] | 3,4E, 4X,5, S, 9, Unbonded pad
OBUFD 0] | 3,4E,5,S Slow output slew
rate; Open Drain
output buffer
OBUFD_24 O | 4XV Slow output slew
rate
OBUFD_F 0] | 3,4E,5,S Fast output slew
rate
OBUFD _F_24 O | 4AXV Fast output slew
rate
OBUFD_S O | 3,4E,5,S Slow output slew
rate
OBUFD _S 24 O | 4XV Slow output slew
rate
OBUFDN 0] | 3, 4E/L/XLA/EX/ Slow output slew
XL/XV, 5,5 rate; Open Drain
inverting output
buffer
OBUFDN_24 O | 4XV Slow output slew
rate
OBUFDN_F o | 3, 4E/L/XLA/JEX/ Fast output slew
XL/XV, 5,5 rate
OBUFDN_F 24 O | 4XV Fast output slew
rate

Xilinx/Synopsys Interface Guide

A-25

Xilinx/Synopsys Interface Guide

Table A-15 “O”
Name Output Input Architecture Notes
OBUFDN_S @] | 3, 4E/L/XLA/EX/ Slow output slew
XL/XV, 5,S rate
OBUFDN_S 24 @] | 4XV Slow output slew
rate
OBUFE_24 O I, E 4AXV
OBUFE_F 24 @] I,E 4XV
OBUFE_S 24 O I, E 4AXV
OBUFEN o I,E 3, 4E/L/XLA/JEX/ Slow output slew
XL/XV, 5,5 rate; inverts the
first input (first E)
and inverts the
output
OBUFEN_24 (0] ILE 4XV Slow output slew
rate
OBUFEN_F o I, E 3,4E/L/XLA/EX/ Fast output slew
XL/XV, 5,5 rate
OBUFEN _F 24 @] I, E 4XV Fast output slew
rate
OBUFEN_S @] I, E 3, 4E/L/XLA/EX/ Slow output slew
XL/XV, 5,S rate
OBUFEN_S 24 (@] ILE 4XV Slow output slew
rate
OBUFN @] | 3, 4E/L/XLA/EX/ Slow output slew
XL/XV, 5,5 rate; Inverting
output buffer
OBUFN_24 @] | 4XV Slow output slew
rate
OBUFN_F O | 3, 4E/L/XLA/JEX/ Fast output slew
XL/XV, 5,5 rate
OBUFN_F 24 @] | 4AXV Fast output slew
rate
OBUFN_S @] | 3, 4E/L/XLA/EX/ Slow output slew
XL/XV, 5,S rate
A-26 Xilinx Development System

XSI Library Primitives

Table A-15 “O”
Name Output Input Architecture Notes
OBUFN_S_24 O | 4XV Slow output slew
rate
OBUFNSN_S 0] | 3,4E/L/XLA/EX/ Slow output slew
XL/XV, 5,5 rate
OBUFNSN S 24 |O | 4XV Slow output slew
rate
OBUFS o] | 3, 4E/L/XLA/EX/ Slow output slew
XL/XV, 5,S rate
OBUFS_24 o | 4XV Slow output slew
rate
OBUFS_F O | 3, 4E/L/XLA/JEX/ Fast output slew
XL/XV, 5,5 rate
OBUFS_F 24 O | 4XV Fast output slew
rate
OBUFS_S O | 3, 4E/L/XLA/JEX/ Slow output slew
XL/XV, 5,5 rate
OBUF_S 24 @] | 4XV Slow output slew
rate
OBUFSN O | 3, 4E/L/XLA/JEX/ Slow output slew
XL/XV, 5,S rate
OBUFSN_F O | 3, 4E/L/XLA/JEX/ Fast output slew
XL/XV, 5,5 rate
OBUFSN_F 24 @] | 4XV Fast output slew
rate
OBUFSN_S O | 3, 4E/L/XLA/JEX/ Slow output slew
XL/XV, 5,S rate
OBUFSN_S 24 @] | 4XV Slow output slew
rate
OBUFT O I, T 3,4E, 4X,9,5,S,V
(refer to Table A-2)
OBUFT_24 o] LT 4XV
OBUFT_F (@] I, T 3,4E, 4X,9,5,S,V Fast slew rate
OBUFT _F 24 0 I, T 4XV

Xilinx/Synopsys Interface Guide

A-27

Xilinx/Synopsys Interface Guide

Table A-15 “O”
Name Output Input Architecture Notes
OBUFT_S (0] LT 3,4E, 4X,9,5,S,V Slow slew rate
OBUFT_S 24 o] LT 4XV
OBUFT_U* @] I, T 3,4E, 4X,9,5, S, Unbonded pad
OBUFTN @] LT 3,4E, 4X,5, S, Slow output slew
rate
OBUFTN_24 (0] LT 4XV Slow output slew
rate
OBUFTN_F 0] LT 3,4E, 4X,5, S, Fast output slew
rate
OBUFTN_S @] LT 3,4E, 4X,5, S, Slow output slew
rate
OFD Q D, C 3
OFD_24 Q D, C 4XV
OFD_F Q D,C 3 Fast slew rate
OFD F 24 Q D, C 4XV
OFD_FU* Q D,C 3 Fast slew rate;
unbonded pad
OFD_S Q D, C 4E/L/EX/XL/XLAZ |Slow slew rate
XV, S
OFD_S 24 Q D, C 4xXV
OFD_U* Q D, C 3 Unbonded pad
OFDI* Q D, C 4E, 4X, S,
All macros
OFDI_24 Q D, C 4xXV
OFDI_F* Q D,C 4E, 4X, S, Fast slew rate
All macros
OFDI_F 24 Q D, C 4XV
OFDI_S* Q D,C 4E, 4X, S, Slow slew rate
All macros
OFDI_S 24 Q D, C 4xXV
A-28 Xilinx Development System

XSI Library Primitives

Table A-15 “O”

Name Output Input Architecture Notes

OFDI_U* Q D,C 4E, 4X, S, Unbonded pad
All macros

OFDT o D,C,T 3
The following are
macros: 4E, 4X, S,

OFDT_24 O D,CT 4AXV

OFDT_F @] D,CT 3 Fast slew rate
The following are
macros: 4E, 4X, S,

OFDT_F_24 o) D,C,T 4XV

OFDT_S @] D,CT 3 Slow slew rate
The following are
macros: 4E, 4X, S,

OFDT_S 24 (0] D,CT 4XV

OFDT_U* 0] D,CT 3 Unbonded pad
The following are
macros: 4E, 4X, S,

OFDTI* @] D,C T No primitives
4E, 4X, and S are
macros.

OFDTI_24 o] D,CT 4XV

OFDTI_F* 0] D,CT No primitives Fast slew rate
4E, 4X, and S are
macros.

OFDTI_F 24 0 D,CT 4xVv

OFDTI_S* (0] DCT No primitives Slow slew rate
4E, 4X, and S are
macros.

OFDTI_S 24 0 D,C,T 4XV

OFDTI_U* (0] D,CT No primitives Unbonded pad
4E, 4X, and S are
macros.

Xilinx/Synopsys Interface Guide

A-29

Xilinx/Synopsys Interface Guide

Table A-15 “O”

Name Output Input Architecture Notes

OFDX* Q D, C,CE 4E, 4X, S
is macro

OFDX_24 Q D,C,CE |4XV

OFDX_F* Q D, C, CE 4E, 4X, S Fast slew rate
is macro

OFDX_F 24 Q D, C,CE 4XV

OFDX_FU* Q D, C,CE 4E, 4X, S Fast slew rate;
is macro unbonded pad

OFDX_S* Q D, C, CE 4E, 4X, S Slow slew rate
is macro

OFDX_S 24 Q D, C,CE 4XV

OFDX_U* Q D, C, CE 4E, 4X, S Unbonded pad
is macro

OFDXI* Q D, C, CE 4E, 4X, S
is macro

OFDXI_24 Q D, C,CE 4XV

OFDXI_F* Q D, C,CE 4E, 4X, S Fast slew rate
is macro

OFDXI_F_24 Q D,C,CE |4XV

OFDXI_s* Q D,C,CE 4E, 4X, S Slow slew rate
is macro

OFDXI_S 24 Q D,C,CE |4XV

OFDXI_U* Q D,C,CE 4E, 4X, S Unbonded pad
is macro

OFDTX* (0] D,C,CE, T |4E, 4X,S

OFDTX_24 O D,C,CE, T |4XV

OFDTX_F* O D,C,CE, T |4E, 4X,S Fast slew rate

OFDTX F 24 (0] D,C,CE, T |4XV

OFDTX_S* (@] D,C,CE, T |4E, 4X,S Slow slew rate

OFDTX_S 24) D, C,CE, T |4XV

OFDTX_U* (0] D,C,CE, T |4E, 4X,S Unbonded pad

A-30 Xilinx Development System

XSI Library Primitives

Table A-15 “O”
Name Output Input Architecture Notes
OFDTXI* O D,C,CE, T |4E, 4X,S
OFDTXI_24 @] D,C,CE, T |4XV
OFDTXI_F* O D,C,CE, T |4E, 4X,S Fast slew rate
OFDTXI_F_24 O D,C,CE, T |4XV
OFDTXI_S* 0] D,C,CE, T |4E, 4X,S Slow slew rate
OFDTXI_S 24 0 D, C,CE, T |4XV
OFDTXI_U* O D,C,CE, T |4E, 4X,S Unbonded pad
OMUX2 o DO, D1, SO |SpartanXL and 4X
ONAND?2 o F 10 SpartanXL and 4X
ONOR2 @) F 10 SpartanXL and 4X
OOR2 o F 10 SpartanXL and 4X
OR2 @] 11,10 3,4E, 4X,5,9,S5,V
OR3 O 12,11, 10 3,4E, 4X,5,9,S,V
OR4 @] 13,12, 11,10 |3, 4E, 4X,5,9,S,V
OR5 0] 14,13,12, 11, |3, 4E, 4X, S,
10 5 is macro
OR12 O 111, 110,19, |5
18,17, 16, 15, | Macros only
14,13, 12, 11,
10
OR16 @] 115, 114, 5and V
113,112,111, | Macros only
110, 19, 18,
17,16, 15, 14,
13,12, 11, 10
OscC* 0] 3 No delay
0OSC4* F8M, 4E, 4X, S
F500K,
F16K,
F490, F15
OSC5* OSC1, 5 No delay
0sC2

Xilinx/Synopsys Interface Guide

A-31

Xilinx/Synopsys Interface Guide

Table A-15 “O”
Name Output Input Architecture Notes
0OSCh2* 0OSC1, C 5 No delay
0sc2
OXNOR2* o F 10 4X and SpartanXL
OXOR2* @) F 10 4X and SpartanXL
An asterisk (*) next to a primitive name indicates that you must instantiate it.
Table A-16 “P”
Name Output |Input Architecture Notes
PULLDOWN* |O 4E, 4X,5, S,V No delay; used for
10Bs or BUFTs
PULLUP* 0] 3,4E, 4X,5,5,V No delay; used for
10Bs or BUFTs
An asterisk (*) next to a primitive name indicates that you must instantiate it.
Table A-17 “R”
Name Output Input Architecture Notes
RAM16X1 O D, A3,A2, AL, AQ, | 4E, 4X
WE
RAM32X1 O D, A4,A3,A2,Al, |4E, 4X
A0, WE
RAM16X1S |O D,A3,A2,AL A0, |4E, 4X,S,V
WE, WCLK
RAM32X1S |O D,A4,A3,A2, AL, |4E, 4X, S,V
A0, WE, WCLK
RAM16X1D |SPO,DPO |D,A3,A2,AL A0, |4E, 4X,S,V
DPRAS3, DPRA2,
DPRAL, DPRAO,
WE, WCLK
READ- DATA, RIP |CLK, TRIG No primitives No delay
BACK* 4E, 4X, 5, S are macros
only
ROC* o 3, AE/L/EX/XL/
XLA/ZXV, 5, S
A-32 Xilinx Development System

XSI Library Primitives

Table A-17 “R”
Name Output Input Architecture Notes
ROCBUF* O | 3, 4E/L/EX/XL/
XLA/XV, 5, S
ROM16X1 O A3, A2, Al, A0 4E, 4X, S,V Must add ROM
value
ROM32X1 O A4, A3, A2, Al, 4E, 4X, S,V Must add ROM
A0 value
An asterisk (*) next to a primitive name indicates that you must instantiate it.
Table A-18 “S”
Name Output Input Architecture Notes
S FLAG* | 3, 4E/L/EX/XL/ Save signal,
XLA/XV, 5, S treat it as
external
connection.
STARTUP* | Q2, Q3, Q1Q4, GSR, GTS, |4E, 4X,5,S
DONEIN CLK
STARTBUF* | GSROUT, GSRIN, AE/L/EX/XL/XLA/S
GTSOUT, GTSIN, XV, 5, S
Q20UT, Q30UT, |CLKIN
Q1Q40UT,
DONEINOUT
An asterisk (*) next to a primitive name indicates that you must instantiate it.
Table A-19 “T”
Name Output Input Architecture Notes
TCK* | 4E, 4X,5,S Input pad for BSCAN
TDI* | 4E, 4X,5, S Input pad for BSCAN
TDO* 0] 4E, 4X,5,S Output pad for BSCAN
TMS* | 4E, 4X,5, S Input pad for BSCAN
TOC* o] 4E/L/EX/XL/XLA/
XV, 5,8

Xilinx/Synopsys Interface Guide

A-33

Xilinx/Synopsys Interface Guide

Table A-19 “T”
Name Output Input Architecture Notes
TOCBUF* 0] | AE/L/EX/XL/XLA/
XV, 5, S
An asterisk (*) next to a primitive name indicates that you must instantiate it.
Table A-20 “V”
Name Output Input Architecture Notes
VCC VCC 3,4E, 4X,5,9,5,V
Table A-21 “W”
Name Output Input Architecture Notes
WAND1* @] | 4E, 4X No pull-up resistor
WOR2AND* |O 11,10 4E, 4X No pull-up resistor
An asterisk (*) next to a primitive name indicates that you must instantiate it.
Table A-22 “X”
Name Output Input Architecture Notes
X _FLAG* | 3, 4E/L/EX/XL/ Signal is an explicit
XLA/XV, 5, S LCA net.
XOR2 O 11,10 3,4E, 4X,5,9,5,V
XOR3 @] 12,11, 10 3,4E, 4X,5,9,5,V
XOR4 @] 13,12, 11, 10 3,4E, 4X,5,9,5,V
XOR5 O 14,13, 12,11, 10 |3, 4E, 4X, S,
5and 9 are macros
XNOR2 O 11,10 3,4E, 4X,5,9,5,V
XNOR3] 12,11, 10 3,4E, 4X,5,9,S,V
XNOR4 o 13,12, 11, 10 3,4E, 4X,5,9,S,V
XNOR5 O 14, 13,12, 11,10 |3, 4E, 4X, S,
5and 9 are macros
only

An asterisk (*) next to a primitive name indicates that you must instantiate it.

A-34

Xilinx Development System

XSI Library Primitives

Understanding Virtex-Specific Cell Names

The following sections list Virtex-specific suffixes, primitives, and
RAM cell names.

Virtex-Specific Primitives Table

The following table describes the Virtex-specific XSI primitives.

Table A-23 Virtex-Specific Primitives

Name Output Input Notes
BSCAN_VIRTEX TDI, DRCK1, TDO1, TDO?2
DRCK2, SEL1, SEL2,
RESET, UPDATE,
SHIFT
BUFE @] ILE Tri-state buffer;
active-low tri-state
BUFCF o) I Fast-connect buffer
BUFGP) I Clock buffer using
dedicated pad
BUFGDLL* o] | CLKDLL with
dedicated clock pad
CAPTURE_VIRTEX CAP, CLK
CLKDLL* CLKO, CLKA90, CLKIN, CLKFB, Clock delay-lock
CLK180, CLK270, RST loop
CLK2X, CLKDV,
LOCKED
CLKDLLHF* CLKO, CLK180, CLKIN, CLKFB, High-frequency
CLKDV, LOCKED LOCKED version of CLKDLL
FD Q D, C
FD 1 Q D, C
FDCP Q D, C, CLR, PRE
FDCP_1 Q D, C, CLR, PRE

Xilinx/Synopsys Interface Guide

A-35

Xilinx/Synopsys Interface Guide

Table A-23 Virtex-Specific Primitives

Name Output Input Notes
FDCPE Q D, C, CLR, PRE, D flip-flop with
CE clock enable and

asynchronous clear
and preset; clear
overrides preset.

FDCPE_1 Q D, C,CLR, PRE, | D flip-flop with

CE clock enable and

asynchronous clear
and preset; clear
overrides preset.

FDE Q D, C, CE

FDE 1 Q D, C, CE

FDP_1 Q D, C, PRE

FDR Q D,C,R

FDR_1 Q D,C,R

FDRE Q D,C,R,CE

FDRE_1 Q D,C R, CE

FDRS Q D,CR,S

FDRS_1 Q D,C,R,S

FDRSE Q D,CR,S,CE D flip-flop with
clock enable and
synchronous clear
and set; clear
overrides set.

FDRSE_1 Q D,CR,S,CE D flip-flop with
clock enable and
synchronous clear
and set; clear
overrides set.

FDS Q D,C,S

FDS 1 Q D,C,S

FDSE Q D,C,S,CE

FDSE_1 Q D,C,S,CE

A-36 Xilinx Development System

XSI Library Primitives

Table A-23 Virtex-Specific Primitives

Name

Output

Input

Notes

IBUFG

O

Refer to Table A-2
for the meaning of
suffixes appended to
this cell name.

KEEPER*

O (bidirectional pin)

Weak keeper.

LDCP

Q

D, G, CLR, PRE

D latch with gate
enable and
asynchronous clear
and preset; clear
overrides preset.

LDCP_1

D, G, CLR, PRE

D latch with gate
enable and
asynchronous clear
and preset; clear
overrides preset.

LDCPE

D, G, GE, CLR,
PRE

D latch with gate
enable and
asynchronous clear
and preset; clear
overrides preset.

LDCPE_1

D, G, GE, CLR,
PRE

D latch with gate
enable and
asynchronous clear
and preset; clear
overrides preset.

LDE

D, G, GE

LDE_1

D, G, GE

SLR16*

AQ, A1, A2, A3,
CLK

Variable length 16-
bit (max) shift
register with clock
enable.

SLR16_1*

D, A0, Al, A2, A3,
CLK

Variable length 16-
bit (max) shift
register with clock
enable.

Xilinx/Synopsys Interface Guide

A-37

Xilinx/Synopsys Interface Guide

Table A-23 Virtex-Specific Primitives

Name Output Input Notes
SLR16E* Q CE, D, A0, A1, A2, | Variable length 16-
A3, CLK bit (max) shift
register with clock
enable.
SLR16E 1* Q CE, D, A0, Al, A2, | Variable length 16-
A3, CLK bit (max) shift
register with clock
enable.
STARTBUF_VIRTEX |GTSOUT GSRIN, GTSIN,
CLKIN
STARTUP_VIRTEX GSR, GTS, CLK

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Virtex RAM Primitive Name Suffixes

The following table lists the Virtex RAM primitive names and their
corresponding descriptions.

Table A-24 Virtex-Specific RAM

CLKA, ADDRA, WEB,
RSTB, ENB, DIB, CLKB,
ADDRB

Name Output Input Notes

RAM16X1D_1* SPO, DPO WE, D, WCLK, A0, Al, |Negative clock edge
A2, A3, DPRAOQ, DPRAL, |triggered dual ported 16
DPRAZ2, DPRA3 bit RAM.

RAM16X1S_1* o WE, D, WCLK, A0, Al, |Negative clock edge
A2, A3 triggered 16 bit RAM.

RAM32X1S 1* 0] WE, D, WCLK, A0, Al, |Negative clock edge
A2, A3, Ad triggered 32 bit RAM.

RAMB4_S1* DO WE, RST, EN, EN, CLK, |Single port 4096 bit
ADDR block RAM.

RAMB4 _S1 S1* DOA, DOB WE, RSTA, ENA, DIA, |Dual port 4096 bit block

RAM.

A-38

Xilinx Development System

XSI Library Primitives

Table A-24 Virtex-Specific RAM

Name Output Input Notes
RAMB4_S1_S2* | DOA, DOB WEA, RSTA, ENA, Dual port 4096 bit block
ENA, ENA, CLKA, RAM.
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB
RAMB4_S1 S4* | DOA, DOB WEA, RSTA, ENA, Dual port 4096 bit block
ENA, ENA, CLKA, RAM.
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB
RAMB4_S1 S8* |DOA, DOB WEA, RSTA, ENA, Dual port 4096 bit block
ENA, ENA, CLKA, RAM.
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB
RAMB4_S1 _S16* |DOA, DOB WEA, RSTA, ENA, Dual port 4096 bit block
ENA, ENA, CLKA, RAM.
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB
RAMB4_S2* DO WE, RST, EN, EN, CLK, |Single port 4096 bit
ADDR block RAM.
RAMB4_S4* DO WE, RST, EN, EN, CLK, |Single port 4096 bit
ADDR block RAM.
RAMB4_S8* DO WE, RST, EN, EN, CLK, |Single port 4096 bit
ADDR block RAM.
RAMB4_S16* DO WE, RST, EN, EN, CLK, |Single port 4096 bit
ADDR block RAM.
RAMB4_S2_S2* | DOA, DOB WEA, RSTA, ENA, Dual port 4096 bit block

ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

RAM.

Xilinx/Synopsys Interface Guide

A-39

Xilinx/Synopsys Interface Guide

Table A-24 Virtex-Specific RAM

Name

Output

Input

Notes

RAMB4_S2_S4*

DOA, DOB

WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

RAMB4_S2_Sg*

DOA, DOB

WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

RAMB4_S2_S16*

DOA, DOB

WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

RAMB4_S4_S4*

DOA, DOB

WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

RAMB4 S4 Sg*

DOA, DOB

WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

RAMB4_S4_S16*

DOA, DOB

WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

RAMB4_S8_S8*

DOA, DOB

WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

A-40

Xilinx Development System

XSI Library Primitives

Table A-24 Virtex-Specific RAM

Name Output Input Notes
RAMB4_S8 S16* |DOA, DOB WEA, RSTA, ENA, Dual port 4096 bit block
ENA, ENA, CLKA, RAM.
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB
RAMB4_S16_S16* | DOA, DOB WEA, RSTA, ENA, Dual port 4096 bit block

ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

RAM.

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Xilinx DesignWare Modules

The following figure illustrates the Xilinx DesignWare (XDW)
module naming conventions. The example shows a comparator
module and contains the four possible components used in naming
the modules. Other module names do not necessarily contain all four

components.

Module Type
Magnitude and Equality
Data Type
Bus Width

COMP_LE_UBIN_#

X7752

Figure A-1 XDW Module Naming Conventions

Xilinx/Synopsys Interface Guide

A-41

Xilinx/Synopsys Interface Guide

The following table gives the XDW naming conventions.
Table A-25 XDW Naming Conventions

Module Type I\Eﬂsggllitt;de and Data Type Bus Width
ADD_SUB: GE: Greater than or | TWO_COMP: Twos |#: Bus width can be 6, 8,
Adder/Subtracter |equal to complement 10, 12, 14, 16, 20, 24, 28,
COMP: Compar- |GT: Greater than UBIN: Unsigned 32, or 48 (and 64 for
ator LE: Less than or binary COMP only).
INC_DEC: equal to Use <(#-1):0> to
Incrementer/ LT: Less than translate bus width to
Decrementer bus notation. For
example, if Bus A has a
bus width of 6, then the
correct bus notation is
A<(6-1):0> or A<5:0>.

The following table maps XDW modules to X-BLOX Modules and
provides inputs and outputs

Table A-26 XDW Modules

DesignWare Module >I\§I-oBdLu(I)eX Inputs Outputs
ADD SUB TWO _COMP_# |ADD SUB |C_IN, ADD_SUB, FUNC<(#-1):0>
B<(#-1):0>, A<(#-1):0>
ADD_SUB_UBIN_# C_IN, ADD_SUB, FUNC<(#-1):0>
B<(#-1):0>, A<(#-1):0>
COMP_GE_TWO_COMP_# |COMPARE |B<(#-1):0>, A<(#-1):0> | Z
COMP_GE_UBIN_# B<(#-1):0>, A<(#-1):0> | Z
COMP_GT_TWO_COMP_# B<(#-1):0>, A<(#-1):0> | Z
COMP_GT_UBIN_# B<(#-1):0>, A<(#-1):0> | Z
COMP_LE_TWO_COMP_# B<(#-1):0>, A<(#-1):0> | Z
COMP_LE_UBIN_# B<(#-1):0>, A<(#-1):0> | Z
COMP_LT_TWO_COMP_# B<(#-1):0>, A<(#-1):0> | Z
COMP_LT_UBIN_# B<(#-1):0>, A<(#-1):0> | Z
INC_DEC_TWO_COMP_# |INC_DEC |INC_DEC, A<(#-1):0> |FUNC<(#-1):0>
INC_DEC_UBIN_# INC_DEC, A<(#-1):0> | FUNC<(#-1):0>

A-42 Xilinx Development System

XSI Library Primitives

Post-Configuration Initialization States

The following tables show the initialization states after configuration
for the XC4000 and XC5200 families.

Table A-27 Initialization State After Configuration (XC4000

Family)
Initializes to O* Initializes to 1
FDC ILFFX_M* OFDTX_U FDP ILFFXI_M* | OFDTXI_F
FDCE ILFLX_F* OFDT_F FDPE ILFLXI_1F* |OFDTXI_S
IFD ILFLX_M* OFDT_S IFDI ILFLXI_1M* |OFDTXI_U
IFDX ILFLX 1F* OFDT_U IFDI_F LDPE* OFDXI
IFDX_F ILFLX_1M* |OFDX IFDI_U LDPE_1* OFDXI_F
IFDX_U LD* OFDX_F IFDXI LDP_1 OFDXI_S
IFD_F LDCE* OFDX_FU IFDXI_F OFDI OFDXI_U
IFD_U LDCE_1* OFDX_S IFDXI_U OFDI_F
ILDX_1 LDC_1 OFDX_U ILDI_1 OFDI_S
ILDX_1F LD 1 OFD_F ILDI_1F OFDI_U
ILDX_1U OFD OFD_FU ILDI_1U OFDTI
ILD_1 OFDT OFD_S ILDXI_1 OFDTI_F
ILD_1F OFDTX OFD_U ILDXI_1F OFDTI_S
ILD_1U OFDTX_F ILDXI_1U OFDTI_U
ILFFX_F* OFDTX_S ILFFXI_F* OFDTXI

An asterisk (*) indicates 4000XE/XL/XV only.

Table A-28 Initialization State After Configuration (XC5200

Family)

Initializes to 0 Initializes to 1
FDC FDPI

FDCE FDPEI

FDC_1 FDPI_1
FDCE_1 FDPEI_1

LD

Xilinx/Synopsys Interface Guide

A-43

Xilinx/Synopsys Interface Guide

Table A-28 Initialization State After Configuration (XC5200
Family)

Initializes to 0 Initializes to 1
LD 1
LDC
LDCE
LDC 1
LDCE_1

A-44 Xilinx Development System

Appendix B

Targeting Virtex Devices

Generally, you target a Virtex device no differently than the way you
target a non-Virtex device. However, you use Virtex-specific settings,
such as .synopsys_dc.setup options, that only apply to Virtex. This
appendix outlines only the major differences you encounter when
targeting a Virtex device. For topics not covered here, equivalent
instructions for a non-Virtex device apply and those instructions exist
earlier in this manual.

Unless otherwise specified, all references to FPGA Compiler also
apply to Design Compiler.

This appendix contains the following topics.

* “Following General Guidelines.”

» “Setting FPGA Compiler to Synthesize a Virtex Design”
» “Synthesizing a Virtex Design into FPGA Compiler”

e “Setting VSS Simulation for Virtex”

o “Setting FPGA Compiler Il for Virtex”

e “Synthesizing a Virtex Design in FPGA Compiler II”

* “Using Clock Delay Locked Loops with Synopsys”

Following General Guidelines

Use these following general guidelines when targeting Virtex
devices.

Virtex XSI uses an EDIF-based synthesis flow with FPGA Compiler
and FPGA Compiler II.

Xilinx/Synopsys Interface Guide B-1

Xilinx/Synopsys Interface Guide

For 1/0 cells with a specific type of input delay and current drive in
the FPGA Compiler flow, instantiate the desired IBUF, OBUF, IFD,
and other primitives. Refer to the “XSI Library Primitives” appendix
for the exact 1/0 library cell name and pin names. For 170 cells in
FPGA Compiler 11, you can infer the desired type of input delay, pull-
up or pull-down, and current drive using the FPGA Compiler 1l
implementation GUI.

Do not use the Ungroup —al | —fl atten command when
synthesizing a Virtex design with FPGA Compiler.

A software bug exists in the DesignWare Compiler that causes the
uniquify command to remove attributes from library cells. The result
is a LUT primitive with no attributes defining how the LUT works.
The resulting netlist will error out during the NGDBuild process.
Compile all lower level modules. Place a dont_touch attribute on the
complied modules, then compile the top level module. Do not set the
Synopsys variable hdlin_replace_synthetic=true to expand the
operators while reading in the HDL design code. Doing so can result
in less-than-optimal designs, because the compiler cannot make
appropriate trade-offs. Do not use the r epl ace_f pga command for
virtex flows. The r epl ace_f pga command will replace the LUTs in
the netlist with primitive gates.

Use the following commands for the set_dont_touch attribute.
current _design alu conpile -map_effort \
[l ow medi un hi gh] \
set _dont _touch alu \
current _design top conpile -map_effort \
[ow medi un hi gh]

You can use two types of simulation when simulating a Virtex design
with either Verilog or VHDL,; RTL simulation and post-NGDbuild
simulation.

Setting FPGA Compiler to Synthesize a Virtex
Design

Use the following procedure to set FPGA Compiler for Virtex design
simulation.

1. Setyour Xilinx and Synopsys software environments.

B-2 Xilinx Development System

Targeting Virtex Devices

For instructions about setting up this current release of Xilinx
software, please refer to the ISE 4 Release Notes. For instructions
about setting up Synopsys products, refer to the Synopsys
installation guide.

2. Copy the file $XILINX/synopsys/examples/
template.synopsys_dc.setup_fc into a directory.

3. Run synlibs to get the correct synthesis libraries into the
.synopsys_dc.setup file. Execute the following command in the
same directory that contains the .synopsys_dc.setup file for
Virtex.

synlibs xfpga_virtex-3>> synopsys_dc. setup

4. Check that your system administrator compiled the XDW ISE 4
XSl libraries.

By default, these DesignWare libraries are compiled for Synopsys
v1999.05. If using a version of Synopsys newer than v1999.05,
compile these libraries for the version of Synopsys you use.
Check with your system administrator to determine the version
of Synopsys installed and in use.

5. Determine if you need to compile the ISE 4 XDW libraries for
Virtex and have privileges to write to $XILINX.

If you do not have privileges to write in $XILINX, copy the
contents of $XILINX/synopsys/libraries to a local directory and
then follow steps 2-4, except use the following procedures in the
local copy of $XILINX/synopsys/libraries.

¢ Change directories to the $XILINX/synopsys/libraries/dw/
src/virtex area.

+ Inside the previous directory, type the following and press
Enter.

dc_shell —f install_dw dc

To synthesize the Virtex ISE 4 XSI XDW Virtex libraries you
must have a license to compile VHDL with Synopsys. If you
do not have a VHDL license, check the Xilinx WWW site
(www.xilinx.com) for a compiled version of the XSI XDW
Virtex ISE 4 XDW libraries.

Xilinx/Synopsys Interface Guide B-3

Xilinx/Synopsys Interface Guide

¢+ Compile the XSI XDW ISE 4 libraries only once. You need to
recompile only when upgrading to a new version of
Synopsys.

Synthesizing a Virtex Design into FPGA Compiler

B-4

Use the following procedure to synthesize a Virtex design into FPGA
Compiler.

1. Setup the .synopsys_dc.setup file.
2. Synthesize the ISE 4 XDW libraries.

3. Create a WORK directory in the same directory that contains the
.synopsys_dc.setup file.

4. Create the run script, as shown in the following example.

/*Basic Virtex FPGA Conmpil er Conpile script */

read —f verilog filel.v

read —f verilog file2.v
read —f verilog file3.v

read —f verilog top.v

/* Set design constraints */
/* Use the following commands if you want */
/* Synopsys to infer I/O It is recomended */
/* for the Virtex flow that 1/0O be */
/* instanti at ed. */
/* set_port_is_pad “*” */
/* set_pad_type -no_clock all _inputs() */
/* set_pad_type -exact BUFGP -clock \ */
/* find(port,”CLK") */
/* insert_pads */
conpi l e

/* Use analysis reports to evaluate quality */
/* of results. */
/* report_area */
/* report _timng */

wite_script > design.dc

sh dc2ncf -w design. dc

wite —hierarchy -format db —o “top. db”
wite —hierarchy -format edif —o “top.edif”

Xilinx Development System

Targeting Virtex Devices

Setting VSS Simulation for Virtex

Use the following procedure to set VSS simulation for Virtex devices.

Note To compile the simulation libraries, you must have root access
because you modify files in the $XILINX tree. As with the XDW
libraries, you must compile these libraries if using a version of
Synopsys newer than v1999.05. If you need to compile these libraries,
you must have write privileges to the $XILINX area. If you do not,
copy the $XILINX/synopsys/libraries/sim to a local directory.

1. Change to the $XILINX/synopsys/libraries/sim/src/unisims
directory.

2. Inthe previous directory, run the C-shell script analyze.csh.

3. Change to the $XILINX/synopsys/libraries/sim./src/simprims
directory.

4. In the previous directory, run the C-shell script analyze.csh.

You need do the previous three steps only once. However, if you
upgrade to a new version of Synopsys, you must recompile these
libraries again.

If simulating in Verilog, ignore the previous three steps.

5. Copy the file $XILINX/synopsys/examples/
template.synopsys_vss.setup file into a directory where you
perform VSS simulation.

6. Rename the file template.synopsys_vss.setup to
.Synopsys_vss.setup.

7. Create a WORK directory.

You can now start simulating with VSS.

Setting FPGA Compiler Il for Virtex

You can use FPGA Compiler Il to synthesize a Virtex design. When
creating an implementation in FPGA Compiler Il, select Virtex as a
family/die-pkg-spd grade. For more information on FPGA Compiler
I, refer to the documentation which comes with your FPGA
Compiler Il software from Synopsys.

Xilinx/Synopsys Interface Guide B-5

Xilinx/Synopsys Interface Guide

Synthesizing a Virtex Design in FPGA Compiler Il

The design procedure you use to target a Virtex device with FPGA
Compiler Il mimics the procedure for targeting a XC3000A/
XC4000X/Spartan device with FPGA Compiler II. For more
information about FPGA Compiler I, refer to the documentation
which comes with your FPGA Compiler Il software from Synopsys.

Using Clock Delay Locked Loops with Synopsys

You can simulate and implement the clock delay loops DLLs
CLKDLL and CLKDLLHF in HDL code. To use these DLLs for
synthesis, change the following two types of attributes.

e DUTY_CYCLE_CORRECTION (default is true)
+ CLKDV_DIVDE— (default is 2)

To changes these default values in FPGA Compiler, use the Set
Attribute command. To change the value of
DUTY_CYCLE_CORRECTION and CLKDV_DIVIDE, you must
know the instance name of the instantiated CLKDLL/CLKDLLHF.
For example, if you have instantiated the CLKDLL in your top-level
VHDL file, the VHDL code can appear as the following.

MYDLL: CLKDLL port map(CLKI N=>REFCLK, CLKFB=>signal 1, .);

CLKDLL MYDLL (.

B-6

In Verilog, the code can appear as follows.
CLKI N(REFCLK), .CLKFB(signall),.);

In both cases, the instance name is CLKDLL. To change the values of
DUTY_CYCLE_CORRECTION and CLKDV_DIVIDE, use the Set
At tri but e command in the run script. Use the Set Attri bute
command before writing out the EDIF file from FPGA Compiler, as
shown in the following example.

set_attribute “MYDLL" “DUTY_CYCLE CORRECTI ON'\
—-type string “FALSE" \

set_attribute “MYDLL” \

“CLKDV_DI VIDE “ —type string “3.0"

To change the defaults of CLKDLL and CLKDLLHF in FPGA
Express, use the constraints GUI in FPGA Express.

Xilinx Development System

Targeting Virtex Devices

To simulate CLKDLL and CLKDLLHF with Verilog, use the
functional simulation model that exists in the UNISIM libraries
included in the ISE 4 software. If you changed the default values of
DUTY_CYCLE_CORRECTION and CLKDV_DIVIDE, specify these
changes in the functional simulation by using a ‘define macro to
override the DUTY_CYCLE_CORRECTION and CLKDV_DIVIDE
parameters.

To simulate CLKDLL and CLKDLLHF with VHDL, use the
functional simulation model that exists in the UNISIM libraries
included in the ISE 4 XSl software. If you changed the default values
of DUTY_CYCLE_CORRECTIO and CLKDV_DIVIDE, specify these
changes in the functional simulation by using generics when
instantiating the CLKDLL/CLKDLLHF.

Note Generics for DUTY_CYCLE_CORRECTIOIN and CLKDLLHF
do not allow you to change the default values for synthesis. Use the
Set Attributecommand to do this, or the GUI of FPGA Express.

The following example shows how to use generics to change the
default values of the CLKDLL for functional VHDL simulation.

MYDLL: CLKDLL generic \
map(DUTY_CYCLE CORRECTI ON=>FALSE, \
CLKDV_DI VI DE=>3. 0) port map(CLKIN=>..);

For more information about CLKDLL and CLKDLLHF, please refer
to the Databook or the Libraries Guide.

Xilinx/Synopsys Interface Guide B-7

Xilinx/Synopsys Interface Guide

B-8 Xilinx Development System

	Software Manuals Online
	Xilinx/ Synopsys Interface Guide
	About This Manual
	Manual Contents
	Additional Resources

	Conventions
	Typographical
	Online Document

	Table of Contents
	Introduction to the Xilinx/Synopsys Interface
	What Is XSI?
	XSI Design Flow Using FPGA Compiler II
	XSI Design Flow Using FPGA Compiler
	Comparing Design Compiler to FPGA Compiler and FPGA Compiler II
	Using FPGA Compiler II
	Xilinx Documentation Set

	Getting Started
	Setting Up the Synopsys Interface
	Setting up the XDW and Simulation Libraries
	Compiling XDW Libraries

	Modifying the Default Synopsys Startup File
	Checking the FPGA Compiler Setup File
	Checking the Design Compiler Setup File

	Examples of Synopsys Setup Files
	XC4000 Devices
	Example .synopsys_dc.setup File
	Example .synopsys_dc.setup File
	Example Script File for Virtex Devices

	Verifying Software Installation

	Synthesizing Your Design with FPGA Compiler II
	Before You Begin
	Naming Conventions
	Porting Code from FPGA Compiler to FPGA Compiler II
	Converting Script Files from FPGA Compiler and Design Compiler
	Synthesizing the Design
	Entering Design Constraints and Controls
	Specifying Timing Constraints
	Specifying Clock Constraints
	Specifying Path Group Constraints
	Specifying I/O Constraints
	Timing Subpaths
	Defining Multicycle Timing Constraints
	Adding Pull-Up and Pull-Down Resistors

	Optimizing a Design Implementation
	Optimizing Logic Across Hierarchical Boundaries
	Using a Flattening Optimization Strategy

	Setting Port Attributes and Constraints

	Evaluating Timing Delays
	Using the FPGA Compiler II Time Tracker
	Viewing the Results of Optimization
	Generating Reports for Debugging
	Viewing the Schematics

	Exporting the Netlist
	Using the Xilinx Development System
	HDL Coding Techniques
	Configuring IOBs
	All Architectures
	Optimizing Inputs
	Understanding and Using Slew Rate

	Using IOBs
	Using Input Blocks
	Using Output Blocks
	Using Bidirectional Mode

	Inserting Bidirectional I/Os
	Assigning Pad Locations
	Instantiating a Registered Bidirectional I/O

	Implementing 3-State Registered Output
	Example of Not Directly Driving the 3-State Signal
	Example of Directly Driving the 3-State Signal

	Attribute Passing
	Implementing Clock Buffers
	Using Memory
	Implementing Virtex/E/-II RAM
	Implementing XC4000 RAM

	Performing Boundary Scan
	Using the Global Set/Reset Net
	Implementing GSR Buffers
	Accessing Global Set/Reset Using STARTBUF
	Synthesizing/Simulating for VHDL Global Set/Reset Emulation
	Instantiating a STARTUP Block in VHDL

	Increasing Performance with the GSR Net

	Synthesizing Your Design with FPGA Compiler and Design Compiler
	Before You Begin
	Naming Conventions
	Setting the Wire-Load Model
	Setting the Operating Condition Parameters
	Configuring IOBs
	All Architectures
	Optimizing Inputs
	Understanding and Using Slew Rate

	XC3000A/L and XC3100A/L IOBs
	Using Input Blocks
	Using Output Blocks
	Using Bidirectional Mode
	Using Input Blocks
	Using Output Blocks
	Using Bidirectional Mode

	Using XC5200 IOBs
	Using Input Blocks
	Using Output Blocks

	Assigning Pad Locations
	Example of Not Directly Driving the 3-State Signal
	Example of Directly Driving the 3-State Signal

	Inserting Bidirectional I/Os
	Instantiating a Registered Bidirectional I/O
	Compiling Bidirectional I/O

	Using Unbonded IOBs
	Adding Pull-Up and Pull-Down Resistors
	Removing the Default Input Delay
	Initializing the IOB Flip-Flop to Preset

	Inserting Clock Buffers
	Controlling Clock Buffer Insertion
	Determining the Number of Clock Buffers
	Preventing the Insertion of Clock Buffers

	Using Memory
	Implementing XC4000 RAMs
	Implementing RAM In Virtex Devices

	Performing Boundary Scan
	Using the Global Set/Reset Net
	Accessing Global Set/Reset Using STARTBUF
	Synthesizing/Simulating for VHDL Global Set/Reset Emulation
	Using STARTBUF in VHDL
	Instantiating a STARTUP Block in VHDL

	Setting Direct Preset or Direct Clear
	Increasing Performance with the GSR Net

	Using the Xilinx DesignWare Library
	Improving Design Area and Speed

	Creating Timing Specifications
	Following the DC2NCF Design Flow
	Creating the Netlist and Script File (Design Compiler)
	Creating the Netlist and Script File (FPGA Compiler)

	Understanding DC2NCF Translation Limitations
	Limitations of Create Clock
	Limitations of Set Input Delay and Set Output Delay
	Limitations of Set Max Delay and Set False Path
	Set Multicycle Path

	Compiling Your Design
	Optimizing Logic Across Hierarchical Boundaries
	Using a Flattening Optimization Strategy
	Compiling the Design with Hierarchy
	Compiling the Design without Hierarchy

	Compiling a Design with Instantiated I/O Cells
	Compiling XC4000, Spartan, and Virtex Designs

	Creating the Area Report
	Evaluating Timing Delays
	Generating Reports for Debugging
	Generating a Configuration Report
	Generating a Hierarchical Schematic
	Creating a Level for Each CLB and IOB
	Generating a Level for Each Function Generator

	Writing and Saving Your Design
	Saving the DB File
	Replacing CLBs and IOBs with Gates
	Invoking the Replace FPGA Command
	Replacing CLBs and IOBs in Designs with Hierarchy

	Controlling the Synopsys Mapping
	Restoring BLKNM Attributes

	Setting the Design Part Type
	Saving the Design Netlist File
	Saving your Netlist in EDIF Format (Design Compiler)
	Saving your Netlist in XNF Format (FPGA Compiler)

	Using the Xilinx Development System

	Using CORE Generator and LogiBLOX
	Using CORE Generator
	Specifying Inputs and Outputs in LogiBLOX
	Using LogiBLOX in the HDL Design Flow
	Instantiating RAM
	Instantiating RAM or ROM with FPGA Compiler
	Instantiating RAM or ROM with FPGA Compiler II

	Simulating Your Design
	Simulation Design Flow Overview
	Using Simulation Libraries
	UniSim Library
	UniSim Library Structure
	UniSim Library Files
	UniSim Library Component Instantiation

	SimPrim Library
	LogiBLOX Library
	LogiBLOX Library Compilation
	LogiBLOX Library Component Instantiation

	Working with the VITAL Standard
	VHDL and Verilog Simulation Flow
	Simulating at Register Transfer Level (RTL)
	Conducting a Post-Synthesis (pre-NGDBuild) Gate- Level Functional Simulation
	Conducting a Post-NGDBuild (Pre-Map) Gate-Level Functional Simulation
	Conducting a Post-Route Full Timing (Block and Net Delays) Simulation

	Synthesizing/Simulating for VHDL Global Set/Reset Emulation
	Instantiating a STARTUP Block in VHDL
	Using ROCBUF in VHDL
	Generating a 3-State-On-Configuration in VHDL
	Using TOCBUF in VHDL
	Using Oscillators in VHDL
	Using Global Set/Reset Emulation in Verilog
	Using Global 3-State Emulation in Verilog
	Using Oscillators in Verilog

	NGDBuild Support of Multiple Device Architectures
	Recommended VSS Simulation Strategy
	VSS Simulation Flow
	Editing the VSS Setup File
	Creating a Testbench File
	Using RTL Simulation
	Implementing Your Design

	Using Files, Programs, and Libraries
	Understanding the XSI Directory Structure
	Using File Descriptions
	Using Program Descriptions
	Using Supplied Libraries Descriptions
	Finding Supported Part Types and Speed Grades
	Finding Unsupported Part Types and Speed Grades

	XSI Library Primitives
	Generating a List of XSI Library Primitives
	Obtaining XSI Library Primitive Pin Order
	Alphabetical List of Primitives for All Architectures
	Using the Dont Touch Attribute
	Setting the INIT Attribute
	Primitive Name Suffixes
	Virtex-Specific Primitive Name Suffixes
	Architecture Abbreviations
	Primitive Tables

	Understanding Virtex-Specific Cell Names
	Virtex-Specific Primitives Table
	Virtex RAM Primitive Name Suffixes

	Xilinx DesignWare Modules
	Post-Configuration Initialization States

	Targeting Virtex Devices
	Following General Guidelines
	Setting FPGA Compiler to Synthesize a Virtex Design
	Synthesizing a Virtex Design into FPGA Compiler
	Setting VSS Simulation for Virtex
	Setting FPGA Compiler II for Virtex
	Synthesizing a Virtex Design in FPGA Compiler II
	Using Clock Delay Locked Loops with Synopsys

