
Xilinx/ Synopsys Interface
Guide
Xilinx/Synopsys Interface Guide— ISE 4 Printed in U.S.A.

Xilinx/Synopsys Interface Guide
The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

CoolRunner, RocketChips, RocketIP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XILINX, XC2064,
XC3090, XC4005, and XC5210 are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable
Logic Cell, CORE Generator, CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap,
Fast Zero Power, Foundation, Gigabit Speeds...and Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA,
LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia, MultiLINX, NanoBlaze, PicoBlaze,
PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCI, Rocket I/O, Select I/O, SelectRAM, SelectRAM+, Silicon
Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap,
UIM, VectorMaze, VersaBlock, VersaRing, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL,
XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-BLOX +,
XChecker, XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP, all XC designated
products, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company is a service mark of Xilinx,
Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,355,035;
5,357,153; 5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,397,943; 5,399,924;
5,399,925; 5,406,133; 5,410,189; 5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719;
5,448,181; 5,448,493; 5,450,021; 5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414;
5,481,206; 5,483,478; 5,486,707; 5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,497,108;
5,498,979; 5,498,989; 5,499,192; 5,500,608; 5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,504,440; 5,506,518;
5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835; 5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322;
5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018; 5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751;
5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528; 5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051;
5,570,059; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199; 5,581,738; 5,583,450; 5,583,452; 5,592,105;
5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597; 5,608,342; 5,610,536; 5,610,790; 5,610,829;
5,612,633; 5,614,844; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387; 5,627,480; 5,629,637; 5,629,886;
5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545; 5,646,547; 5,646,564; 5,646,903;
5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,654,665; 5,656,950; 5,657,290; 5,659,484;
5,661,660; 5,661,685; 5,668,495; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270; 5,675,589;
5,677,638; 5,682,107; 5,684,413; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,055; 5,694,056;
5,694,399; 5,696,454; 5,701,091; 5,701,441; 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,714,890;
5,715,197; 5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584; 5,734,866; 5,734,868; 5,737,234;
5,737,235; 5,737,631; 5,742,178; 5,742,179; 5,742,531; 5,744,974; 5,744,979; 5,744,981; 5,744,995; 5,748,942;

R

ii Xilinx Development System

5,748,979; 5,752,006; 5,752,035; 5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076;
5,764,534; 5,764,564; 5,768,179; 5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240;
5,787,007; 5,789,938; 5,790,479; 5,790,882; 5,795,068; 5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548;
5,808,479; 5,811,985; 5,815,004; 5,815,016; 5,815,404; 5,815,405; 5,818,255; 5,818,730; 5,821,772; 5,821,774;
5,825,202; 5,825,662; 5,825,787; 5,828,230; 5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845;
5,831,907; 5,835,402; 5,838,167; 5,838,901; 5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829;
5,844,844; 5,847,577; 5,847,579; 5,847,580; 5,847,993; 5,852,323; 5,861,761; 5,862,082; 5,867,396; 5,870,309;
5,870,327; 5,870,586; 5,874,834; 5,875,111; 5,877,632; 5,877,979; 5,880,492; 5,880,598; 5,880,620; 5,883,525;
5,883,852; 5,886,538; 5,889,411; 5,889,412; 5,889,413; 5,889,701; 5,892,681; 5,892,961; 5,894,420; 5,896,047;
5,896,329; 5,898,319; 5,898,320; 5,898,602; 5,898,618; 5,898,893; 5,907,245; 5,907,248; 5,909,125; 5,909,453;
5,910,732; 5,912,937; 5,914,514; 5,914,616; 5,920,201; 5,920,202; 5,920,223; 5,923,185; 5,923,602; 5,923,614;
5,928,338; 5,931,962; 5,933,023; 5,933,025; 5,933,369; 5,936,415; 5,936,424; 5,939,930; 5,940,606; 5,942,913;
5,944,813; 5,945,837; 5,946,478; 5,949,690; 5,949,712; 5,949,983; 5,949,987; 5,952,839; 5,952,846; 5,955,888;
5,956,748; 5,958,026; 5,959,821; 5,959,881; 5,959,885; 5,961,576; 5,962,881; 5,963,048; 5,963,050; 5,969,539;
5,969,543; 5,970,142; 5,970,372; 5,971,595; 5,973,506; 5,978,260; 5,986,958; 5,990,704; 5,991,523; 5,991,788;
5,991,880; 5,991,908; 5,995,419; 5,995,744; 5,995,988; 5,999,014; 5,999,025; 6,002,268; 6,002,282; 6,002,991;
6,005,423; 6,005,829; 6,008,666; 6,011,407; 6,011,740; 6,016,063; 6,018,250; 6,018,624; 6,020,633; 6,020,756;
6,020,757; 6,020,776; 6,021,423; 6,023,564; 6,023,565; 6,025,736; 6,026,481; 6,028,445; 6,028,450; 6,033,938;
6,034,542; 6,034,548; 6,034,557; 6,035,106; 6,037,800; 6,038,386; 6,041,340; 6,043,692; 6,044,012; 6,044,025;
6,046,603; 6,047,115; 6,049,222; 6,049,227; 6,051,992; 6,054,871; 6,055,205; 6,057,589; 6,057,704; 6,057,708;
6,061,417; 6,061,418; 6,067,508; 6,069,488; 6,069,489; 6,069,490; 6,069,849; 6,070,260; 6,071,314; 6,072,348;
6,073,154; 6,074,432; 6,075,418; 6,078,201; 6,078,209; 6,078,528; 6,078,735; 6,078,736; 6,081,914; 6,084,429;
6,086,629; 6,086,631; 6,091,262; 6,091,263; 6,091,892; 6,094,063; 6,094,065; 6,094,385; 6,097,210; 6,097,238;
6,099,583; 6,100,705; 6,101,132; 6,101,143; 6,104,211; 6,105,105; 6,107,821; 6,107,826; 6,107,827; 6,112,322;
6,114,843; 6,118,286; 6,118,298; 6,118,300; 6,118,324; 6,118,869; 6,118,938; 6,120,549; 6,120,551; 6,121,795;
6,124,724; 6,124,731; 6,130,550; 6,133,751; 6,134,191; 6,134,517; 6,137,307; 6,137,714; 6,144,220; 6,144,225;
6,144,262; 6,144,933; 6,150,838; 6,150,839; 6,150,863; 6,154,048; 6,154,049; 6,154,052; 6,154,053; 6,157,209;
6,157,211; 6,157,213; 6,160,418; 6,160,431; 6,163,167; 6,167,001; 6,167,416; 6,167,545; 6,167,558; 6,167,560;
6,172,518; 6,172,519; 6,172,520; 6,173,241; 6,175,246; 6,175,530; 6,177,819; 6,177,830; 6,181,158; 6,181,164;
6,184,708; 6,184,709; 6,184,712; 6,185,724; 6,188,091; 6,191,610; 6,191,613; 6,191,614; 6,192,436; 6,195,774;
6,199,192; 6,201,406; 6,201,410; 6,201,411; and 6,202,106; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S.
and foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein are
free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to correct any
errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not
assume any liability for the accuracy or correctness of any engineering or software support or assistance provided
to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2001 Xilinx, Inc. All Rights Reserved.
Xilinx/Synopsys Interface Guide iii

Xilinx/Synopsys Interface Guide
iv Xilinx Development System

About This Manual

This manual describes the Xilinx/Synopsys Interface (XSI) program,
a tool used for implementing Field Programmable Gate Array
(FPGA) designs using either Synopsys FPGA Compiler, FPGA
Compiler II, or the Design Compiler synthesis tools.

This manual does not cover the use of Synopsys FPGA Express with
the XSI program.

Before using this manual, you should be familiar with the operations
that are common to all Xilinx software tools: how to bring up the
system, select a tool for use, specify operations, and manage design
data. These topics are covered in the Development System Reference
Guide. Other publications you can consult for related information are
the LogiBLOX Guide, and Libraries Guide.

Manual Contents
This book contains the following chapters.

• “Introduction to the Xilinx/Synopsys Interface”
chapter“Introduction to the Xilinx/Synopsys Interface” chapter
provides information on the XSI Design Flow, FPGA compiler,
FPGA compiler II, and Design Compiler. This chapter also
includes a list of additional documentation.

• “Getting Started” chapter“Getting Started” chapter shows how to
verify your software installation, modify your Synopsys startup
file, and run Synlibs to set the link and target libraries.

• “Synthesizing Your Design with FPGA Compiler II”
chapter“Synthesizing your Design with FPGA Compiler II”
Xilinx/Synopsys Interface Guide v

Xilinx/Synopsys Interface Guide
chapter shows how to port code from FPGA Compiler to FPGA
Compiler II, convert script files from FPGA Compiler and Design
Compiler and includes design information on attribute passing,
IOB configuration, clock buffers, memory, boundary scan, the
Global Set/Reset net, and timing specifications.

• The “Synthesizing Your Design with FPGA Compiler and Design
Compiler” chapter“Synthesizing Your Design with FPGA
Compiler and Design Compiler” chapter includes design
information on wire-load models, IOB configuration, clock
buffers, memory, boundary scan, the Global Set/Reset net,
timing specifications, compiling, area reports, debugging,
implementing, and saving your designs.

• The “Using CORE Generator and LogiBLOX” chapter“Using
Core Generator and LogiBLOX” chapter provides information
about using Core Generator and LogiBLOX to create high-level
modules for your design.

• “Simulating Your Design” chapter“Simulating Your Design”
chapter describes how to perform RTL and timing simulation.

• “Using Files, Programs, and Libraries” chapter“Using Files,
Programs, and Libraries” chapter describes the files, programs,
and Xilinx-supplied libraries you need to translate your HDL
design using FPGA Compiler or Design Compiler.

• The “XSI Library Primitives” appendix“lists the primitives you
can synthesize or instantiate in a VHDL or Verilog HDL file.

• The “Targeting Virtex Devices” appendix“describes how to
apply the XSI design flow to Virtex devices.

Additional Resources
For additional information, go to http://support.xilinx.com. The
following table lists some of the resources you can access from this
vi Xilinx Development System

http://support.xilinx.com

About This Manual
Web site. You can also directly access these resources using the
provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application
Notes

Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which contains device-
specific information on Xilinx device characteristics, including readback,
boundary scan, configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm

Xcell Journals Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Technical Tips Latest news, design tips, and patch information for the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/index.htm
Xilinx/Synopsys Interface Guide vii

http://support.xilinx.com/support/techsup/tutorials/index.htm
http://support.xilinx.com/support/searchtd.htm
http://support.xilinx.com/apps/appsweb.htm
http://support.xilinx.com/partinfo/databook.htm
http://support.xilinx.com/xcell/xcell.htm
http://support.xilinx.com/support/techsup/journals/index.htm

Xilinx/Synopsys Interface Guide
viii Xilinx Development System

Conventions

This manual uses the following conventions. An example illustrates
most conventions.

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: - 100

• Courier bold indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

♦ Variables in a syntax statement for which you must supply
values

edif2ngd design_name

♦ References to other manuals

See the Development System Reference Guide for more
information.
Xilinx/Synopsys Interface Guide vii

Xilinx/Synopsys Interface Guide
♦ Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose
one or more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

lowpwr ={on|off}

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’

IOB #2: Name = CLKIN’

.

.

.

• A horizontal ellipsis “…” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2 … locn;

Online Document
The following conventions are used for online documents.

• Blue text indicates cross-references within a book. Red text
indicates cross-references to other books. Click the colored text to
jump to the specified cross-reference.

• Blue, underlined text indicates a Web site. Click the link to open
the specified Web site. You must have a Web browser and
internet connection to use this feature.
viii Xilinx Development System

Contents
About This Manual
Manual Contents ...v
Additional Resources ..v

Conventions
Typographical ..vii
Online Document ..viii

Chapter 1 Introduction to the Xilinx/Synopsys Interface

What Is XSI? ...1-1
XSI Design Flow Using FPGA Compiler II1-2
XSI Design Flow Using FPGA Compiler1-3
Comparing Design Compiler to FPGA Compiler and FPGA Compiler II 1-
6
Using FPGA Compiler II ..1-7
Xilinx Documentation Set ..1-7

Chapter 2 Getting Started

Setting Up the Synopsys Interface ..2-1
Setting up the XDW and Simulation Libraries2-2

Compiling XDW Libraries ...2-3
Modifying the Default Synopsys Startup File2-5

Checking the FPGA Compiler Setup File2-6
Checking the Design Compiler Setup File2-7

Examples of Synopsys Setup Files ...2-9
XC4000 Devices ..2-9

Example .synopsys_dc.setup File2-9
Example .synopsys_dc.setup File2-12
Example Script File for Virtex Devices2-14

Verifying Software Installation ...2-20

Chapter 3 Synthesizing Your Design with FPGA Compiler II

Before You Begin ..3-2
Naming Conventions ...3-2
Porting Code from FPGA Compiler to FPGA Compiler II3-2
Converting Script Files from FPGA Compiler and Design Compiler 3-3
Synthesizing the Design ..3-4
Entering Design Constraints and Controls3-8
Specifying Timing Constraints ...3-10

Specifying Clock Constraints ...3-11
Specifying Path Group Constraints3-13
Specifying I/O Constraints ..3-14
Timing Subpaths ...3-15
Defining Multicycle Timing Constraints3-16
Adding Pull-Up and Pull-Down Resistors3-20

Optimizing a Design Implementation ..3-21
Optimizing Logic Across Hierarchical Boundaries3-21
Xilinx/Synopsys Interface Guide 1

Xilinx/Synopsys Interface Guide
Using a Flattening Optimization Strategy3-23
Setting Port Attributes and Constraints3-23

Evaluating Timing Delays ..3-24
Using the FPGA Compiler II Time Tracker3-25
Viewing the Results of Optimization ..3-26
Generating Reports for Debugging ..3-29
Viewing the Schematics ...3-30

Exporting the Netlist ..3-30
Using the Xilinx Development System ..3-31
HDL Coding Techniques ...3-31

Configuring IOBs ..3-31
All Architectures ...3-32

Optimizing Inputs ..3-32
Understanding and Using Slew Rate3-32

Using IOBs ...3-32
Using Input Blocks ..3-32
Using Output Blocks ...3-33
Using Bidirectional Mode ..3-34

Inserting Bidirectional I/Os ..3-35
Assigning Pad Locations ..3-35
Instantiating a Registered Bidirectional I/O3-35

Implementing 3-State Registered Output3-37
Example of Not Directly Driving the 3-State Signal3-37
Example of Directly Driving the 3-State Signal3-39

Attribute Passing ...3-41
Implementing Clock Buffers ..3-43
Using Memory ...3-44

Implementing Virtex/E/2 RAM ..3-45
Implementing XC4000 RAM ..3-45

Performing Boundary Scan ...3-48
Using the Global Set/Reset Net ..3-53

Implementing GSR Buffers ..3-54
Accessing Global Set/Reset Using STARTBUF3-57
Synthesizing/Simulating for VHDL Global Set/Reset Emulation 3-57

Instantiating a STARTUP Block in VHDL3-58
Increasing Performance with the GSR Net3-59

Chapter 4 Synthesizing Your Design with FPGA Compiler and De-
sign Compiler

Before You Begin ..4-2
Naming Conventions ...4-2
Setting the Wire-Load Model ...4-3
Setting the Operating Condition Parameters4-3
Configuring IOBs ...4-3

All Architectures ...4-4
Optimizing Inputs ..4-4
Understanding and Using Slew Rate4-4

XC3000A/L and XC3100A/L IOBs ...4-5
Using Input Blocks ..4-5
2 Xilinx Development System

Contents
Using Output Blocks ...4-6
Using Bidirectional Mode ..4-6
Using Input Blocks ..4-7
Using Output Blocks ...4-7
Using Bidirectional Mode ..4-8

Using XC5200 IOBs ...4-9
Using Input Blocks ..4-9
Using Output Blocks ...4-9

Assigning Pad Locations ..4-10
Example of Not Directly Driving the 3-State Signal4-11
Example of Directly Driving the 3-State Signal4-13

Inserting Bidirectional I/Os ...4-14
Instantiating a Registered Bidirectional I/O4-15
Compiling Bidirectional I/O ...4-17

Using Unbonded IOBs ...4-22
Adding Pull-Up and Pull-Down Resistors4-22
Removing the Default Input Delay ...4-23
Initializing the IOB Flip-Flop to Preset4-23

Inserting Clock Buffers ..4-23
Controlling Clock Buffer Insertion ..4-24
Determining the Number of Clock Buffers4-26
Preventing the Insertion of Clock Buffers4-27

Using Memory ...4-27
Implementing XC4000 RAMs ...4-28
Implementing RAM In Virtex Devices4-31

Performing Boundary Scan ...4-32
Using the Global Set/Reset Net ..4-37

Accessing Global Set/Reset Using STARTBUF4-38
Synthesizing/Simulating for VHDL Global Set/Reset Emulation 4-39

Using STARTBUF in VHDL ..4-39
Instantiating a STARTUP Block in VHDL4-40

Setting Direct Preset or Direct Clear ..4-40
Increasing Performance with the GSR Net4-40

Using the Xilinx DesignWare Library ...4-44
Improving Design Area and Speed ..4-44

Creating Timing Specifications ..4-45
Following the DC2NCF Design Flow4-47

Creating the Netlist and Script File (Design Compiler)4-47
Creating the Netlist and Script File (FPGA Compiler)4-48

Understanding DC2NCF Translation Limitations4-49
Limitations of Create Clock ...4-50
Limitations of Set Input Delay and Set Output Delay4-50
Limitations of Set Max Delay and Set False Path4-52
Set Multicycle Path ...4-55

Compiling Your Design ...4-56
Optimizing Logic Across Hierarchical Boundaries4-56

Using a Flattening Optimization Strategy4-58
Compiling the Design with Hierarchy4-58
Compiling the Design without Hierarchy4-59

Compiling a Design with Instantiated I/O Cells4-59
Xilinx/Synopsys Interface Guide 3

Xilinx/Synopsys Interface Guide
Compiling XC4000, Spartan, and Virtex Designs4-60
Creating the Area Report ..4-64
Evaluating Timing Delays ..4-65
Generating Reports for Debugging ...4-66

Generating a Configuration Report ..4-67
Generating a Hierarchical Schematic4-70
Creating a Level for Each CLB and IOB4-70
Generating a Level for Each Function Generator4-71

Writing and Saving Your Design ...4-71
Saving the DB File ...4-71
Replacing CLBs and IOBs with Gates4-72

Invoking the Replace FPGA Command4-72
Replacing CLBs and IOBs in Designs with Hierarchy4-72

Controlling the Synopsys Mapping ..4-73
Restoring BLKNM Attributes ...4-74

Setting the Design Part Type ...4-74
Saving the Design Netlist File ..4-74

Saving your Netlist in EDIF Format (Design Compiler)4-74
Saving your Netlist in XNF Format (FPGA Compiler)4-75

Using the Xilinx Development System ..4-76

Chapter 5 Using CORE Generator and LogiBLOX

Using CORE Generator ..5-1
Specifying Inputs and Outputs in LogiBLOX5-2
Using LogiBLOX in the HDL Design Flow5-3
Instantiating RAM ..5-4

Instantiating RAM or ROM with FPGA Compiler5-15
Instantiating RAM or ROM with FPGA Compiler II5-18

Simulation Design Flow Overview ...6-2
Using Simulation Libraries ..6-3

UniSim Library ...6-3
UniSim Library Structure ...6-4
UniSim Library Files ..6-5
UniSim Library Component Instantiation6-6

SimPrim Library ...6-6
LogiBLOX Library ...6-6

LogiBLOX Library Compilation ...6-6
LogiBLOX Library Component Instantiation6-7

Working with the VITAL Standard ...6-7
VHDL and Verilog Simulation Flow ...6-7

Simulating at Register Transfer Level (RTL)6-8
Conducting a Post-Synthesis (pre-NGDBuild) Gate-Level Functional
Simulation ..6-9
Conducting a Post-NGDBuild (Pre-Map) Gate-Level Functional Simu-
lation ..6-9
Conducting a Post-Route Full Timing (Block and Net Delays) Simula-
tion ...6-10

Synthesizing/Simulating for VHDL Global Set/Reset Emulation ...6-10
Instantiating a STARTUP Block in VHDL6-11
4 Xilinx Development System

Contents
Using ROCBUF in VHDL ...6-13
Generating a 3-State-On-Configuration in VHDL6-13
Using TOCBUF in VHDL ..6-14
Using Oscillators in VHDL ..6-14
Using Global Set/Reset Emulation in Verilog6-15
Using Global 3-State Emulation in Verilog6-15
Using Oscillators in Verilog ..6-15

NGDBuild Support of Multiple Device Architectures6-15
Recommended VSS Simulation Strategy6-16
VSS Simulation Flow ...6-17
Editing the VSS Setup File ..6-18
Creating a Testbench File ...6-20
Using RTL Simulation ...6-20
Implementing Your Design ..6-22
Understanding the XSI Directory Structure7-1
Using File Descriptions ...7-4
Using Program Descriptions ...7-6
Using Supplied Libraries Descriptions ..7-7

Finding Supported Part Types and Speed Grades7-12
Finding Unsupported Part Types and Speed Grades7-12

Appendix A XSI Library Primitives
Generating a List of XSI Library PrimitivesA-2
Obtaining XSI Library Primitive Pin OrderA-3
Alphabetical List of Primitives for All ArchitecturesA-3

Using the Dont Touch Attribute ..A-4
Setting the INIT Attribute ..A-4
Primitive Name Suffixes ...A-4
Virtex-Specific Primitive Name SuffixesA-5
Architecture Abbreviations ...A-6
Primitive Tables ...A-7

Understanding Virtex-Specific Cell NamesA-33
Virtex-Specific Primitives Table ...A-34
Virtex RAM Primitive Name Suffixes ..A-37

Xilinx DesignWare Modules ..A-40
Post-Configuration Initialization States ...A-42

Appendix B Targeting Virtex Devices
Following General Guidelines ...B-1
Setting FPGA Compiler to Synthesize a Virtex DesignB-2
Synthesizing a Virtex Design into FPGA CompilerB-4
Setting VSS Simulation for Virtex ..B-5
Setting FPGA Compiler II for Virtex ..B-5
Synthesizing a Virtex Design in FPGA Compiler IIB-6
Using Clock Delay Locked Loops with SynopsysB-6
Xilinx/Synopsys Interface Guide 5

Xilinx/Synopsys Interface Guide
6 Xilinx Development System

Chapter 1

Introduction to the Xilinx/Synopsys Interface

This chapter describes the Xilinx/Synopsys Interface (XSI), compares
FPGA Compiler, FPGA Compiler II, and Design Compiler, and lists
additional Xilinx and Synopsys documentation you can use in
conjunction with this manual. This chapter includes the following
sections.

• “What Is XSI?”

• “XSI Design Flow Using FPGA Compiler II”

• “XSI Design Flow Using FPGA Compiler”

• “Comparing Design Compiler to FPGA Compiler and FPGA
Compiler II”

• “Using FPGA Compiler II”

• “Xilinx Documentation Set”

What Is XSI?
XSI supports Synopsys FPGA Compiler Version 1999.05 or later,
FPGA Compiler II Version 3.3 or later, and Synopsys Design
Compiler Version 1999.05 or later.

This manual does not cover the use of Synopsys FPGA Express.

Use the XSI design tool kit to implement Xilinx Field Programmable
Gate Array (FPGA) designs using either Synopsys FPGA Compiler,
FPGA Compiler II, or Design Compiler. These Synopsys High-Level
Design Automation (HLDA) tools allow you to create and optimize
circuit designs from hardware descriptions written in VHSIC
Hardware Description Language (VHDL) or Verilog HDL. Library
support for XC4000E/L/EX/XL/XLA/XV, XC5200, XC9000,
Xilinx/Synopsys Interface Guide 1-1

Xilinx/Synopsys Interface Guide
Spartan/XL/-II, and Virtex/E/-II devices includes a Xilinx
DesignWare (XDW) library.

Before you start creating your FPGA designs, refer to the most
current version of the ISE 4 Release Notes and Installation Guide for
information about the following topics.

• XSI installation instructions

• Tutorial on the tools

• Reference information on common instantiated components

• Constraints guide

For the latest information on Xilinx parts and software, visit the
Xilinx Web site at http://www.xilinx.com.

XSI Design Flow Using FPGA Compiler II
Figure 1-1 illustrates the following required steps you follow to
implement and simulate your HDL designs using FPGA Compiler II.

Refer to the XSI Synopsys tutorials at http://support.xilinx.com/
support/techsup/tutorials/index.htm for step-by-step instructions
on converting your HDL designs.

1. Synthesize your design with FPGA Compiler II.

2. Save your design as an EDIF file.

3. Run NGDBuild on the EDIF file to create an NGD file.

4. Run the MAP program on the NGD file to create a mapped NCD
file.

5. Run the TRACE program to determine if PAR meets your timing
goals.

6. Run PAR on the NCD file to place and route your design.

7. Run TRACE again on your placed and routed design.

8. Run NGDAnno on your routed NCD and NGM files to create an
NGA file.

9. Run either NGD2VHDL or NGD2VER on the NGA file to create a
VHDL (VHD) or Verilog (V) file for simulation with the
appropriate simulators for back annotation. These two programs
1-2 Xilinx Development System

http://support.xilinx.com/support/techsup/tutorials/index.htm
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://www.xilinx.com

Introduction to the Xilinx/Synopsys Interface
also create a Standard Delay Format (SDF) file containing timing
information.

10. Run the BitGen program to create a bitstream for programming
the FPGA.

XSI Design Flow Using FPGA Compiler
Figure 1-1 illustrates the following required steps you follow to
implement and simulate your HDL designs using FPGA Compiler.

Refer to the XSI Synopsys tutorials at http://support.xilinx.com/
support/techsup/tutorials/index.htm for step-by-step instructions
on converting your HDL designs.

1. Use the Synlibs program to determine the appropriate libraries
for your design.

2. Synthesize your design with either FPGA Compiler or Design
Compiler.

3. Save your design as an SXNF file or an SEDIF file, along with a
DC file that contains Synopsys constraints. Make sure you use
the .sxnf or .sedif file extension as NGDBuild will recognize that
the netlists are coming from FPGA Compiler or Design Compiler.

4. Use the DC2NCF program to translate the Synopsys constraints
DC file to a Netlist Constraints File (NCF).

5. Run NGDBuild on the SXNF or SEDIF file to create an NGD file.

6. Run the MAP program on the NGD file to create a mapped NCD
file.

7. Run the TRACE program to determine if PAR meets your timing
goals.

8. Run PAR on the NCD file to place and route your design.

9. Run TRACE again on your placed and routed design.

10. Run NGDAnno on your routed NCD and NGM files to create an
NGA file.

11. Run either NGD2VHDL or NGD2VER on the NGA file to create a
VHDL (VHD) or Verilog (V) file for simulation with the
appropriate simulators for back annotation. These two programs
Xilinx/Synopsys Interface Guide 1-3

http://support.xilinx.com/support/techsup/tutorials/index.htm
http://support.xilinx.com/support/techsup/tutorials/index.htm

Xilinx/Synopsys Interface Guide
also create a Standard Delay Format (SDF) file containing timing
information.

12. Run the BitGen program to create a bitstream for programming
the FPGA.
1-4 Xilinx Development System

Introduction to the Xilinx/Synopsys Interface
Figure 1-1 XSI Design Flow

XPRIM.NGL

NGL’s

Source HDL

NGD2VHDL NGD2VER

DC2NCF

SYNLIBS SYNLIBS

NGDBUILD

Design Compiler FPGA Compiler

FPGA Compiler II

.dc

.ncf

.ngc

.ngd

.ngm .ncd

.ncd

.pcf

.edif .sxnf

.sdf.vhd .v

XDC
XDW

NGD2VER NGD2VHDL

Synopsys Setup Synopsys Setup

DC Script FPGAC Script

.edif.xnf

XFPGA
XDW

MAP

PAR

.nga

NGDANNO

NGDANNO

To VHDL Simulators To Verilog Simulators

XDC.NGL

From base PM
(For Design Compiler

designs only)

From target arch. PM

From other PMs

X8563

.ucf

TRACE

TRACE
BITGEN

.bit

.vhd.v
Xilinx/Synopsys Interface Guide 1-5

Xilinx/Synopsys Interface Guide
Comparing Design Compiler to FPGA Compiler and
FPGA Compiler II

XSI contains libraries for the following device families:

• XC4000™/E/EX/L/XL/XLA/XV

• XC9000™

• Spartan™/XL/-II

• CoolRunner™ XPLA3

• Virtex™/-E/-II

You can use either FPGA Compiler, FPGA Compiler II, or Design
Compiler to synthesize a design for these devices. Generally, for
XC4000L and XC4000XL devices, you can use the XC4000E and the
XC4000EX synthesis libraries, respectively.

This manual assumes that you use FPGA Compiler or FPGA
Compiler II synthesis tools for XC4000, XC5200, XC9000, Spartan,
and Virtex devices. If you do not have FPGA Compiler or FPGA
Compiler II, XSI provides XC4000, XC5200, XC9000, Spartan, and
Virtex libraries to use with Design Compiler. You can use FPGA
Compiler or FPGA Compiler II for XC3000 and XC3100 devices, but
the libraries for these devices use the Design Compiler synthesis
features.

Design Compiler offers the following features.

• Optimizes flip-flops without clock enables, and latches in the
input/output block (IOB)

• Optimizes 3-state buffers in the IOB

• Encodes one-hot state machines

• Automatically uses the configurable logic block (CLB) Clock
Enable pin

FPGA Compiler and FPGA Compiler II offers the previously
described Design Compiler features, as well as the following.

• Optimizes logic to the XC4000 and Spartan/XL CLB and IOB
architectures

• Reports area and timing by device architecture, for example,
CLB, IOB, and 3-state buffer
1-6 Xilinx Development System

Introduction to the Xilinx/Synopsys Interface
• Passes timing constraints to the core tools

• Uses lookup table (LUT) optimization for XC3000A/L,
XC3100A/L, XC5200, Spartan-II, and Virtex devices. These new
libraries that use the LUT optimization allow FPGA Compiler
and FPGA Compiler II to synthesize your design to a collection of
lookup tables, registers, and I/O pads.

Using FPGA Compiler II
FPGA Compiler II, a logic-synthesis and optimization tool, allows
you to create optimized netlists from VHDL, Verilog, and existing
unoptimized FPGA netlists. FPGA Compiler II (Version 3.2 or better)
offers the following features.

• Provides an integrated text editor for entering VHDL and Verilog
source code for your design

• Analyzes HDL source files for correct syntax, accepting any
combination of VHDL, Verilog, and FPGA netlist files as sources

• Synthesizes logic from VHDL, Verilog, and FPGA netlist sources

• Optimizes logic for speed and area according to design
constraints

• Contains integrated schematic viewing and static timing analysis

• Extracts and displays accurate post-synthesis delay information

Synopsys provides FPGA Compiler II libraries used for Xilinx
products.

Xilinx Documentation Set
The following documents provide additional design information.

• Development System Reference Guide provides detailed information
on the programs found in Xilinx software.

• LogiBLOX Guide describes the LogiBLOX program, a tool used to
create high-level modules for insertion into your HDL design.

• Libraries Guide presents information about the various Xilinx-
provided primitives and macros.

• ISE 4.x Release Notes Documentation describes installation setup
and current issues regarding the use of the Synopsys interface.
Xilinx/Synopsys Interface Guide 1-7

Xilinx/Synopsys Interface Guide
• For converting an XACT 5.xx Synopsys design to M1, refer to the
Xilinx Software Conversion Guide from XACTstep v.5.X.X to
XACTstep vM1.X.X.
1-8 Xilinx Development System

Chapter 2

Getting Started

This chapter provides information on setting up the Xilinx Synopsys
Interface (XSI) and associated libraries. Example files are included to
help you set up the FPGA Compiler with the Xilinx software. This
chapter also describes how to verify your software installation,
modify the .synopsys_dc.setup file, and use the Synlibs program to
determine the correct XSI libraries for FPGA Compiler or Design
Compiler. You will also find general information about using the
interface.

Read this chapter before you begin either the FPGA Compiler or
Design Compiler tutorials located at http://
www.support.xilinx.com/support/techsup/tutorials/index.htm.

This chapter includes the following sections.

• “Setting Up the Synopsys Interface”

• “Setting up the XDW and Simulation Libraries”

• “Modifying the Default Synopsys Startup File”

• “Examples of Synopsys Setup Files”

• “Verifying Software Installation”

Setting Up the Synopsys Interface
The following environment variables must be modified or added to
run the Synopsys interface tools.

• SYNOPSYS (add)

• PATH (modify)

• LD_LIBRARY_PATH (modify)

• SHLIB_PATH (modify)
Xilinx/Synopsys Interface Guide 2-1

http://www.support.xilinx.com/support/techsup/tutorials/index.htm
http://www.support.xilinx.com/support/techsup/tutorials/index.htm

Xilinx/Synopsys Interface Guide
Set these variables as follows.

setenv SYNOPSYS installation_path_to_synopsys
set path = ($XILINX/bin/platform_name \
$SYNOPSYS/platform_name/syn/bin \
$SYNOPSYS/platform_name/sim/bin \
$path)

For Solaris only.

setenv LD_LIBRARY_PATH $SYNOPSYS/platform_name/sim/
lib:$LD_LIBRARY_PATH

For HP/UX only.

setenv SHLIB_PATH $SYNOPSYS/platform_name/sim/
lib:$SHLIB_PATH

The following is an example.

setenv SYNOPSYS /usr/synopsys
set path = ($XILINX/bin/sol \
$SYNOPSYS/sol/syn/bin \
$SYNOPSYS/sol/sim/bin \
$path)
setenv LD_LIBRARY_PATH $SYNOPSYS/sol/sim/

lib:$LD_LIBRARY_PATH

Setting up the XDW and Simulation Libraries
Note If you are not using FPGA Compiler II v3.3 or a later, you must
re-compile the Xilinx DesignWare (XDW) libraries.

The XSI (Xilinx Synopsys Interface) simulation and XDW (Xilinx
DesignWare) libraries are compiled for Synopsys v1999.05. If you are
using the latest version of XSI with a version of Synopsys newer than
v1999.05, you must re-compile the XDW libraries with the version of
Synopsys you are using. If you are going to simulate with VSS, you
must re-compile the simulation libraries.

Compiling the libraries in the $XILINX area requires write
permissions to this area. If you copy the $XILINX/synopsys
directory to a local area, you do not need rewrite permissions for the
$XILINX area to re-compile the libraries. However, verify that the
.synopsys_dc.setup and .synopsys_vss.setup files use the local copy.
2-2 Xilinx Development System

Getting Started
Compiling XDW Libraries
Follow these steps to compile the XDW libraries.

1. Set up your Xilinx and Synopsys software environments.

2. Go to the $XILINX/synopsys/libraries/dw/src directory.

3. In this directory, there are subdirectories that represent the Xilinx
device families that have XDW libraries. If you are going to use
any of the device families listed, you must go to the
corresponding subdirectory and run the .dc compile script in that
directory. For example, for a Spartan device, enter the following
commands.

cd spartan

Run the install_dw.dc script by entering the following.

dc_shell -f install_dw.dc

4. When the script is finished, go back to $XILINX/synopsys/
libraries/dw/src. Repeat these steps for each device you
plan on using.
Xilinx/Synopsys Interface Guide 2-3

Xilinx/Synopsys Interface Guide
Compiling the Simulation Libraries
Note The following procedure is for compiling the XSI simulation
libraries with VSS. If you are using a different HDL simulator, refer to
your simulator’s documentation for instructions on compiling HDL
simulation libraries.

1. Setup your XSI and Synopsys software environments.

2. Go to the $XILINX/synopsys/libraries/sim/src
directory.

3. In this directory, there are subdirectories that represent the five
simulation libraries, described as follows.

♦ LogiBLOX — for functional simulation of VHDL designs
with instantiated LogiBLOX components

♦ SimPrims — timing simulation library

♦ UNISIMS — functional simulation library

♦ XC9000 — XC9500 functional simulation library

♦ XDW — Functional simulation library for post-synthesis
(FPGA compiler) pre-NGDBuild simulation

Some or all of these libraries need to be re-compiled
depending on the device and type of simulation you plan on
using. Xilinx recommends compiling the logiblox, simprims,
and unisims libraries. Use the following steps to compile
these libraries.

4. Go to the logiblox directory and enter the following command.

./analyze.csh

Go back to the $XILINX/synopsys/libraries/sim/src
directory.

5. Go to the simprims directory and enter the following command.

./analyze.csh

Go back to the $XILINX/synopsys/libraries/sim/src
directory.

6. Go to the unisims directory and enter the following command.

./analyze.csh
2-4 Xilinx Development System

Getting Started
The unisims directory also contains the analyze_52k.csh script. If
you plan on simulating XC5200 devices, you must run this script
as well. You must also edit the .synopsys_dc.setup file in the
unisims directory to point to a location for the compiled XC5200
libraries.

Go back to the $XILINX/synopsys/libraries/sim/src
directory.

7. Go to the xdw directory and enter the following command.

./analyze.csh

Go back to the $XILINX/synopsys/libraries/sim/src
directory.

8. Go to the xc9000/ftgs directory and enter the following
command.

dc_shell -f install_xc9000.dc

Modifying the Default Synopsys Startup File
The startup file for the Synopsys synthesis tools is
.synopsys_dc.setup. This file contains the search path for the XSI
libraries, Synopsys libraries, and user libraries. XSI provides a
template Synopsys startup file.

XSI provides the template.synopsys_dc.setup_dc and
template.synopsys_dc.setup_fc template files. You can find the
template files in the $XILINX/synopsys/examples directory. Use
template.synopsys_dc.setup_dc if you use Design Compiler; use
template.synopsys_dc.setup_fc if you use FPGA Compiler.

$SYNOPSYS is the directory where the Synopsys software resides. If
you do not know the location of this directory, enter the following at
the system prompt.

echo $SYNOPSYS

If you already have a .synopsys_dc.setup file, you must modify your
file to include the commands found in the Xilinx-supplied template
startup files.

If you do not already have a Synopsys startup file, copy the
appropriate Xilinx-supplied startup file to your home or working
directory and rename it as follows.
Xilinx/Synopsys Interface Guide 2-5

Xilinx/Synopsys Interface Guide
cp $XILINX/synopsys/examples/
template.synopsys_dc.setup_compiler
.synopsys_dc.setup

Substitute “dc” or “fc” for compiler.

Checking the FPGA Compiler Setup File
This section contains a reproduction of the template setup file for
FPGA Compiler.

/*
==
= */
/* Template .synopsys_dc.setup file for Xilinx designs
*/
/* For use with Synopsys FPGA Compiler. */
/*
==
/*=== */
/* The Synopsys search path should be set to point */
/* to the directories that contain the various */
/* synthesis libraries used by FPGA Compiler during synthesis.*/
===/
XilinxInstall = get_unix_variable(XILINX);
SynopsysInstall = get_unix_variable(SYNOPSYS);

search_path = { . \
XilinxInstall + /synopsys/libraries/syn \
SynopsysInstall + /libraries/syn }

/* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! */
/* Ensure that your UNIX environment */
/* includes the two environment var- */
/* iables: $XILINX (points to the */
/* Xilinx installation directory) and*/
/* $SYNOPSYS (points to the Synopsys */
/* installation directory.) */
/* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! */

/* === */
/* Define a work library in the current project dir */
/* to hold temporary files and keep the project area */
/* uncluttered. Note: You must create a subdirectory */
/* in your project directory called WORK. */
2-6 Xilinx Development System

Getting Started
/* === */
 define_design_lib WORK -path ./WORK
/* === */
/* General configuration settings. */
/* === */
compile_fix_multiple_port_nets = true

xnfout_constraints_per_endpoint = 0
xnfout_library_version = "2.0.0"

bus_naming_style = "%s<%d>"
bus_dimension_separator_style = "><"
bus_inference_style = "%s<%d>"
/* === */
/* Set the link, target and synthetic library */
/* variables. Use synlibs (with the -fc switch) to */
/* determine the link and target library settings. */
/* You may like to copy this file to your project */
/* directory, rename it ".synopsys_dc.setup" and */
/* append the output of synlibs. For example: */
/* synlibs -fc 4028ex-3 >> .synopsys_dc.setup */
/* === */

Checking the Design Compiler Setup File
This section shows the template setup file for Design Compiler.

/*
==*/
/* Template .synopsys_dc.setup file for Xilinx designs
*/
/* For use with Synopsys Design Compiler. */
/* == */
/* == */
/* The Synopsys search path should be set to point */
/* to the directories that contain the various */
/*synthesis libraries used by Design Compiler during */
/* synthesis. */
/* == */
XilinxInstall = get_unix_variable(XILINX);
SynopsysInstall = get_unix_variable(SYNOPSYS);
Xilinx/Synopsys Interface Guide 2-7

Xilinx/Synopsys Interface Guide
search_path = { . \
XilinxInstall + /synopsys/libraries/syn \
SynopsysInstall + /libraries/syn }
 /* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! */
 /* Ensure that your UNIX environment */
 /* includes the two environment var- */
 /* iables: $XILINX (points to the */
 /* Xilinx installation directory) and*/
 /* $SYNOPSYS (points to the Synopsys */
 /* installation directory.) */
 /* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! */
/* === */
/* Define a work library in the current project dir */
/* to hold temporary files and keep the project area */
/* uncluttered. Note: You must create a subdirectory */
/* in your project directory called WORK. */
/* === */
 define_design_lib WORK -path ./WORK
/* === */
/* General configuration settings. */
/* === */
compile_fix_multiple_port_nets = true

bus_naming_style = "%s<%d>"
bus_dimension_separator_style = "><"
bus_inference_style = "%s<%d>"

edifout_netlist_only = true
edifout_power_and_ground_representation = cell
edifout_write_properties_list = "instance_number pad_location part"
edifout_no_array = true
/* === */
/* Set the link, target and synthetic library */
/* variables. Use synlibs (with the -dc switch) to */
/* determine the link and target library settings. */
/* You may like to copy this file to your project */
/* directory, rename it ".synopsys_dc.setup" and */
/* append the output of synlibs. For example: */
/* synlibs -dc 4028ex-3 >> .synopsys_dc.setup */
/* === */
2-8 Xilinx Development System

Getting Started
Examples of Synopsys Setup Files
This section includes examples of the Synopsys setup files needed to
run the FPGA Compiler with the Xilinx tools. These examples are for
XC4000XL and Virtex devices. Other FPGA and CPLD templates are
in the Xilinx installation path, $XILINX/synopsys/examples.

XC4000 Devices
Although the following .synopsys_dc.setup file example is for an
XC4000XL device, it is similar to the setup file required for XC4000E/
EX/XLA/XV devices.

Example .synopsys_dc.setup File

Following is an example of a .synopsys_dc.setup file.

/* Template .synopsys_dc.setup file for Xilinx */
/* For targeting a XC4000XL */
XilinxInstall = get_unix_variable(XILINX);
SynopsysInstall = get_unix_variable(SYNOPSYS);search_path = { . \
XilinxInstall + /synopsys/libraries/syn \
SynopsysInstall + /libraries/syn }
/* Define a work library.You must create ‘work’ */
define_design_lib WORK -path ./WORK
/* Declare the Xilinx DesignWare library */
define_design_lib xdw_4000xl -path \
XilinxInstall + /synopsys/libraries/dw/lib/xc4000xl

/* General configuration settings. */
compile_fix_multiple_port_nets = true
xnfout_constraints_per_endpoint = 0
xnfout_library_version = "2.0.0"

bus_naming_style = "%s<%d>"
bus_dimension_separator_style = "><"
bus_inference_style = "%s<%d>"
/* synlibs -fc 4028ex-3 >> .synopsys_dc.setup */
Xilinx/Synopsys Interface Guide 2-9

Xilinx/Synopsys Interface Guide
Example Script File for XC4000E/EX/XL/XV Designs

This section describes the typical sequence of commands used to
process designs with the Synopsys interface. You should run the
commands at the dc_shell command line, either individually or in
batch mode. While every design may not require all the commands
used in this section, the following example represents a good starting
point for most designs. This script file includes information on I/O
pin location constraints, timing constraints, setting the part-type,
controlling I/O characteristics, and controlling Synopsys mapping
and packing functions.

add tabs to the following for correct spacing

/* Sample Script for Synopsys to Xilinx Using */
/* FPGA Compiler targeting a XC4000EX device*/
/* Set the name of the design’s top-level */
TOP = <design_name>
designer = "XSI Team"
 company = "Xilinx, Inc"
 part = "4028expg299-3"
/* Analyze and Elaborate the design file. */
analyze -format vhdl TOP + ".vhd"
elaborate TOP
/* Set the current design to the top level. */
current_design TOP
/* Set the synthesis design constraints. */
remove_constraint -all
 /* Some example constraints */
 create_clock <clock_port_name> -period 50
 set_input_delay 5 -clock <clock_port_name> \
 { <a_list_of_input_ports> }

 set_output_delay 5 -clock <clock_port_name> \
 { <a_list_of_output_ports> }

 set_max_delay 100 -from <source> -to <destination>
 set_false_path -from <source> -to <destination>
/* Indicate which ports are pads. */
set_port_is_pad "*”
 /* Some example I/O parameters */
 set_pad_type -pullup <port_name>
 set_pad_type -no_clock all_inputs()
2-10 Xilinx Development System

Getting Started
 set_pad_type -clock <clock_port_name>
 set_pad_type -exact BUFGS_F <hi_fanout_port_name>
 set_pad_type -slewrate HIGH all_outputs()
insert_pads
/* Synthesize the design.*/
compile -boundary_optimization -map_effort med
/* Write the design report files. */
report_fpga > TOP + ".fpga"
 report_timing > TOP + ".timing"
/* Write out an intermediate DB file to save state*/
write -format db -hierarchy -output TOP + "_compiled .db"
/* Replace CLBs and IOBs primitives (XC4000E/EX/XL only)*/
replace_fpga
/* reapply set_max_delay/set_false_path if using FPGA compiler */
/* Set the part type for the output netlist.
set_attribute TOP "part" -type string part
/* Optional attribute to remove the mapping symbols*/set_attribute
find(design,"*")\
"xnfout_write_map_ symbols" -type boolean FALSE
/* Add any I/O constraints to the design. */
set_attribute <port_name> "pad_location" \
-type string "<pad_location>"
/* Write out the intermediate DB file to save state*/
write -format db -hierarchy -output TOP + ".db"
/* Write out the timing constraints*/
ungroup -all -flatten
write_script > TOP + ".dc"
/* Save design in XNF format as <design>.sxnf */
write -format xnf -hierarchy -output TOP + ".sxnf"
/* Convert constraints to Xilinx syntax */
sh dc2ncf TOP + ".dc"
/* Exit the Compiler. */
exit
Xilinx/Synopsys Interface Guide 2-11

Xilinx/Synopsys Interface Guide
Virtex Devices
The following setup file examples are for Virtex devices.

Example .synopsys_dc.setup File

/* === */

/* Template .synopsys_dc.setup file for Xilinx designs */
/* For use with Synopsys FPGA Compiler. */
/* === */

/* === */

/* The Synopsys search path should be set to point */
/* to the directories that contain the various */
 /* synthesis libraries used by FPGA Compiler during */
/* synthesis. */

/* === */

XilinxInstall = get_unix_variable(XILINX);
SynopsysInstall = get_unix_variable(SYNOPSYS);

search_path = { . \
 XilinxInstall + /synopsys/libraries/syn \
 SynopsysInstall + /libraries/syn }

 /* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! */
/* Ensure that your UNIX environment */
 /* includes the two environment var- */
 /* iables: $XILINX (points to the */
 /* Xilinx installation directory) and*/
 /* $SYNOPSYS (points to the Synopsys */
 /* installation directory.) */
 /* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! */

/* === */
2-12 Xilinx Development System

Getting Started
/* Define a work library in the current project dir */
/* to hold temporary files and keep the project area */
/* uncluttered. Note: You must create a subdirectory */
/* in your project directory called WORK. */
/* === */

define_design_lib WORK -path ./WORK

bus_extraction_style = "%s<%d:%d>"
bus_naming_style = "%s<%d>"
bus_dimension_separator_style = "><"

edifin_lib_logic_1_symbol = "VCC"
edifin_lib_logic_0_symbol = "GND"
edifout_ground_name = "GND"
edifout_ground_pin_name = "G"
edifout_power_name = "VCC"
edifout_power_pin_name = "P"
edifout_netlist_only = "true"
edifout_no_array = "false"
edifout_power_and_ground_representation = "cell"
edifout_write_properties_list = {"CLK1X_DUTY" "INIT_00"
"INIT_01" "INIT_02" "INIT_03" \
 "INIT_04" "INIT_05" "INIT_06" "INIT_07" "INIT_08" "INIT_09"
"INIT_0A" "INIT_0B" "INIT_0C" \
 "INIT_0D" "INIT_0E" "INIT_0F" "INIT" "CLKDV_DIVIDE" "IOB" "EQN"
"lut_function"}

/* === */
/* Set the link, target and synthetic library */
/* variables. Use synlibs to */
/* determine the link and target library settings. */
/* You may like to copy this file to your project */
/* directory, rename it ".synopsys_dc.setup" and */
/* append the output of synlibs. For example: */
/* synlibs xfpga_virtex-3 >> .synopsys_dc.setup */
/* === */

link_library = {xfpga_virtex-5.db }
symbol_library = {virtex.sdb}
Xilinx/Synopsys Interface Guide 2-13

Xilinx/Synopsys Interface Guide
define_design_lib xdw_virtex -path XilinxInstall + /synopsys/
libraries/dw/lib/virtex
synthetic_library = {xdw_virtex.sldb standard.sldb}

Example Script File for Virtex Devices

/* == */

/* Sample Script for Synopsys to Xilinx Using */

/* FPGA Compiler */

/* */

/* Targets the Xilinx XCV150PQ240-3 and assumes a */

/* VHDL source file by way of an example. */

/* */

/* For general use with VIRTEX architectures. */

/* == */

/* === */

/* Set the name of the design’s top-level module. */

/* (Makes the script more readable and portable.) */

/* Also set some useful variables to record the */

/* designer and company name. */

/* === */
2-14 Xilinx Development System

Getting Started
 TOP = <design_name>

 /* ========================== */

 /* Note: Assumes design file- */

 /* name and entity name are */

 /* the same (minus extension) */

 /* ========================== */

 designer = "XSI Team"

 company = "Xilinx, Inc"

 part = "XCV150PQ240-3"

/* === */

/* Analyze and Elaborate the design file and specify */

/* the design file format. */

/* === */

 analyze -format vhdl TOP + ".vhd"
Xilinx/Synopsys Interface Guide 2-15

Xilinx/Synopsys Interface Guide
 /* ============================ */

 /* You must analyze lower-level */

 /* hierarchy modules here */

 /* ============================ */

 elaborate TOP

/* === */

/* Set the current design to the top level. */

/* === */

 current_design TOP

/* === */

/* Set the synthesis design constraints. */

/* === */

 remove_constraint -all

/* If setting timing constraints, do it here.
 For example: */

/*
 create_clock <clock_pad_name> -period 50
*/
2-16 Xilinx Development System

Getting Started
/* === */

/* Indicate those ports on the top-level module that */

/* should become chip-level I/O pads. Assign any I/O */

/* attributes or parameters and perform the I/O */

/* synthesis. */

/* === */

 set_port_is_pad "*"

 set_pad_type -slewrate HIGH all_outputs()

 insert_pads

/* +++ */

/* Compile the design */

/* +++ */

 compile -map_effort med

/* === */

/* Write the design report files. */

/* === */

 report_fpga > TOP + ".fpga"
Xilinx/Synopsys Interface Guide 2-17

Xilinx/Synopsys Interface Guide
 report_timing > TOP + ".timing"

/* === */

/* Set the part type for the output netlist. */

/* === */

 set_attribute TOP "part" -type string part

/* === */

/* Save design in EDIF format as <design>.sedif */

/* === */

 write -format xnf -hierarchy -output TOP + ".sedif"

/* === */

/* Write out the design to a DB. */

/* === */

 write -format db -hierarchy -output TOP + ".db"

/* === */

/* Write-out the timing constraints that were */

/* applied earlier. (Note that any design hierarchy */

/* needs to be flattened before the constraints are */
2-18 Xilinx Development System

Getting Started
/* written-out.) */

/* === */

 write_script > TOP + ".dc"

/* === */

/* Call the Synopsys-to-Xilinx constraints translator*/

/* utility DC2NCF to convert the Synopsys constraints*/

/* to a Xilinx NCF file. You may like to view */

/* dc2ncf.log to review the translation process. */

/* === */

 sh dc2ncf -w TOP + ".dc"

/* === */

/* Exit the Compiler. */

/* === */

 exit

/* === */

/* Now run the Xilinx design implementation tools. */

/* === */
Xilinx/Synopsys Interface Guide 2-19

Xilinx/Synopsys Interface Guide
Verifying Software Installation
Use the following steps to verify installation of Xilinx, XSI, and
DesignWare software on your system, and to ensure your .cshrc or
.login files include the required environmental variables and search
paths.

Xilinx supports Synopsys v1999.05 and later, and Synopsys FPGA
Compiler II version 3.3 or later. These instructions verify the
installation of Synopsys v 1999.05 or later. For Support of earleir
version of Synopsys with the current release of ISE software, please
go to the web site http://support.xilinx.com/support/troubleshoot/
htmindex/sw_synopsys.htm for library availability.

1. Go to the platform where the Xilinx software is installed.

2. To verify that your system has the Xilinx software, enter the
following.

which par

The full path for PAR appears. If the system cannot find PAR,
refer to the installation instructions in the release notes or contact
your system administrator.

3. To verify XSI installation, enter the following.

which synlibs

The full path for XSI appears. If the system cannot find Synlibs,
refer to the installation instructions in the release notes or contact
your system administrator.

4. Enter the following to change to the correct directory.

cd $XILINX/synopsys/libraries/dw/lib/architecture

5. List the contents of this directory to verify that installation placed
the source Xilinx DesignWare files in this directory.

This directory contains the object file for the Xilinx DesignWare
symbol modules (xdw_module.syn) and the simulation modules
(xdw_module.sim). The variable xdw_module refers to the Xilinx
DesignWare primitive name.

If you do not find the SYN and SIM files in this directory, refer to
the release notes or contact your system administrator. The
2-20 Xilinx Development System

Getting Started
README file contains installation instructions, and resides in the
$XILINX/synopsys/libraries/dw/src/architecture directory.

6. To verify that you are using Synopsys v1999.05 or later, enter the
following.

design_analyzer

This command starts Design Analyzer and displays the version
number on your screen.
Xilinx/Synopsys Interface Guide 2-21

Xilinx/Synopsys Interface Guide
2-22 Xilinx Development System

Chapter 3

Synthesizing Your Design with FPGA
Compiler II

Synthesize and implement your HDL designs for Xilinx FPGA
devices with FPGA Compiler II by using the information in the
following sections.

• “Before You Begin”

• “Naming Conventions”

• “Porting Code from FPGA Compiler to FPGA Compiler II”

• “Converting Script Files from FPGA Compiler and Design
Compiler”

• “Synthesizing the Design”

• “Entering Design Constraints and Controls”

• “Specifying Timing Constraints”

• “Optimizing a Design Implementation”

• “Evaluating Timing Delays”

• “Exporting the Netlist”

• “Using the Xilinx Development System”

• “HDL Coding Techniques”

• “Inserting Bidirectional I/Os”

• “Implementing 3-State Registered Output”

• “Attribute Passing”

• “Implementing Clock Buffers”

• “Using Memory”
Xilinx/Synopsys Interface Guide 3-1

Xilinx/Synopsys Interface Guide
• “Performing Boundary Scan”

• “Using the Global Set/Reset Net”

Before You Begin
Before beginning a Xilinx design using the Synopsys tools, read the
“Getting Started” chapter and ensure the following.

• Verify the installation of Xilinx software on your system.

• Verify that you use Synopsys version 3.3.1 or later for FPGA
Compiler II.

Naming Conventions
Unless otherwise noted, the following naming conventions are used
to group Xilinx device families:

• Virtex represents Virtex, Virtex-E, Virtex-II and Spartan-II
devices.

• Spartan represents Spartan and SpartanXL devices.

• XC4000 represents XC4000E, XC4000L, XC4000EX, XC4000XL,
XC4000XLA and XC4000XV devices.

• XC9500 represents XC9500, XC9500XL, XC9500XV and
XC9500XVA devices.

• XC3000 represents XC3100 and XC3100A devices.

• XC5200 represents XC5200 devices.

Porting Code from FPGA Compiler to FPGA
Compiler II

You can port a design from FPGA Compiler or Design Compiler to
FPGA Compiler II. You do not have to modify the code if you are
compiling a 100 percent behavioral design originally compiled with
FPGA Compiler or Design Compiler. However, if you instantiated
components from the XSI libraries, understand that some of these
components do not exist in the FPGA Compiler II libraries.
3-2 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
Some of the components you can instantiate in the Xilinx design flow you
cannot instantiate in the FPGA Compiler II tool because of slight differences
in names. For example, the BUFGP_F in the XSI component library does
not exist in the FPGA Compiler II component library. In FPGA Compiler II,
the equivalent name of the BUFGP_F is BUFGP. For a complete listing of
the library cells that can be instantiated in FPGA Compiler II, refer to the
contents of the following.

fpgacompilerII/lib/virtex

fpgacompilerII/lib/spartan

fpgacompilerII/lib/spartanxl

fpgacompilerII/lib/xc4000e

fpgacompilerII/lib/xc4000ex

fpgacompilerII/lib/xc9500

fpgacompilerII/lib/xc3000

fpgacompilerII/lib/xc5200

The fpgacompilerII directory is where FPGA Compiler II resides on
your system. These directories contain files with a .dsn extension. The
string in front of .dsn is the name of the CELL that you can instantiate
in FPGA Compiler. Refer to the Xilinx Libraries Guide for pin names.

In general, instantiation is not necessary. For the XC4000 and Virtex
FPGA Compiler II flow, you must instantiate the following
components.

• I/O multiplexers

• Fast capture latches

• RAM

• BSCAN, READBACK

• LogiBLOX, CoreGen modules

Converting Script Files from FPGA Compiler and
Design Compiler

This chapter will not document the TCL-based scripting capabilities
of FPGA Compiler II. Please consult the FPGA Compiler II
Xilinx/Synopsys Interface Guide 3-3

Xilinx/Synopsys Interface Guide
documentation for details on the fc2_shell program. However, a few
things are noted here:

• fc2_shell is the command line name of the FPGA Compiler II
shell tool.

• A script converter, dc-transcript, is available on Unix to convert
DC shell scripts to TCL shell. This program is not available
within FPGA Compiler II itself.

• TCL script can be created after synthesizing in the FPGA
Compiler II GUI. Select the optimized chip and then select
Script → Export FPGA Script to create a script of all the
commands run up to that point.

Synthesizing the Design
This section describes the synthesis flow through the FPGA Compiler
II product, using the Graphical User Interface (GUI), from creating
the project through the netlist generation.

After opening the FPGA Compiler II GUI, select File → New
Project. Select the name and location for this project before clicking
Create. HDL source files may also be added at this time.
3-4 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
Figure 3-1 Create a New FPGA Compiler II Project

Add all the source files by selecting Synthesis → Add Source
Files (if they have not yet been added to the project). FPGA
Compiler II analyzes the source files and reports syntax errors. Be
sure to add any package files first, as these files must be analyzed
before the HDL files that access them.
Xilinx/Synopsys Interface Guide 3-5

Xilinx/Synopsys Interface Guide
Figure 3-2 Add HDL Source Files

New libraries may be created by selecting Synthesis → New
Library. Give this new library a name and click OK. Add any VHDL
library files to it by right clicking the library name and selecting Add
sources in <library>.

At this point, make sure that all the global constraints have been set.
Select Synthesis → Options to modify any global project options.
Changing some options may require you to re-analyze your HDL
source.
3-6 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
Figure 3-3 Setting Global Synthesis Options

Now you are ready to synthesize the design. Click the plus (+) sign
next to your top level HDL file, and select the name of the top level
entity/module. Select Synthesis → Create Implementation to
begin the synthesis process.

In the Create Implementation dialog, set the Vendor to Xilinx and select the
family, device and speed grade of the target chip. You can also set the global
synthesis options like Optimization Type, Optimization Effort and Clock
Frequency in this dialog box. You may instruct FPGA Compiler II to
maintain all hierarchical boundaries in the design by checking the Preserve
Hierarchy box. If you have instantiated all of the I/O buffers in this design,
you may check the Do not insert I/O pads box. Finally, if you want
to stop and enter more detailed synthesis and timing constraints, uncheck the
Skip constraint entry box. Click OK to begin synthesis.
Xilinx/Synopsys Interface Guide 3-7

Xilinx/Synopsys Interface Guide
Figure 3-4 Create Implementation Dialog Box

Synthesis is done in two parts. In the first portion, the source files are
linked and the hierarchical structure is built. The source HDL is
elaborated into a generic database, and all functional modules are
defined. FPGA Compiler II reports synchronous elements (flip flops
and latches) and inferred three states. You can add constraints after
this functional structure is built.

In the second portion, the design is optimized for the target
architecture. Technology specific elements are inferred here (for
instance, STARTUP, clock buffers, and I/O registers), and mapping is
done. Preliminary timing and resource use estimates are performed
at this stage. Once optimization is finished, the netlist can be written
and sent to the implementation tools.

Entering Design Constraints and Controls
Before you optimize the design to the target device, you can set
performance constraints, attributes, and optimization controls.
3-8 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
Design constraints guide FPGA Compiler II with specific
optimization requirements. Although this step is optional, it is highly
recommended. Entering your requirements in the constraint tables
can improve the results of place and route tools. For example,
entering constraints for an output port with restrictive speed
requirements makes it easier for the place-and-route tool to fulfill
those requirements.

 In another example, if a design is very large and has many
hierarchical levels, entering hierarchy constraints helps the place and
route tool. If default constraints are not sufficient for your
requirements, you might have to create and optimize
implementations many times to enter constraints. For best results,
specify only what is really required.

FPGA Compiler II separates constraint entries into logically related groups
(for example, clocks, ports, and paths). It extracts design-specific
information such as clock names, port names, and design hierarchy from the
design and displays it in tables. You enter performance constraints,
attributes, and optimization options directly into the tables.

Each set of constraint tables and dialog boxes is specific to a
particular FPGA architecture. Controls for some target technologies
are available through a vendor-specific dialog box that is displayed as
another tab with the constraint tables.

Right-click the functional design implementation and choose Edit
Constraints to open the design constraint and optimization-
control tables. Constraints and controls are logically separated into
separate Clocks, Paths, Ports, and Modules tables. A fifth tab is
available for Xilinx-specific options.

Figure 3-5 FPGA Compiler II Constraints Editor
Xilinx/Synopsys Interface Guide 3-9

Xilinx/Synopsys Interface Guide
The contents of the tables depend on the architecture that you chose. Notice
that clock and pad tabs are preloaded with the clock frequency (and
corresponding period) that you entered for the base clock frequency.

After entering constraint, attribute, and option information, close the
implementation’s constraint window. This will save your changes.

Specifying Timing Constraints
The timing constraints issued to Synopsys to control the synthesis
process pass through the design implementation tools to control the
place and route process. To get the best possible results, make these
constraints realistic and achievable.

During the synthesis of your design, area and timing constraints can impact
implementation almost as much as changes made to your HDL code.
Carefully apply area and timing constraints. During the implementation of
your design, timing constraints have a direct impact on run time and
performance verification. For example, the run time required to find a place
and route solution to support the 40 MHz operation of a design takes longer
than that required to find a 4 MHz solution. Meaningful and detailed timing
constraints also allow the design implementation tools to report the status of
your design’s timing in terms of your timing goals.

After creating a chip, but before optimization, edit the chip by
entering timing constraints. FPGA Compiler II lets you enter timing
constraints for common types of paths including pad-to-pad, pad-to-
setup, register-to-register, and clock-to output paths. FPGA Compiler
II compares these timing constraints to the values calculated by its
built-in Time Tracker.

You enter timing constraints in a top-down method: starting with
global constraints (such as clock periods), proceeding to the more
specific (such as group path timing), then to the most specific (input
and output delay).

The following procedure shows you how to enter timing specification
for your design in FPGA Compiler II.

1. In the Clocks constraint table, enter the default clock waveform
for each clock in your design, including the clock period and rise
and fall times.

The clock default is the first row in the Clock constraint table. The
default should be sufficient in most of the cases when the circuit
3-10 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
has only clock, and there are no special input delay and output
delay requirements.

The waveform you define using the Define command in the
Clock pulldown list in the Clocks constraint table should be
sufficient for most synchronous circuits without special I/O port
delay requirements and without multicycle paths.

2. In the Paths constraint table, change the default path delays that
FPGA Compiler II automatically calculates from the clock
waveform.

When there are more restrictive timing requirements than the
defaults, you can override a default path constraint with a more
specific constraint by entering path constraints in the Paths
constraint table. Here you apply timing constraints to groups of
paths, the set of all clock-to output paths, for example. The input
and output delays for the I/O ports are given default values
based on the path constraints. It is important that the delays be
specified accurately so that they do not overconstrain or
underconstrain the optimization.

3. In the Ports constraint table, change the default input delay and
output delay of I/O ports when they have special requirements.
Any delay specified at a port overrides the path delay from or to
the port.

Sometimes a single value applied to many paths is not sufficient for a
particular port. In the example of clock-to-out paths, there may be a
particular output port that has a more restrictive clock-to-output
requirement. To override a path constraint with an even more specific
constraint, proceed to the Ports constraint table, where you can set input
and output delays for individual ports.

After entering timing constraints, optimize the design.

Specifying Clock Constraints
Use the Clock constraint table to specify the waveforms of periodic
signals in the design. FPGA Compiler II displays the constraint tables
when you click the right mouse button on an implementation icon
and select Edit Constraints.

FPGA Compiler II automatically constructs the list of periodic signals
when it creates an implementation. For each periodic signal, FPGA
Xilinx/Synopsys Interface Guide 3-11

Xilinx/Synopsys Interface Guide
Compiler II displays the name (Name column) and period/rise/fall
waveform (Clock column).

• Name

The full name of the periodic signal in the design hierarchy (for
example, top/module1/clk).

• Clock

The waveform (period, rise time, fall time) of each periodic signal. Note
that the falling edge can be first, and the clock’s duty cycle does not
have to be 50%. To specify a waveform, click the Clock cell, click the
expand arrow that appears in the cell, and then select Define...This
displays the Define Clock dialog box where you can enter the period,
rise time, and fall time of the signal. The waveform in this dialog box is
for information only and does not reflect the values you enter.
Alternatively, you can click the expand arrow in the cell and select a set
of values from the list. This list contains all the previously entered
values. You can also use the cut and paste commands.

• Default Timing Values

When a table cell is blank, FPGA Compiler II uses the default
clock waveform defined in the first row. This default waveform is
derived from the Clock frequency value in the Create
Implementation dialog box. You can override this value when
editing the implementation constraints.

The following procedure describes the steps to specify clock
constraints.

1. Open the Clocks constraint table in the Chips window by
selecting the preoptimized chip, clicking the right mouse button,
and selecting Edit Constraints.

2. Specify the waveforms of periodic signals in the design. To
specify a waveform, click the Clock column cell and then the
expand arrow appearing in the cell.

3. Select Define.

The Define Clock dialog box appears, where you can enter the
period, rise time, and fall time of the signal.
3-12 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
Figure 3-6 Specifying Clock Parameters

Specifying Path Group Constraints

Use the Paths constraint table to specify timing constraints for timing
groups. FPGA Compiler II displays the constraint tables when you
click the right mouse button on the implementation icon and select
Edit Constraints.

The Paths constraint table contains the list of timing groups
automatically constructed in the Create Implementation step. For
each path, FPGA Compiler II displays the starting group (From
column), the end group (To column), and the maximum delay of the
path (Required Delay column).

A timing group is a set of sequential cells or ports in the design that
share the same timing behavior. For example, all flip-flops clocked by
a common clock signal are grouped in one timing group. A path
group is the set of all combinatorial paths between two timing
groups. You can use path groups to describe the timing behavior of
the design in the Paths constraint table.

The starting group of the path (entered in the From column) can be
the set of all primary inputs of the design, all edge-sensitive
sequential elements clocked by a specified periodic signal, or all
Xilinx/Synopsys Interface Guide 3-13

Xilinx/Synopsys Interface Guide
level-sensitive sequential elements clocked by a specified periodic
signal.

The end group of the path (entered in the To column) can be the set of
all primary outputs of the design, all edge-sensitive sequential
elements clocked by a specified periodic signal, or all level-sensitive
sequential elements clocked by a specified periodic signal.

Required Delay is the maximum delay of the path, computed from the
waveforms of the periodic signals. This value is the difference between the
active edge of the end group of the path and the active edge of the starting
group of the path. To enter a new value for a path group, click the Required
Delay column to highlight the default value, and type in the new value.
Alternatively, you can click the expand arrow in the cell and select a value
from the list of previously entered Delay values. You can also use cut and
paste commands.

Figure 3-7 Entering Path Delays in the Constraints Editor

FPGA Compiler II computes default timing values using the default
waveforms of the periodic signals. To specify point-to-point constraints,
create subpaths by clicking the right mouse button on a path for the subpaths
menu.

Specifying I/O Constraints

Enter port-specific constraints in the Ports constraint table in the
Chips window. Each row in the table shows the constraint for a port.
These are the timing constraints you can enter in this table:

• Input Delay
3-14 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
The input delay of an input or inout port is the maximum delay
from that port to a timing group. To define an input delay, click
the Input Delay cell for a port, and select Define. In the Define
Delay dialog box, define the input delay.

• Output Delay

The output delay of an output or inout port is the maximum
delay from a timing group to that port. To define an output delay,
click the Output Delay cell for a port and select Define. In the
Define Delay dialog box, define the output delay.

• Pad Location

You can specify the location of pads for a port. You cannot
specify pad locations for a design that has the Do Not Insert I/O
Pads option selected.

Timing Subpaths

With FPGA Compiler II, you can enter point-to-point constraints (for
instance, multicycle timing paths) by creating subpaths. The
procedure to create subpaths for a path follows.

1. Right-click on the path in the Paths table.

The selections are New Subpath, Edit Subpath, and Delete
Subpath.

2. Select New Subpath or Edit Subpath (if one has already been
created).

The Create/Edit Timing Sub Path dialog box opens, displaying
the primary path and the components in that path.

3. Enter a name for the subpath.

4. Select startpoints and endpoints for each subpath group by
double-clicking the object icons. The names of subpath groups
must be unique.

5. Specify the delay for the subpath. You can specify a different
constraint for each subpath.

You can use the Select All buttons to make multiple startpoint and
endpoint selections. You can use the Clear all buttons to clear all
startpoint and endpoint selections. You can enter common expressions
such as DI* to make multiple selections.
Xilinx/Synopsys Interface Guide 3-15

Xilinx/Synopsys Interface Guide
Figure 3-8 Entering a Subpath Constraint

6. When you click OK, the Paths constraint table is updated to reflect
the new subpath groups.

You can expand and contract the path hierarchy of the Paths
Constraint table by double-clicking the path icon. To modify or
delete subpaths, select the subpath and click the right mouse
button for the subpaths menu.

Defining Multicycle Timing Constraints

FPGA Compiler II can generate timing groups and path groups for
logic that uses clock enable signals. This is useful when portions of a
design run at a slower speed than the rest, with the slower flip-flops
controlled by the enable signal. Using enable signals with a
fundamental click eliminates clock skew, which can be introduced by
additional clock signals. You can set multicycle timing constraint for
3-16 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
specified paths, making the slower logic easier to place and route
using the Xilinx software. Multicycle timing constraints can be
applied to subpath groups that you create.

This is an example of a situation in which a multicycle timing constraint is
appropriate. An FPGA contains some high-speed interface logic that must
run at 40 MHz, some low-speed interface, and core logic that has to run at
10MHz. The FPGA has a 40 MHz system clock and uses it to generate a 10
MHz enable signal for internal distribution. The following figure shows how
the 10 MHz enable might align with the system clock when the rising edge
of the 40 MHz system clock is the active edge. The 40 MHz clock is
distributed to the clock input of each FPGA flip-flop, while the enable signal
is distributed to each FPGA flip-flop clock enable input. In this case, the
primary clock period is 25 ns, but the 10 MHz enabled logic needs to satisfy
a period of only 100 ns.

40 MHz clock _|-|_|-|_|-|_|-|-|_|-|_|-|_|-|_|-|_|-

10 MHz enable _____|--|____________|--|____________

A simple shift register circuit shown in the following logic diagram
illustrates how the multicycle timing constraint is assigned in FPGA
Compiler II.

Figure 3-9 Shift Register Circuit

Register reg1 is a 4-bit serial-input parallel-output register. Register
reg2 is a holding register that is loaded with the clock enable ena. The
paths from the output of reg1 to the input of reg2 (net q) are
multicycle paths because the data bits have four clock cycles to reach
their destinations. The register-to-register timing constraint is 25 ns (1
/ 40 MHz), but the multicycle timing constraint is 100 ns (4 x 25 ns).
Xilinx/Synopsys Interface Guide 3-17

Xilinx/Synopsys Interface Guide
To create a subpath group of the register-to-register paths in the Paths
constraint table, click the right mouse button on the register-to-
register path groups and select New Subpath.

Figure 3-10 New Subpath Dialog Box

The Create / Edit Timing Subpath window appears. Use this window
to construct your own path group by selecting specific startpoints
and endpoints. The newly created path group is called a subpath
because it is a subset of another path group, in this case, the register-
to-register paths in the design.
3-18 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
Figure 3-11 Create/Edit Timing Sub Path Dialog Box

In this example, the outputs of reg1 are the startpoints and the inputs
of reg2 are the endpoint for the subpath. A delay of 100 ns is assigned
to the subpath. For more information about using the subpath editor,
see the FPGA Compiler II online help.

After you create a subpath and apply the multicycle timing
constraint, the subpath appears in the Paths constraint table.
Xilinx/Synopsys Interface Guide 3-19

Xilinx/Synopsys Interface Guide
Figure 3-12 Paths Constraint Table Dialog Box

Notice that an enabled flip-flop can be included in two different path
groups—those that include clock-to-clock paths and those that include
clock-to-enabled clock paths. This implies that there are two TIMESPECs
with overlapping constraints generated by FPGA Compiler II. The constraint
for clock-to-clock timing, 25 ns in this case, conflicts with the constraint for
clock-to-enabled-clock timing, which is 100 ns. The Xilinx implementation
software assigns different priorities to these two constraints, placing a higher
priority on the more specific one. Because the subpath constraint is more
specific than the clock-to-clock constraint, it takes precedence and the
corresponding paths can be optimized for the slower speed.

Adding Pull-Up and Pull-Down Resistors

You can apply pull-up and pull-down resistors to chip-level I/O
ports, and you can use them internally.You can only instantiate
internal pull-up and pull-down resistors. The following table shows
which devices require pull-up/pull-down resistors.

Refer to the “XSI Library Primitives” appendix for a listing of all cells
and their pin names for instantiation.

See the “Using the Xilinx Development System” section in this
chapter for more information on pull-up and pull-down resistors.

Table 3-1 Instantiating Pull-up/Pull-down Resistors

XC3000A/L XC4000E/L
XC4000EX/
XL/XLA/XV

XC5200
Virtex/E/-II
Spartan-II

Spartan/XL

Pull-up Pull-up/
Pull-down

Pull-up/
Pull-down

Pull-up/
Pull-down

Pull-up/
Pull-down

Pull-up/
Pull-down
3-20 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
Optimizing a Design Implementation
After you finish entering constraint, attribute, and option definitions,
you are ready to optimize the design and generate FPGA netlists. In
this step, you optimize a design implementation for performance and
area, guided by the implementation constraints and controls you
entered in the constraint tables.

You can optimize your design for area, speed, or a combination of both. To
get the most effective results from FPGA Compiler II, apply accurate and
achievable constraints. For example, if you set a timing goal of 0 ns on all
ports, FPGA Compiler II attempts to meet this goal by duplicating logic to
reduce critical paths. This can result in a significant and possibly
unwarranted increase in CLB and interconnect usage.

The following steps show how to optimize a design implementation:

• Click the design implementation in the Chips window to select it.

 Its name is displayed in the top-level design field of the tool bar.

• Right-click the design implementation and choose Optimize
Chip, or click in the toolbar.

A new optimized implementation icon appears beneath the
original implementation.

When you optimize a design implementation, FPGA Compiler II
analyzes the actual timing and area of your design to see whether
they meet your requirements. After optimization, the design
implementation tables display the constraints you have specified
with the actual results of your design so you can compare them.

The following sections describe how to compile and optimize your
HDL design.

Optimizing Logic Across Hierarchical Boundaries
CLBs contain Boolean logic implemented in both function generators and
flip-flops. Some CLBs only implement flip-flops and contain unused
function generators and other CLBs only implement function generators and
contain unused flip-flops. Additionally, the Boolean logic in one hierarchy is
not optimized with that in another to reduce the CLB area or logic levels.

The choice of hierarchical boundaries can have a significant impact
on the area and speed of the synthesized design. Using FPGA
Xilinx/Synopsys Interface Guide 3-21

Xilinx/Synopsys Interface Guide
Compiler II, you can optimize a design while preserving these
hierarchical boundaries.

The TOP design, illustrated in the following figure, references two sub-
blocks, one completely combinatorial (block1) and one completely
sequential (block2).

Figure 3-13 Sequential and Combinatorial Design

FPGA Compiler II cannot move logic across levels of hierarchy. To maintain
the hierarchy you need two CLBs to implement the TOP design. FPGA
Compiler II uses one CLB to implement the OR gate and another to
implement the FDC flip-flop.

However, if FPGA Compiler II merges two subdesigns into a single
level of hierarchy, you need only one CLB to implement the TOP
design, illustrated in the following figure. FPGA Compiler II can
merge the combinatorial and sequential logic into one CLB.

Figure 3-14 Merging into a Single Level of Hierarchy

To check if FPGA Compiler II can combine the combinatorial and
sequential logic across hierarchical boundaries, optimize the design

OR2

BLOCK 2BLOCK1

TOP

OUT1
IN1

IN2

CLOCK

X4887

D QFDC

C

OR2

CLB

TOP

OUT1
IN1

IN2

CLOCK

X4894

D QFDC

C

3-22 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
with and without hierarchy, and then compare the results as
described in the following sections.

By default, FPGA Compiler II flattens your design hierarchy. This can be
changed at the top level. To preserve or eliminate the hierarchy on a module
per module basis, select the implementation, click the right mouse button,
and select Edit Constraints. In the Modules table, set the Preserve or
Eliminate attribute on the module. The default is Eliminate.

Using a Flattening Optimization Strategy

Flattening eliminates the existing logic structure. In general, you can flatten
random control logic because automatic structuring usually improves upon
manual structuring. For FPGA designs, flatten designs when the number of
CLBs needed to implement a Boolean function seems too high or there are
too many logic levels. You probably do not need to flatten regular or highly
structured designs such as adders and ALUs designed with an explicit
structure.

Flattening works especially well for the FPGA CLB structure because
FPGA Compiler II has a built-in optimizer for Boolean logic. This
algorithm works efficiently when the structure decomposes
sufficiently so that the Boolean logic can map into the CLB function
generators.

Setting Port Attributes and Constraints
You can enter port-specific constraints in the Ports constraint table in
the Chips window. Each row in the table shows the constraints for a
port. You can enter the following timing constraints in the Ports
constraint table.

• Input Delay

The input delay of an input or inout port is the maximum delay
from that port to a timing group. To define an input delay, click
the Input Delay cell for a port, and select Define. In the Define
Delay dialog box, define the input delay.

• Output Delay

The output delay of an output or inout port is the maximum
delay from a timing group to that port. To define an output delay,
click the Output Delay cell for a port and select Define. In the
Define Delay dialog box, define the output delay.
Xilinx/Synopsys Interface Guide 3-23

Xilinx/Synopsys Interface Guide
• Pad Location

You can specify the location of pads for a port. You cannot
specify pad locations for a design that has the Do Not Insert I/O
Pads option selected.

See the bidi_reg.vhd and bidi_reg.v examples in the “Viewing the
Schematics” section for designs that contain both instantiated I/Os and I/Os
inserted using FPGA Compiler II.

Evaluating Timing Delays
The Synopsys tools report all delays in nanoseconds. The reported delays
include logic-level and interconnect delays. Because FPGA Compiler II
synthesizes CLBs and IOBs (XC4000 and Spartan devices) or LUTs and
flip-flops (XC3000, XC5200, XC9000 and Virtex devices), it reports logic-
level delays with a higher degree of accuracy than Design Compiler.

FPGA Compiler II estimates possible interconnect delays on the basis of a
net’s fanout. These estimates allow you to evaluate your design’s
performance prior to performing place and route. FPGA Compiler II applies
the wire-load model only to nets between CLBs and IOBs (XC4000 devices)
or between LUTs, I/Os, and flip-flops (XC3000 and XC5200 devices).

After optimization, edit the chip and select View Results to run
the FPGA Compiler II TimeTracker. TimeTracker calculates the delay.

Timing analysis follows the same top-down paradigm (from global to
specific) as timing constraint entry. (See the “Specifying Timing
Constraints” section of this chapter:.)

The Clocks table contains a new column showing the actual clock
frequency for each clock in your design next to the desired frequency
derived from your timing constraints. If a particular clock fails to
meet its constraint, it is highlighted in red. To see greater detail,
proceed to the Paths constraint table.

The Paths constraint table shows the paths that violate a timing
constraint and shows a detailed list of each path’s structure.

The Paths table contains an additional column displaying path delay with
violations in red. It shows which groups of paths fail to meet constraints.
Selecting any particular group lists all paths in that group with their
startpoints, endpoints, and delays. At another level of detail, it shows exactly
which paths are in violation. Selecting any particular path displays a listing
of the composition of the entire path from startpoint to endpoint, including
3-24 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
each instance in the path, the type of component, the cumulative delay
through each instance, and the fanout of that particular pin of the instance.

These tables should provide the information you need to make
design improvements without running the implementation tools.

Timing analysis fits into the present FPGA Compiler II design flow
and gives you detailed information about the timing behavior of your
design. With timing analysis, you can see the actual delay values
presented next to the desired delay values. For any path, the
TimeTracker provides a detailed listing of the path composition to
help you debug critical paths. FPGA Compiler II timing analysis
shortens the design cycle by eliminating the need to run
implementation tools to get timing information.

Using the FPGA Compiler II Time Tracker
The FPGA Compiler II TimeTracker speeds the design cycle by allowing
you to identify and repair critical portions of your design without having to
run vendor tools to perform place and route. The TimeTracker is integrated
into the existing design flow and runs when you view the results of an
optimized chip. It allows you to compare actual delay values to entered
constraints.

Timing Analysis also provides details of particular paths and a
detailed listing of critical paths.

After you read the HDL source code into FPGA Compiler II and enter
timing requirements, synthesize the design for the target FPGA
architecture. Then, instead of using FPGA vendor tools to place and
route the design, view the results of the optimized chip.

These are the advantages of using the FPGA Compiler II
TimeTracker:

• It gives feedback about how you meet your timing requirements
without you having to run the vendor’s place and route tool and
timing analyzer.

• It presents timing analysis results and timing requirements in a
table, making the results easy to interpret.
Xilinx/Synopsys Interface Guide 3-25

Xilinx/Synopsys Interface Guide
Viewing the Results of Optimization
The post-synthesis timing data is displayed in the same formats as
the tables you used to enter constraints. The following steps show
how to view the results of optimization:

1. Open an optimized implementation by clicking the right mouse
button and selecting View Results.

2. Check the Clocks constraint table to see the maximum clock
frequencies FPGA Compiler II calculated for each of the clocks in
the design. Clock frequency violations appear in red.

The figure below shows the Clocks constraint table after
optimization.

Figure 3-15 Clocks Constraint Table after Optimization.

3. Check the Paths constraint table for more detail on timing
violations. Select a path group to see a list of paths in that group.

4. Select a path from the list to see the details of path composition,
cumulative delays, and fanout.

The following figure shows the Paths constraint table after
optimization.
3-26 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
Figure 3-16 Paths Constraint Table after Optimization.

5. Note that all pins on the timing path will be displayed; hence,
two rows of the path table correspond to a single net (src and
load).

Check the Ports constraint table for information about input and
output delays. The following figure shows the Ports constraint
table where results include the slack for input arrival time and
output delay for each port.
Xilinx/Synopsys Interface Guide 3-27

Xilinx/Synopsys Interface Guide
Figure 3-17 Ports Table (Slack for Input)

6. Check the Modules constraint table for information about the
device resources used.

7. Double-click the items in the Area column for details about cell
count.

The following figure shows the Modules constraint table after
optimization.
3-28 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
Figure 3-18 Modules Constraint Table after Optimization

Generating Reports for Debugging
You can generate an FPGA Compiler II report on a project, library, file, or
chip. A project report documents the design through the synthesis and
optimization design flow and includes information such as design source
data, constraints, and optimization options.

The following steps show how to generate a report:

1. Select the project, library, design, or chip in the project window
and click the tool bar, or right-click the project, library, design, or
chip and choose Report.

2. In the dialog box that appears, select a name and location for the
report.

3. Click Save.

FPGA Compiler II creates a text file containing summary
information for the whole project, the library, the design, or the
chip.

4. Open the file in a text editor or word processing application.
Xilinx/Synopsys Interface Guide 3-29

Xilinx/Synopsys Interface Guide
Viewing the Schematics
FPGA Compiler II creates schematic representations of the logic it
synthesizes. To view a schematic, right click on either the functional
structure or the optimized structure in the Chips window and select View
Schematic. Use the items in the View Toolbar to navigate within the
schematics.

Exporting the Netlist
The Export Netlist button opens the Export Netlist dialog box. You export
the selected optimized design for place-and-route.The netlists are
automatically formatted into Electronic Data Interchange Format (EDIF).
You can specify the export design directory. Individual file names
correspond to the source design names.

You can also export Verilog or VHDL netlists for functional
simulation along with the design netlist. FPGA Compiler II passes the
timing constraints with the netlist.Timing constraints are not
included in the netlist file for any design that you compiled with the
Do Not Insert I/O Pads option selected.

Timing constraints can also be exported by checking the Export
Timing Specifications checkbox.

The option labeled Bus Style in the Place and Route section of the
Export dialog box adds control to the bus style for EDIF output. Bus
information for top-level I/O can be preserved or eliminated.

The default setting, Expand, causes each bit of a bus to become an
individual I/O port. The other settings include delimiters for
different bus style notations: [], <>, (), and {}.

The Generate Synopsys db Files option exports .db files along with
the netlist. This enables projects created in FPGA Compiler II to be
integrated into your design flow with other Synopsys tools. These
files are placed in the location specified in the "Export Directory"
option.

FPGA Compiler II creates two .db files. For a design called “test”, for
example, one file, named test-Optimized_des.db, describes the
design. The other file, named test-Optimized_lib.db, contains the
technology library primitives used in the design.
3-30 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
Using the Xilinx Development System
To translate your design to a bit file so the Xilinx tools can program
your device, perform the following steps.

1. Run NGDBuild on the EDIF file to create an NGD file.

2. Run the MAP program on the NGD file to create a mapped NCD
file.

3. (optional) Run the TRACE program to determine if PAR will
meet your timing goals.

4. Run PAR on the NCD file to place and route your design.

5. Run TRACE again on your placed and routed design.

6. Run NGDAnno on your routed design to create an NGA file.

7. Run either NGD2VHDL or NGD2VER on the NGA file to create a
VHD or VER file that can be simulated with the appropriate
simulators.

Note For more information about using the Xilinx Development
system, please refer to the online tutorial located at http://
support.xilinx.com/techsup/tutorials/tutorials31i.htm

HDL Coding Techniques
The following sections cover HDL coding techniques for IOBs.

Configuring IOBs
This section describes how to configure FPGA IOBs. You must
implement some components manually, but FPGA Compiler II
performs the following optimization functions automatically.

• Inserts input buffers (IBUF) and output buffers (OBUF)

• Inserts IBUFs and 3-state output buffers (OBUFT) for
bidirectional I/O (IOBUF)

• Inserts a clock buffer for ports driving clock pins (BUFG)

Note The following functions apply only to FPGAs with I/O flip-
flops.
Xilinx/Synopsys Interface Guide 3-31

Xilinx/Synopsys Interface Guide
• Optimizes a flip-flop (IFD) without a clock enable, or latch
(ILD_1) attached to input buffers into the IOB

• Optimizes a flip-flop without a clock enable attached to output
buffers into the IOB (OFD)

Indicate which ports in your design to use for chip-level I/Os with
the Ports constraint table.

All Architectures
This section includes general information about IOBs that applies to
all supported device architectures.

Optimizing Inputs

FPGA Compiler II optimizes any flip-flops connected to an input port
into the IOB if the flip-flop or latch does not use the Clock Enable,
Direct Clear, or Preset pin.

You can configure the buffered input signal that drives the data input
of a storage element as either a flip-flop or a latch. You can use the
buffered signal in conjunction with the input flip-flop or latch.

A delay buffer added to the signal feeding the data input of the input
flip-flop/latch avoids a possible hold time violation.To remove this
delay, use the FPGA Compiler II Constraint Table. Under the Ports
tab, change the value under the Input Reg Delay column from Delay
to Nodelay. This can be set globally (as the default) or for individual
ports.

Understanding and Using Slew Rate

The output buffers have a default slow slew rate that alleviates
ground-bounce problems and the option of a fast slew rate that
reduces the output delay. The SLOW option increases the transition
time and reduces the noise level. The FAST option decreases the
transition time and increases the noise level.

Change SLOW slew rate to a FAST slew rate in the Constraint Table.
This value is set in the Slew Rate column of the Ports tab.

Using IOBs
This section describes how to use IOBs.
3-32 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
Using Input Blocks

Select input thresholds globally with TTL/CMOS. You can make
inputs registered or latched. You can select register and latch setup
time. Internal pullup resistors can optionally attach to the I/O pad.

Registered and latched inputs become available simultaneously with
direct input. You cannot apply asynchronous set/reset control on
input registers and latches, but you can apply clocks and latches on
input register and latches. You have no clock or latch-enable, but you
can control the initial state of input registers and latches.

XC5200 IOBs can contain no input registers, although you can
emulate this functionality using the latch/flip-flop in the adjacent
CLB. Additionally, CLB registers and latches have clock or latch-
enables and asynchronous reset inputs.

The IOB input path has an optional delay with which you can adjust input
setup and hold times. In the default configuration, the input register or latch
has positive setup and zero hold time (when used in conjunction with a
global clock network). Reducing input setup time slightly increases hold
time. Three setup and hold delay adjustments allow setup versus hold
parameter tuning.

Using Output Blocks

You can select the output driver slew rate. The output driver by
default uses a slow slew rate setting to reduce system noise and
power. A faster slew rate decreases chip-to-out propagation delay.

XC 52000 IOBs contain no output registers, although you can emulate
this functionality using the latch or flip-flop in the adjacent CLB.
Additionally, CLB registers and latches have clock or latch-enables
and asynchronous reset inputs.

You can register outputs and make them tristate. You cannot enable
asynchronous set/reset control on output registers, but you can specify clock-
enable on output registers.

You cannot apply clock-enable or asynchronous set/reset control on
output registers, but you can control the initial state of output
registers.

Perform 2-to-1 multiplexing or 2-input function directly in the output path of
an IOB (XC4000EX/XL/XV only). You can trade an output register for a 2-
input function or multiplexer. FPGA Compiler II cannot infer output drivers
Xilinx/Synopsys Interface Guide 3-33

Xilinx/Synopsys Interface Guide
containing a 2-input function or output multiplexer. Additionally, you must
instantiate the following primitives (valid for XC4000). See the “XSI
Library Primitives” appendix for more details.

• OAND2

• OMUX2

• ONAND2

• ONOR2

• OOR2

• OXNOR2

• OXOR2

Using Bidirectional Mode

You can select the output driver slew rate. The output driver by
default uses a slow slew rate setting to reduce system noise and
power. A faster slew rate decreases chip-to-out propagation delay.

Select input thresholds globally with TTL/CMOS. Input can be
registered or latched, and you can select register and latch setup time.

XC5200 IOBs contain no input registers, although you can emulate
this functionality using the latch/flip-flop in the adjacent CLB.
Additionally, CLB registers and latches have clock or latch-enables
and asynchronous reset inputs.You can make outputs tristate.

The IOB input path has an optional delay with which you can adjust
input setup and hold times. In the default configuration, the input
register or latch has positive setup and negative hold time (when
used in conjunction with a global clock network). This corresponds to
a full delay. Reducing input setup time slightly increases hold time.

You cannot apply clock or latch-enable or asynchronous set/reset
control on input registers and latches. Direct input makes registered
and latched input available simultaneously. You can control the
initial state of input registers and latches, and you can register
output.

Perform 2-to-1 multiplexing or 2-input function directly in the output
path of an IOB (XC4000EX/XL/XV only). You can trade an output
register for a 2-input function or multiplexer. FPGA Compiler II
cannot infer output drivers containing a 2-input function or output
3-34 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
multiplexer. Additionally, you must instantiate the following
primitives (valid for XC4000). See the “XSI Library Primitives”
appendix for more details.

• OAND2

• OMUX2

• ONAND2

• ONOR2

• OOR2

• OXNOR2

• OXOR2

Inserting Bidirectional I/Os
FPGA Compiler II has the ability to insert bidirectional ports.
Describe the 3-state signal that drives the output buffer in the same
hierarchy level as the input signal, as in the bidi_reg.vhd and
bidi_reg.v examples in the following section.

Assigning Pad Locations
You can specify pad locations in the Ports constraint table in the
Chips window. You cannot specify pad locations for a design that has
the Do Not Insert I/O Pads option selected.

Refer to The Programmable Logic Data Book, available on the Xilinx Web
site at http://www.xilinx.com, for the locations and names of the
pins.

Instantiating a Registered Bidirectional I/O
The top-level design examples bidi_reg.vhd and bidi_reg.v instantiate
a core design, reg4. In these examples, two clock buffers, CLOCK1
and CLOCK2, automatically infer a BUFG buffer. The reset and load
signals, RST and LOADA, automatically infer an IBUF.

The bidi_reg.vhd VHDL example follows.

library IEEE;
use IEEE.std_logic_1164.all;
Xilinx/Synopsys Interface Guide 3-35

http://www.xilinx.com

Xilinx/Synopsys Interface Guide
entity bidi_reg is
 port (SIGA: input STD_LOGIC_VECTOR (3 downto 0);
 LOADA, CLOCK1, CLOCK2, RST: in STD_LOGIC);
end bidi_reg;

architecture STRUCTURE of bidi_reg is
 component reg4
 port (INX: in STD_LOGIC_VECTOR (3 downto 0);
 LOAD, CLOCK, RESET: in STD_LOGIC;
 OUTX: buffer STD_LOGIC_VECTOR (3 downto 0));
 end component;

component OFDT
 port (D: in STD_LOGIC;
 C: in STD_LOGIC;
 T: in STD_LOGIC;
 O: out STD_LOGIC);
end component;

component IBUF
 port (I: in STD_LOGIC;
 O: out STD_LOGIC);
end component;

signal INA, OUTA: STD_LOGIC_VECTOR (3 downto 0);
begin
 U5: reg4 port map (INA, LOADA, CLOCK1, RST, OUTA);
 U0: OFDT port map (OUTA(0), CLOCK2, LOADA, SIGA(0));
 U1: OFDT port map (OUTA(1), CLOCK2, LOADA, SIGA(1));
 U2: OFDT port map (OUTA(2), CLOCK2, LOADA, SIGA(2));
 U3: OFDT port map (OUTA(3), CLOCK2, LOADA, SIGA(3));
 U4: IBUF port map (SIGA(0), INA(0));
 U6: IBUF port map (SIGA(1), INA(1));
 U7: IBUF port map (SIGA(2), INA(2));
 U8: IBUF port map (SIGA(3), INA(3));
end STRUCTURE;

The bidi_reg.v Verilog example follows.

module bidi_reg (SIGA, LOADA, CLOCK1, CLOCK2, RST) ;

inout [3:0] SIGA ;
3-36 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
input LOADA ;
input CLOCK1 ;
input CLOCK2 ;
input RST ;

wire [3:0] INA, OUTA ;
// Netlist

reg4 U5 (.INPUT(INA), .LD(LOADA), .CLOCK(CLOCK1), .RESET(RST), \

 .OUT(OUTA)) ;
OFDT U0 (.D(OUTA[0]), .C(CLOCK2), .T(LOADA), .O(SIGA[0])) ;
OFDT U1 (.D(OUTA[1]), .C(CLOCK2), .T(LOADA), .O(SIGA[1])) ;
OFDT U2 (.D(OUTA[2]), .C(CLOCK2), .T(LOADA), .O(SIGA[2])) ;
OFDT U3 (.D(OUTA[3]), .C(CLOCK2), .T(LOADA), .O(SIGA[3])) ;
IBUF U4 (.I(SIGA[0]), .O(INA[0])) ;
IBUF U6 (.I(SIGA[1]), .O(INA[1])) ;
IBUF U7 (.I(SIGA[2]), .O(INA[2])) ;
IBUF U8 (.I(SIGA[3]), .O(INA[3])) ;

endmodule

The backslash (“\”) character shows a line break required for
formatting purposes.

Implementing 3-State Registered Output
FPGA Compiler II infers the use of 3-state output flip-flops, such as
OFDT, under the following two conditions.

• The flip-flop must directly drive the 3-state signal.

• The HDL code of the flip-flop must reside in the same process as
the 3-state HDL code.

The following sections illustrate a flip-flop that does not directly
drive the 3-state signal and one that does directly drive the 3-state
signal.

Example of Not Directly Driving the 3-State Signal
If any logic exists between the flip-flop and the 3-state signal
connected to the output flip-flop, FPGA Compiler II does not infer a
Xilinx/Synopsys Interface Guide 3-37

Xilinx/Synopsys Interface Guide
3-state output flip-flop. The following VHDL and Verilog examples
illustrate a flip-flop not directly driving a 3-state output flip-flop.
Figure 3-19 shows a schematic representation.

The three_ex1 VHDL example follows.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity three_ex1 is
 port (BUS_IN, EN, CLK: in STD_LOGIC;
 BUS_OUT: out STD_LOGIC);
end three_ex1;

architecture RTL of three_ex1 is

signal BUS_IN_REG, BUS_OUT_REG: STD_LOGIC;

begin
sync: process (CLK)
 begin
 if (CLK’ event and CLK= ‘1’) then
 BUS_IN_REG <= BUS_IN;
 BUS_OUT_REG <= BUS_IN_REG;
 end if;
 end process;
BUS_OUT <= BUS_OUT_REG when (EN= ‘0’) else ‘Z’;

end RTL;

The three_ex1 Verilog example follows.

module three_ex1(BUS_IN, EN, CLK, BUS_OUT);
input BUS_IN ;
input EN ;
input CLK ;
output BUS_OUT ;

reg BUS_OUT_REG, BUS_IN_REG, BUS_OUT;

always @(posedge CLK)
begin
3-38 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
 BUS_OUT_REG = BUS_IN_REG ;
 BUS_IN_REG = BUS_IN ;
end
always @(EN or BUS_OUT_REG)
begin
 if (!EN)
 BUS_OUT = BUS_OUT_REG;
 else
 BUS_OUT = 1’bz;
end

endmodule

Figure 3-19 No Output Register Inferred

Example of Directly Driving the 3-State Signal
The HDL code for the flip-flop must reside in the same process as the
3-state HDL code and must directly drive the 3-state output, as
shown in the sync process in the following VHDL and Verilog
examples. If the code meets these two conditions, FPGA Compiler II
infers a registered 3-state output, as illustrated by Figure 3-19.

Having the flip-flop and the 3-state signal in separate processes
causes the insertion of additional logic between the flip-flop and the
3-state signal.

The three_ex2 VHDL example follows.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

BUS_OUT

OBUFT_F

BUS_OUT_REG
BUS_IN

EN

X8564

DBUS_IN_REG

BUFG_F

IBUF

Q

T

FDC

C

D

C

QIFD

CLOCK
Xilinx/Synopsys Interface Guide 3-39

Xilinx/Synopsys Interface Guide
entity three_ex2 is
 port (BUS_IN, EN, CLK: in STD_LOGIC;
 BUS_OUT: out STD_LOGIC);
end three_ex2;

architecture RTL of three_ex2 is

signal BUS_IN_REG: STD_LOGIC;

begin
sync: process (CLK, EN)
 begin
 if (CLK’ event and CLK= ‘1’) then
 BUS_IN_REG <= BUS_IN;
 if (EN= ‘0’) then
 BUS_OUT <= BUS_IN_REG;
 else
 BUS_OUT <= ‘Z’;
 end if;
 end if;
 end process;

end RTL;

The three_ex2 Verilog example follows.

module three_ex2(BUS_IN, EN, CLK, BUS_OUT) ;
input BUS_IN ;
input EN ;
input CLK ;
output BUS_OUT ;

reg BUS_OUT ;
reg BUS_IN_Q, BUS_IN_REG ;

always @(posedge CLK)
begin
 BUS_IN_Q = BUS_IN ;
 BUS_IN_REG = BUS_IN_Q ;
 if (!EN) BUS_OUT = BUS_IN_REG;
 else BUS_OUT = 1’bz;
3-40 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
end

endmodule

Figure 3-20 Output Register Inferred

Attribute Passing
Attributes can be inserted in the HDL code to be passed on to the
resulting EDIF netlist. These attributes can have any name or value,
but they can only be applied to instantiated components or nets (not
inferred logic or ports).

Use the following syntax to place an attribute in your HDL:

Verilog

//synopsys name attribute value

This comment is placed immediately after the instantiated
component.

Example:

 BUFG MYCLK (.I(clk), .O(clkin)); //synopsys attribute LOC “BR”

If multiple attributes need to be applied to the same component, use
multiple line comments like the following:

RAMB4_S4 U1 (.WE(w), EN(en), RST(r), .CLK(ck), .ADDR(ad), DI(di),
D)(do));
/*synopsys attribute INIT_00”AAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBB”
.INIT 09 “9999998888888888777777777776666666”*/

BUS_OUT

OBUFT

OFDT

BUS_IN

EN

X8559

DBUS_IN_REG

BUS_OUT_TRI_ENABLE

BUFG

QOFD

C

D

C

C

D

QIFD

QIFD

CLOCK
Xilinx/Synopsys Interface Guide 3-41

Xilinx/Synopsys Interface Guide
VHDL

Place the following in the architecture before the “begin” keyword:

attribute: name: string;
attribute: name of instance: label is value;

The attribute is applied to the instance name of an instantiation. If
you want to apply an attribute to a signal instead of a component,
replace “label” with “signal.”

Example:

attribute LOC: string;
attribute LOC of CLOCKBUF: label is “BR”;
...
MYCLK : BUFG port map (I=>clk, 0=>clkin);

If you need to apply multiple attributes to the same component,
create two lines for each attribute:

attribute INIT_00:string;
attribute INIT_00 of MY_BLKRAM: label is

“AAAAAAAAAAAAAAAA”;
attribute INIT_09;string;
attribute INIT_09 of MY_BLKRAM: labe is

“9999998888888888”;
...

MY_BLKRAM:RAMB4_S4port map(
addr=>ADDRTWO,
di=>DINTWO,
clk=>CLK,
we=>WETWO,
en=>ENTWO,
rst=>RST,
do=>DOUTTWO);
3-42 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
Implementing Clock Buffers
Global clock buffers are used to drive high-fanout signals such as clocks and
RAM write enables with minimal skew. The following table is a
comprehensive list of the buffers available in each family.

For XC4000 devices, FPGA Compiler II infers BUFG, an architecture-
independent global buffer, so that the Xilinx implementation software has
the flexibility to convert each BUFG to an appropriate type of global buffer
for the target device. In XC4000/E/L and Spartan devices, a BUFG
represents either a BUFGS or BUFGP. In XC4000EX/XL/XV and Virtex
devices, a BUFG represents either a BUFGLS or a BUFGE.

FPGA Compiler II extracts clock nets from your design and lists them
in the Clock constraint table. You can either let FPGA Compiler II
allocate the clock buffers for you, or you can manually assign them in
the Global Buffer column of the Ports constraint table.

Table 3-2 Global Clock Buffers

Device
Family

Global Buffer
Symbol Name

Number
Available

Maximum Number of
Buffers Inferred by
FPGA Compiler II

XC3000 GCLK 1 1

 ACLK 1 1

XC4000/
XC4000E

BUFGS 4 0

XC4000L/
Spartan/XL

BUFGP 4 0

 BUFG (8) 4

 XC4000EX BUFGLS 8 0

XC4000XL BUFGE 4 0

XC4000XV BUFFCLK 4 0

 BUFG (8) 8

XC5200 BUFG 4 4

Virtex/E/II

Spartan-II

XC9500 BUFG 3 0
Xilinx/Synopsys Interface Guide 3-43

Xilinx/Synopsys Interface Guide
When FPGA Compiler II performs the allocation, it uses one BUFG
per clock, up to the maximum specified in the last column of the
Global Clock Buffers table. Allocation begins with the most heavily-
loaded clock signal. For example, if an XC4000E design contains five
clock signals, FPGA Compiler II allocates four BUFG buffers to the
four most heavily-loaded clocks. Targeting the same design to an
XC4000EX device would result in the use of five BUFGs. In XC4000/
E/L and Spartan devices, FPGA Compiler II infers a maximum of
four global buffers even though eight exist. Inferring more than four
buffers could use extra global routing resources, threatening chances
of a successful route. XC4000EX/XL/XV and Virtex devices contain
extra routing resources so FPGA Compiler II infers up to eight
BUFGs (the maximum available in the device) for them.

To perform manual allocation, choose the buffer type in the Global Buffer
column of the Ports constraint table. FPGA Compiler II maintains a count of
global buffers so that you cannot assign more global buffers than are
available for the current device. It is also possible to assign global buffers to
non-clock signals.

XC4000EX/XL/XV devices contain BUFGE and BUFFCLK buffers. These
buffers are primarily used to implement high-speed I/O interfaces. You can
assign these buffers in the Global Buffer column of the Ports constraint
table.

For XC9500 devices, FPGA Compiler II does not infer BUFG buffers
for clock signals. The Xilinx CPLD implementation tools are
responsible for automatically assigning BUFG buffers.

Using Memory
You can use on-chip RAM for status registers, index registers, counter
storage, distributed shift registers, LIFO stacks, and FIFO buffers.

The XC4000 family can efficiently implement RAM and ROM using
CLB function generators. Implement a ROM by describing it
behaviorally as shown in the Implementing XC4000 ROM section.
Alternatively, the XSI XC4000E/L/EX/XL/XV libraries contain 16 x
1 (16 deep x 1 wide) and 32 x 1 (32 deep x 1 wide) RAM and ROM
primitives and 16 x 1 dual-port RAM you can instantiate.
3-44 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
You can also implement memory using the LogiBLOX program. LogiBLOX
can create RAM and ROM between 1–32 bits wide and 2–256 bits deep.
Using LogiBLOX to add RAM or ROM to your design provides an efficient
implementation of your memory in addition to a simulation model for
Register Transfer Level (RTL) simulation.

For VHDL and Verilog examples of instantiating RAM in your designs
using CoreGen or LogiBLOX, refer to the “Using CORE Generator and
LogiBLOX” chapter. Also, refer to the LogiBLOX Guide for more
information on LogiBLOX.

Implementing Virtex/E/-II RAM
Implement RAMs in your HDL with the following methods.

• Instantiate 16 x 1 and 32 x 1 distributed RAM from the Unified
primitive libraries.

• Instantiate Block RAM components from the Unified primitive
libraries.

• Instantiate any size Block RAM using CoreGen.

The INIT values for RAM32X 1 and RAM32X1_1 map differently
from 4000EX/XL/XV and Spartan/XL.

Virtex maps the lower INIT values to G and upper INIT values to F
for both RAM32X. 4000EX/XL/XV and SpartanXL map those lower
INIT values to F and upper INIT values to G.

Behaviorally describing RAMs in VHDL creates combinatorial loops
during compiling.

Implementing XC4000 RAM
Implement RAMs in your HDL with the following methods.

• Instantiate 16 x 1 and 32 x 1 RAMs from the XSI primitive
libraries.

• Instantiate any size RAM using LogiBLOX.

Behaviorally describing RAMs in VHDL creates combinatorial loops
during compiling.
Xilinx/Synopsys Interface Guide 3-45

Xilinx/Synopsys Interface Guide
Implementing XC4000 ROM
Implement ROM in your HDL with the following methods.

• Describe ROM behaviorally.

• Instantiate 16 x 1 and 32 x 1 ROM primitives.

• Instantiate any size ROM using LogiBLOX.

To instantiate the ROM16 x 1 and ROM32 x 1 primitives into your
design, connect the input and output pins to the appropriate signals.
GUI

Compile calculates ROM content values by considering the 16 x 1 or
32 x 1 ROMs 16 or 32 1-bit locations as bits in a 16 or 32 bit word. For
example, for a 32 x 1 ROM, specify an 8-digit hexadecimal (hex) value
in place of the 4-digit hex value. See Figure 3-21.

Refer to the Application Note “Using Select-RAM Memory in XC4000
Series FPGAs” for more information.

Figure 3-21 Implementing ROMs

The 16 x 4 ROM VHDL and 16 x 4 ROM Verilog HDL examples
illustrate how to define a ROM in VHDL and Verilog HDL,
respectively. FPGA Compiler II creates ROMs from optimized
random logic gates implemented using function generators.

The 16 x 4 ROM RTL VHDL example follows.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ADDR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

ROM16X1

XNF_INIT
0000000011111111

=00FF
H

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

ROM16X1

XNF_INIT
0000111100001111

=0F0F
H

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

ROM16X1

XNF_INIT
0011001100110011

=3333
H

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

ROM16X1

XNF_INIT
0101010101010101

=5555
H

MSB

LSB

15

14

13

12

11

10

9

8

ADDR

15

14

13

12

11

10

9

8

Value

7

6

5

4

3

2

1

0

ADDR

7

6

5

4

3

2

1

0

Value

A[3:0] O[3:0]

ROM16X4

X8001
3-46 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II

-- RTL 16x4 ROM Example --
-- rom16x4_4k.vhd --

entity rom16x4_4k is
 port (ADDR: in INTEGER range 0 to 15;
 DATA: out BIT_VECTOR (3 downto 0));
end rom16x4_4k;

architecture RTL of rom16x4_4k is

 subtype ROM_WORD is BIT_VECTOR (3 downto 0);
 type ROM_TABLE is array (0 to 15) of ROM_WORD;
 constant ROM: ROM_TABLE := ROM_TABLE’(
 ROM_WORD’(“0000”),
 ROM_WORD’(“0001”),
 ROM_WORD’(“0010”),
 ROM_WORD’(“0100”),
 ROM_WORD’(“1000”),
 ROM_WORD’(“1000”),
 ROM_WORD’(“1100”),
 ROM_WORD’(“1010”),
 ROM_WORD’(“1001”),
 ROM_WORD’(“1001”),
 ROM_WORD’(“1010”),
 ROM_WORD’(“1100”),
 ROM_WORD’(“1001”),
 ROM_WORD’(“1001”),
 ROM_WORD’(“1101”),
 ROM_WORD’(“1111”),
begin
 DATA <= ROM(ADDR); -- Read from the ROM
end RTL;

The 16 x 4 ROM RTL Verilog example follows.

module rom16x4_4k(ADDR, DATA) ;
input [3:0] ADDR ;
output [3:0] DATA ;

reg [3:0] DATA ;
Xilinx/Synopsys Interface Guide 3-47

Xilinx/Synopsys Interface Guide
always @(ADDR)
begin
 case (ADDR)
 4’b0000 : DATA = 4’b0000 ;
 4’b0001 : DATA = 4’b0001 ;
 4’b0010 : DATA = 4’b0010 ;
 4’b0011 : DATA = 4’b0100 ;
 4’b0100 : DATA = 4’b1000 ;
 4’b0101 : DATA = 4’b1000 ;
 4’b0110 : DATA = 4’b1100 ;
 4’b0111 : DATA = 4’b1010 ;
 4’b1000 : DATA = 4’b1001 ;
 4’b1001 : DATA = 4’b1001 ;
 4’b1010 : DATA = 4’b1010 ;
 4’b1011 : DATA = 4’b1100 ;
 4’b1100 : DATA = 4’b1001 ;
 4’b1101 : DATA = 4’b1001 ;
 4’b1110 : DATA = 4’b1101 ;
 4’b1111 : DATA = 4’b1111 ;
 endcase
end

endmodule

Performing Boundary Scan
The XC4000, XC5200, Spartan, and Virtex FPGA devices contain boundary
scan facilities compatible with IEEE Standard 1149.1. Refer to the
Development System Reference Guide.

 for a detailed description of the XC4000 and XC5200 boundary scan
capabilities.

Xilinx parts support external (I/O and interconnect) testing and have
limited support for internal self-test.

Full access to the built-in boundary-scan logic exists between power-
up and the start of configuration. Optionally, specify boundary scan
in the design to access built-in logic after configuration. During
configuration, you can use the Sample/Preload and Bypass
instructions only.
3-48 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
To make boundary-scan logic active in a configured FPGA device,
include the boundary-scan cell and its related I/O cells in the
configuration data of your design. For HDL designs, you must
instantiate the boundary-scan symbol, BSCAN, and the boundary
scan I/O pins, TDI, TMS, TCK, and TDO.

The following figure illustrates the BSCAN symbol instantiated into
an HDL design.

Figure 3-22 Boundary Scan Symbol Instantiation in XC4000
Family

The following examples show the code used to instantiate the cells in
the previous figure. The Verilog code for instantiating BSCAN in
XC4000 appears in the following example. Note the use of upper and
lower case in the sample.

module example (a,b,c);
 input a, b;
output c;
reg c;
wire tck_net;
wire tdi_net;
wire tms_net;
wire tdo_net;
BSCAN u1 (.TDI(tdi_net), .TMS(tms_net),

.TCK(tck_net), .TDO(tdo_net));
TDI u2 (.I(tdi_net));
TMS u3 (.I(tms_net));

TDI

TMS

TCK

TDO1

TDO2

TDO

DRCK

IDLE

SEL1

SEL2

TDI

TMS

TCK

TDO

BSCAN

From
User Logic

To User
Logic

X8560
Xilinx/Synopsys Interface Guide 3-49

Xilinx/Synopsys Interface Guide
TCK u4 (.I(tck_net));
TDO u5 (.O(tdo_net));
always@(posedge b)
c <= a;

endmodule

The VHDL code for instantiating BSCAN in XC4000/XC4000E
example follows.

entity example is
port (a, b: in bit; c: out bit);

end example;

architecture xilinx of example is
component bscan
port(tdi, tms, tck: in bit; tdo: out bit);

 end component;

component tck
port (i : out bit);

end component;

component tdi
port (i : out bit);
end component;

component tms
port (i : out bit);

end component;

component tdo
port (o : in bit);

end component;

signal tck_net : bit;
signal tdi_net : bit;
signal tms_net : bit;
signal tdo_net : bit;

begin
u1: bscan port map (tdi=>tdi_net, tms=>tms_net,

tck=>tck_net, tdo=>tdo_net);
3-50 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
u2: tck port map (i=>tck_net);
u3: tdi port map (i=>tdi_net);
u4: tms port map (i=>tms_net);
u5: tdo port map (o=>tdo_net);

process(b)
begin
if(b’event and b=’1’) then
 c <= a;
end if;
end process;

end xilinx;

The Verilog code for instantiating BSCAN in XC4000/XC4000E
appears in the following example. Note the use of upper and lower
case in the sample.

module example (a,b,c);
input a, b;
output c;
reg c;
wire tck_net;
wire tdi_net;
wire tms_net;
wire tdo_net;
BSCAN u1 (.TDI(tdi_net), .TMS(tms_net),

.TCK(tck_net), .TDO(tdo_net));
TDI u2 (.I(tdi_net));
TMS u3 (.I(tms_net));
TCK u4 (.I(tck_net));
TDO u5 (.O(tdo_net));
always@(posedge b)
 c<=a;
endmodule

The VHDL code for instantiating BSCAN in XC4000/XC4000E
example follows.

entity example is
 port (a, b: in bit; c: out bit);
end example;
Xilinx/Synopsys Interface Guide 3-51

Xilinx/Synopsys Interface Guide
architecture xilinx of example is
component bscan
 port(tdi, tms, tck: in bit; tdo: out bit);
end component;

component tck
 port (i : out bit);
end component;

component tdi
 port (i : out bit);
end component;

component tms
 port (i : out bit);
end component;

component tdo
 port (o : in bit);
end component;

signal tck_net : bit;
signal tdi_net : bit;
signal tms_net : bit;
signal tdo_net : bit;

begin
u1: bscan port map (tdi=>tdi_net, tms=>tms_net,

tck=>tck_net, tdo=>tdo_net);
u2: tck port map (i=>tck_net);
u3: tdi port map (i=>tdi_net);
u4: tms port map (i=>tms_net);
u5: tdo port map (o=>tdo_net);

process(b)
begin
if(b’event and b=’1’) then
 c <= a;
end if;
end process;
end xilinx;
3-52 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
Using the Global Set/Reset Net
All Xilinx FPGA devices have a dedicated Global Set/Reset (GSR) net that
initializes all CLBs and IOB flip-flops. The function of the GSR net is
separate from and overrides the individual flip-flop or latch Preset (PRE)
and Direct Clear (CLR) pins. The following table summarizes the GSR
buffers available in each device family.

If your design includes a signal used to globally initialize all the flip-
flops or latches, use the GSR net to increase design performance by
reducing the overall routing congestion. The GSR net, a dedicated
routing resource, exists outside of the general purpose interconnect.
You can disconnect your design’s global initialization signal from the
flip-flops and latches in your design and implement this function
using the device’s dedicated GSR net.

Table 3-3 Global Set/Reset Buffers

Family Global Buffer Symbol Name

XC3000 none

XC4000, Spartan STARTUP

XC5200 STARTUP

XC9500 BUFGSR

Virtex STARTUP_VIRTEX

Spartan-II STARTUP_Spartan-II
Xilinx/Synopsys Interface Guide 3-53

Xilinx/Synopsys Interface Guide
Figure 3-23 Emulation of Power-on State “1” with Inverters
(XC3000A/L, XC3100A, and XC5200)

Implementing GSR Buffers
To implement a global reset in XC3000 devices, you must connect the
external reset signal to the dedicated RESET pin. This input is an
active-low, asynchronous reset of all memory elements in the device.

To implement a global reset in XC9500 devices, you must connect the
external reset signal to the GSR dedicated input pin. To do this, either
assign the BUFGSR in the Global Buffer column of the Ports
constraint table or instantiate a BUFGSR primitive in your design.
You can program the GSR input to be either an active-high or an
active-low asynchronous reset of all memory elements in the device.

You can implement GSRs in the other families by either inference or
instantiation. For FPGA Compiler II to infer a GSR buffer, HDL flip-flop
descriptions must contain an asynchronous set or reset as their first
condition. The following examples are VHDL and Verilog descriptions of
flip-flops that use signal rst as the GSR signal and clk as the clock signal.

CLK

QD

CLR

PRE

QD

C

X8003
3-54 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
Code Example 1 VHDL Description

process (rst, clk)
begin
if rst = ‘1’ then

q1 <= ‘0’;
q2 <= ‘1’;

elsif clk = ‘1’ and clk’event then
q1 <= d1;
q2 <= d2;

end if;
end process;

Code Example 2 Verilog Description

always @(posedge clk or posedge rst)
if (rst) begin

q1 = 1’b0;
q2 = 1’b1;

end
else begin

q1 = d1;
q2 = d2;

end

In the VHDL example, rst is a global reset of the q1 flip-flop and a global set
of the q2 flip-flop. Note that all flip-flops in the design must use rst as the
asynchronous set or reset in their HDL descriptions in order for the GSR to
be inferred. If there is even one flip-flop that is not described as
asynchronously set or reset by rst, the FPGA Compiler II is not able to infer
rst as the GSR signal. The actual implementation of GSR is an instance of
the Xilinx primitive STARTUP with a single input GSR connected to rst.

There are situations in which the GSR signal cannot be inferred. For
example, when a design contains two or more asynchronous set/
reset signals, FPGA Compiler II cannot infer the GSR signal. In these
situations, you must use instantiation to implement the GSR. The
following examples are the VHDL and Verilog descriptions of a case
in which rst_a is used as the GSR, but a flip-flop is asynchronously
reset by signal rst_b.
Xilinx/Synopsys Interface Guide 3-55

Xilinx/Synopsys Interface Guide
Code Example 3 VHDL Description of rst_a Used As the GSR

component STARTUP
port(GSR: in std_logic);

end component;
.
.
.
STARTUP_i: STARTUP --instantiate STARTUP
port map(GSR => rst_a);

process(clk, rst_b)
begin
if rst_b = ‘1’ then

q <= ‘0’;
elsif clk = ‘1’ and clk’event then

q <= d;
end if;

end;

Code Example 4 Verilog Description of rst_a Used As the GSR

STARTUP STARTUP_i (.GSR(rst_a));
 // instantiate STARTUP

always @(posedge clk or posedge rst_b)
if (rst_b)

q = 1’b0;
else

q = d;

In the Verilog example, because rst_a is the GSR signal, the flip-flop q
is reset regardless of the state of rst_b, because the GSR sets or resets
all memory elements in the device. Note that for XC5200 devices, the
GSR pin is named GR instead of GSR.

RAMs and ROMs in XC4000 devices are implicitly set or reset using
the INIT property in their netlists. The INIT property is inserted by
the memory netlist generation utility (CoreGen/LogiBLOX in Xilinx
software).
3-56 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
If a design contains a black box, such as a netlist from CoreGen or
LogiBLOX, FPGA Compiler II can still infer the GSR as long as all flip-
flops in the design are asynchronously set or reset by the same signal. In this
case, you must select the “Infer GSR if design contains unlinked cells”
option in the Xilinx Options page of the constraint tables.

Accessing Global Set/Reset Using STARTBUF
Access an FPGA’s GSR signal by attaching a net to the input pin on
the STARTBUF cell. Asserting the net attached to the STARTBUF
block’s GSR pin also asserts FPGA Global Set/Reset causing every
flip-flop and latch in the device to assume its power-on state.

You must instantiate the STARTBUF block.

The GSR net does not appear in the pre-placed and routed netlist.
Asserting the GSR signal to High (the default) sets every flip-flop and
latch to the same state it had at the end of configuration, illustrated in
the following tables. When you simulate the placed and routed
design, the simulator’s translation program correctly inserts the
functionality.

Any signal can drive the STARTUP block’s GSR pin, however, do not
use flip-flop or latch output signals.

Synthesizing/Simulating for VHDL Global Set/Reset
Emulation

VHDL requires a testbench to control all signal ports. You can
instantiate certain VHDL-specific components, explained in the
following sections, in the RTL and post-synthesis VHDL description
to allow the simulation of the global signals for global set/reset and
global 3-state.

NGD2VHDL creates a port in your back-annotated design entity for
stimulating the global set/reset or 3-state enable signals. This port does not
actually exist on the configured part.
Xilinx/Synopsys Interface Guide 3-57

Xilinx/Synopsys Interface Guide
Using STARTBUF in VHDL

STARTBUF replaces STARTUP. With STARTBUF you can
functionally simulate the GSR/GR net in both function and timing
simulation. By connecting the input pin of the STARTBUF to a top-
level port and using STARTBUF as the source for all asynchronous
set/reset signals in a design, Xilinx software can automatically
optimize the design to use the GSR/GR. Because you can use
STARTBUF in functional simulation (unlike STARTUP), when you
use STARTBUF you can map to the GSR/GR in a device. You can still
use STARTUP, but it does not always provide correct GSR/GR in
HDL flows.

The STARTBUF component passes a reset or 3-state signal in the
same way that a buffer allows simulation to proceed and also
instantiates the STARTUP block for implementation. One version of
STARTBUF works for all devices, however, the XC5200 and the
XC4000 STARTUP blocks have different pin names. Implementation
with the correct STARTUP block occurs automatically. The following
shows an instantiation example of the STARTBUF component.

U1: STARTBUF port map (GSRIN => DEV_GSR_PORT, GTSIN
=>DEV_GTS_PORT, CLKIN => ‘0’, GSROUT => GSR_NET,
GTSOUT => GTS_NET, Q2OUT => open, Q3OUT => open,
Q1Q4OUT => open, DONEINOUT => open):

You can use one or both of the input ports (GSRIN and GTSIN) of the
STARTBUF component and the associated output ports (GSROUT
and GTSOUT). You can use pins left open to pass configuration
instructions to the implementation tools by connecting the
appropriate signal to the port instead of leaving it open.

Instantiating a STARTUP Block in VHDL

The STARTUP block traditionally instantiates to identify the GR,
PRLD, or GSR signals for implementation. However, simulation can
occur only when the net attached to the GSR or GTS goes off the chip
because the STARTUP block does not have a simulation model. You
can use the new components described below to simulate global set/
reset or 3-state nets whether or not the signal goes off the chip.
3-58 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
Setting Direct Preset or Direct Clear
You can program each flip-flop and latch as either Preset or Clear but
not both. The device’s automatic assertion of its own GSR net
asynchronously sets flip-flops and latches as either Preset or Cleared
upon completion of configuration. Use individual flip-flop and latch
Preset (PRE) and Clear (CLR) pins to set them as preset or cleared.

The power-on state of a register or latch and the selection of PRE or
CLR pin must match. For example, a register with a CLR pin assumes
the value of 0 on power-up. Alternatively, a register with a power-up
state of 0 can only have a CLR pin.

To get an asynchronous set or asynchronous reset flip-flop, describe
the behavior in the RTL code. If you only want to describe the power-
on state of a flip-flop, connect the asynchronous set or asynchronous
reset signal of the RTL flip-flop to the ROCBUF.

Increasing Performance with the GSR Net
Many designs have a net that initializes the majority of the design’s
flip-flops. If this signal initializes all the design’s flip-flops, you can
use the GSR net.

To have your HDL simulation match that of the resulting design,
modify your HDL code so that asserting the GSR signal presets or
clears every flip-flop and latch. FPGA Compiler II only routes this
signal to the dedicated STARTUP component, using the dedicated
global routing resource, so this signal does not get routed with
general purpose interconnect.

Alternatively, the Xilinx tools move this signal on to the device’s
dedicated GSR routing network when the following conditions
apply.

• The asynchronous Preset or Clear pin of every register in your
design that has this pin connects to the same net.

• That net connects to the GSR pin of the STARTUP block.

• You use STARTBUF (see the “Using the Xilinx Development
System” section).

The following figure illustrates this flow.
Xilinx/Synopsys Interface Guide 3-59

Xilinx/Synopsys Interface Guide
Figure 3-24 Increasing Performance with GSR Net

The following VHDL and Verilog examples illustrate a design that
uses the GSR net. The design contains two flip-flops, one reset and
one set when the signal RST is High.

The following example shows VHDL code before using the GSR net.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity gsr_ex is
 port (CLK,RST : in STD_LOGIC;
 ST: buffer std_logic_vector (1 downto 0));
end gsr_ex;

architecture EXAMPLE of gsr_ex is

begin
 process (CLK, RST)
 begin
 if RST= ‘1’ then

CLK

QD

CLK

QD

CLK

QD

IBUF

CLK

CLR CLR

QD

CLK

QD QD FDC

FDC FDP FDC

PRE

IBUF
PORT
RESET

PORT
RESET

RESET
NET

STARTUP

GSR

CLK

STARTUP

GSR

X8002
3-60 Xilinx Development System

Synthesizing Your Design with FPGA Compiler II
 ST <= “01”;
 elsif (CLK’event and CLK= ‘1’) then
 ST <= ST + “01”;
 end if;
 end process;

end EXAMPLE;

The following example shows Verilog code before using the GSR net.

module gsr_ex (CLK, RST, ST) ;
input CLK ;
input RST ;
output [1:0] ST;

reg [1:0] ST;

always @(posedge CLK or posedge RST)
begin
 if (RST == 1’b1)
 ST = 2’b01 ;
 else
 ST = ST + 1’b1 ;
end

endmodule

Add the reset signal in your design to the GSR pin of the STARTUP
block. This makes the Xilinx tools move this signal on to the
dedicated routing network if all other conditions are satisfied.

To utilize the GSR net, add the STARTUP block to your design by
instantiation, illustrated in the following examples. The following example
shows VHDL code using the GSR net.
Xilinx/Synopsys Interface Guide 3-61

Xilinx/Synopsys Interface Guide
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity top_gsr is
 port (CLK,RST : in STD_LOGIC;
 ST: buffer STD_LOGIC_VECTOR (1 downto 0));
end top_gsr;

architecture EXAMPLE of top_gsr is
 component STARTUP
 port (GSR: in STD_LOGIC);
 end component;

 component gsr_ex
 port (CLK,RST: in STD_LOGIC;
 ST : buffer STD_LOGIC_VECTOR (1 downto 0));
 end component;

 begin

 U1 : STARTUP port map (GSR=>RST);
 U2 : gsr_ex port map (CLK=>CLK,RST=>RST,ST=>ST);
end EXAMPLE;

The following example shows Verilog code using the GSR net.

module top_gsr (CLK, RST, ST) ;
input CLK ;
input RST ;
output [1:0] ST;

STARTUP U1 (.GSR(RST)) ;
gsr_ex U2 (.CLK(CLK), .RST(RST), .ST(ST)) ;

endmodule
3-62 Xilinx Development System

Chapter 4

Synthesizing Your Design with FPGA
Compiler and Design Compiler

Synthesize and implement your HDL designs for Xilinx FPGA
devices with either FPGA Compiler or Design Compiler by using the
information in the following sections.

• “Before You Begin”

• “Naming Conventions”

• “Setting the Wire-Load Model”

• “Setting the Operating Condition Parameters”

• “Configuring IOBs”

• “Inserting Clock Buffers”

• “Using Memory”

• “Performing Boundary Scan”

• “Using the Global Set/Reset Net”

• “Using the Xilinx DesignWare Library”

• “Creating the Area Report”

• “Compiling Your Design”

• “Creating the Area Report”

• “Evaluating Timing Delays”

• “Generating Reports for Debugging”

• “Writing and Saving Your Design”

• “Using the Xilinx Development System”
Xilinx/Synopsys Interface Guide 4-1

Xilinx/Synopsys Interface Guide
Before You Begin
Before you begin a Xilinx design using the Synopsys tools, read the
“Getting Started” chapter and ensure the following.

• Verify the installation of Xilinx software on your system.

• Modify the Xilinx-provided default Synopsys startup file, if
applicable.

• Verify that you use Synopsys version 1999.05 or later for FPGA
Compiler and Design Compiler.

Xilinx does not support the following library cells in the Spartan
design flow because they do not exist in the Spartan architecture.

• RAM16X1

• RAM32X1

• DECODEx

• WANDx

• WOR2AND

• MD0

• MD1

• MD2

Naming Conventions
Unless otherwise noted, the following naming conventions are used
to group Xilinx device families:

• Virtex represents Virtex, Virtex-E, Virtex-II and Spartan-II
devices.

• Spartan represents Spartan and SpartanXL devices.

• XC4000 represents XC4000E, XC4000L, XC4000EX, XC4000XL,
XC4000XLA and XC4000XV devices.

• XC9500 represents XC9500, XC9500XL, XC9500XV and
XC9500XVA devices.

• XC3000 represents XC3100 and XC3100A devices.

• XC5200 represents XC5200 devices.
4-2 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
Setting the Wire-Load Model
Each primitive library contains device and speed-grade specific
estimated pre-layout and routing wire-load models. The Synopsys
tools can use these estimates when optimizing your design for an
FPGA. XSI provides two wire-load models per device-speed grade
combination, an average model and a worst-case model. These
models receive “_avg” and “_wc” designations, respectively; the
default is average. Using the default (average) wire loads produces
more realistic designs.

To change a wire load model, use the following syntax.

set_wire_load “parttype –s.wc”

Substitute the part type to change for parttype.

Run synlibs with the –h option to get a listing of all available part
type and speed grade combinations. You can also refer to the Xilinx
online Data Book at http://www.xilinx.com/support for current
speed grade information.

Setting the Operating Condition Parameters
You need only one set of operating condition parameters, the worst-
case commercial (WCCOM) parameter. This set of parameters is the
default in the Xilinx libraries.

Configuring IOBs
This section describes how to configure FPGA IOBs. You must
implement some features manually, but FPGA Compiler performs
the following optimization functions automatically.

• Inserts input buffers (IBUF) and output buffers (OBUF)

• Inserts IBUFs and 3-state output buffers (OBUFT) for
bidirectional I/O (IOBUF)

• Inserts a clock buffer for ports driving clock pins (BUFG)

Note: The following functions apply only to FPGAs with I/O flip-
flops.
Xilinx/Synopsys Interface Guide 4-3

http://www.xilinx.com/support

Xilinx/Synopsys Interface Guide
• Optimizes a flip-flop (IFD) without a clock enable, or latch
(ILD_1) attached to input buffers into the IOB

• Optimizes a flip-flop without a clock enable attached to output
buffers into the IOB (OFD)

Indicate which ports in your design to use for chip-level I/Os with
the Set Port Is Pad command. The Insert Pads command adds the
correct buffers to the ports declared as pads, as shown in the
following example.

set_port_is_pad “*”

insert_pads

All Architectures
This section includes general information about IOBs that applies to
all supported device architectures.

Optimizing Inputs

FPGA Compiler optimizes any flip-flops connected to an input port
into the IOB if the flip-flop or latch does not use the Clock Enable,
Direct Clear, or Preset pin.

You can configure the buffered input signal that drives the data input
of a storage element as either a flip-flop or a latch. You can use the
buffered signal in conjunction with the input flip-flop or latch.

A delay buffer added to the signal feeding the data input of the input
flip-flop/latch avoids a possible hold time violation. Instantiating a
flip-flop or latch, such as an IFD_F or ILD_1F, removes this delay
because these cells include a NODELAY attribute. Refer to the “XSI
Library Primitives” appendix for a complete list of primitives that
include NODELAY attributes.

Understanding and Using Slew Rate

The output buffers have a default slow slew rate that alleviates
ground-bounce problems and the option of a fast slew rate that
reduces the output delay. The SLOW option increases the transition
time and reduces the noise level. The FAST option decreases the
transition time and increases the noise level.
4-4 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
Warning: Synopsys and Xilinx define slew rate using opposite terms.
Synopsys uses slew control, whereas Xilinx uses slew rate. For example,
the Synopsys HIGH slew control is equivalent to the Xilinx SLOW
slew rate.

The XSI libraries contain two types of output buffers. The default
output buffer has a slow slew rate. An additional output buffer with a
fast slew rate has a FAST attribute assigned to it, OBUF_F (output
buffer) and OBUFT_F (3-state output buffer), also in the XSI libraries.
To avoid possible ground-bounce problems, use the default SLOW as
the slew rate. Assign a FAST slew rate only to output buffers that
require additional speed.

To change any output port to a FAST slew rate, use the following
command. Set this command before implementing the Insert Pads
commands.

set_pad_type –slewrate NONE {port}

Replace port with the name of the output port.

XC3000A/L and XC3100A/L IOBs
This section describes XC3000A/L and XC3100A/L IOBs.

Using Input Blocks

Select input thresholds globally with TTL/CMOS. Internal pull-up
resistors can optionally attach to the I/O pad. You can make inputs
registered or latched. You can select register and latch setup time.

In the default configuration, the input register or latch has positive
setup and negative hold time (when used in conjunction with a
global clock network). Reducing input setup time produces a small
positive hold time.

Table 4-1 XC4000E/EX/XV Slew Rate Settings

Xilinx Slew
Rate

Synopsys Slew
Control Attribute

FPGA Compiler Command

SLOW HIGH set_pad_type –slewrate HIGH { port}

FAST NONE set_pad_type –slewrate NONE {port}
Xilinx/Synopsys Interface Guide 4-5

Xilinx/Synopsys Interface Guide
Registered and latched inputs become available simultaneously with
direct input. You have no clock or latch-enable or asynchronous set/
reset control on input registers and latches, but you can control the
initial state of input registers and latches.

Using Output Blocks

You can select the output driver slew rate. The output driver by
default uses a slow slew rate setting to reduce system noise and
power. A faster slew rate decreases chip-to-out propagation delay.

You can register outputs and make them tristate.

You cannot apply clock-enable or asynchronous set/reset control on
output registers, but you can control the initial state of output
registers.

Using Bidirectional Mode

You cannot use internal pull-up resistors in this mode.

You can select the output driver slew rate. The output driver by
default uses a slow slew rate setting to reduce system noise and
power. A faster slew rate decreases chip-to-out propagation delay.

Select input thresholds globally with TTL/CMOS. Input can be
registered or latched, and you can select register and latch setup time.

In the default configuration, the input register or latch has positive
setup and negative hold time (when used in conjunction with a
global clock network). Reducing input setup time slightly increases
hold time.

You cannot apply clock or latch-enable or asynchronous set/reset
control on input registers and latches. Direct input enables
simultaneous availability of registered and latched input.

You can control the initial state of input registers and latches, and you
can register output.

You cannot apply clock-enable or asynchronous set/reset control on
output registers, but you can control the initial state of output
registers.
4-6 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
XC4000 IOBs
This section describes XC4000 IOBs.

Using Input Blocks

Select input thresholds globally with TTL/CMOS. Specify an internal
pull-up/pull-down resistor that can optionally attach to an I/O pad.

You can make inputs registered or latched, and you can select register
and latch setup time.

In the default configuration, the input register or latch has positive
setup and zero hold time (when used in conjunction with a global
clock network). For XC4000 devices, reducing input setup time
slightly increases hold time. For XC4000EX/XL/XLA/XV devices,
three setup and hold delay adjustments allow setup versus hold
parameter tuning.

Direct input enables simultaneous availability of registered and
latched input. You cannot apply asynchronous set/reset control on
input registers and latches, but you can apply clocks and latches on
input register and latches.

FPGA Compiler cannot infer I/O registers and latches with clock and
latch-enables.

You can control the initial state of input registers and latches.

Using Output Blocks

You can select the output driver slew rate. By default, the output
driver uses a slow slew rate setting to reduce system noise and
power. A faster slew rate decreases chip-to-out propagation delay.

You can register outputs and make them tristate. You cannot enable
asynchronous set/reset control on output registers, but you can
specify clock-enable on output registers. FPGA Compiler cannot infer
I/O registers and latches with clock and latch enables.

You can control the initial state of output registers.

Perform 2-to-1 multiplexing or 2-input function directly in the output
path of an IOB (XC4000EX/XL/XV only). You can trade an output
register for a 2-input function or multiplexer. Additionally, you must
instantiate the following primitives (valid for XC4000EX/XL/XLA/
Xilinx/Synopsys Interface Guide 4-7

Xilinx/Synopsys Interface Guide
XV/XLT). See the “XSI Library Primitives” appendix for more
details.

• OAND2

• OMUX2

• ONAND2

• ONOR2

• OOR2

• OXNOR2

• OXOR2

FPGA Compiler cannot infer output drivers containing a 2-input
function or output multiplexer.

Using Bidirectional Mode

You can select the output driver slew rate. By default the output
driver uses a slow slew rate setting to reduce system noise and
power. Faster slew rates decrease chip-to-out propagation delay.

Select input thresholds globally with TTL/CMOS. Input can be
registered or latched, and you can select register and latch setup time.

In the default configuration, the input register or latch has positive
setup and negative hold time (when used in conjunction with a
global clock network). This corresponds to a full delay. Reducing
input setup time slightly increases hold time.

You cannot enable asynchronous set/reset control on input registers
and latches. Direct input makes registered and latched input
available simultaneously.

You can specify clock and latch-enable on input registers and latches.
FPGA Compiler cannot infer I/O registers or latches with clock or
latch enables.

You can control initial states of I/O registers and latches. You can
register output.

You cannot enable asynchronous set/reset control on output
registers, but you can specify clock-enable on output registers. FPGA
Compiler cannot infer I/O registers and latches with clock or latch
enables.
4-8 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
You can control the initial state of output registers.

Perform 2-to-1 multiplexing or 2-input function directly in the output
path of an IOB. You can trade an output register for a 2-input
function or multiplexer. FPGA Compiler cannot infer output drivers
containing 2-input functions or output multiplexers. Additionally,
you must instantiate the OMUX2, ONADN2, ONOR2, and OOR2
primitives. See the “XSI Library Primitives” appendix for more
details.

Using XC5200 IOBs
This section describes XC5200 IOBs.

Using Input Blocks

Select input thresholds globally with TTL/CMOS. Specify an internal
pull-up/pull-down resistor that can optionally attach to an I/O pad.

IOBs can contain no input registers, although you can emulate this
functionality using the latch/flip-flop in the adjacent CLB.
Additionally, CLB registers and latches have clock or latch-enables
and asynchronous reset inputs.

The IOB input path has an optional delay with which you can adjust
input setup and hold times. By default an input register or latch has a
positive setup and negative hold time (when used in conjunction
with a global clock network). Reducing input setup time slightly
increases hold time.

Using Output Blocks

You can select the output driver slew rate. By default the output
driver uses a slow slew rate setting to reduce system noise and
power. A faster slew rate decreases chip-to-out propagation delay.

You can make outputs tristate.

IOBs contain no output registers, although you can emulate this
functionality using the latch or flip-flop in the adjacent CLB.
Additionally, CLB registers and latches have clock or latch-enables
and asynchronous reset inputs.
Xilinx/Synopsys Interface Guide 4-9

Xilinx/Synopsys Interface Guide
Using Bidirectional Mode

Select input thresholds globally with TTL/CMOS. Have an internal
pull-up/pull-down resistor that can optionally attach to an I/O pad.

IOBs contain no input registers, although you can emulate this
functionality using the latch/flip-flop in the adjacent CLB.
Additionally, CLB registers and latches have clock or latch-enables
and asynchronous reset inputs.

The IOB input path has an optional delay with which you can adjust
input setup and hold times. By default the input register or latch has
a positive setup and negative hold time (when used in conjunction
with a global clock network). Reducing input setup time slightly
increases hold time.

You can select the output driver slew rate. By default, the output
driver uses a slow slew rate setting to reduce system noise and
power. A faster slew rate decreases chip-to-out propagation delay.

You can make outputs tristate.

IOBs contain no output registers, although you can emulate this
functionality using the latch or flip-flop in the adjacent CLB.
Additionally, CLB registers and latches have clock or latch-enables
and asynchronous reset inputs.

Assigning Pad Locations
You can specify pad locations in your synthesis script or in a Xilinx
User Constraints File (UCF). To assign pad locations in your
synthesis DC script, include the following command in your script,
replacing pad and pin number with the appropriate values.

set_attribute pad “pad_location” \

–type string “pin number”

Refer to The Programmable Logic Data Book, available on the Xilinx Web
site at http://www.xilinx.com, for the locations and name of the
pins. For more information on the UCF, refer to the Development
System Reference Guide or the Libraries Guide.
4-10 Xilinx Development System

http://www.xilinx.com

Synthesizing Your Design with FPGA Compiler
Implementing 3-State Registered Output
FPGA Compiler infers the use of 3-state output flip-flops, such as
OFDT, under the following two conditions.

• The flip-flop must directly drive the 3-state signal.

• The HDL code of the flip-flop must reside in the same process as
the 3-state HDL code.

The following sections illustrate a flip-flop that does not directly
drive the 3-state signal and one that does directly drive the 3-state
signal.

Example of Not Directly Driving the 3-State Signal

If any logic exists between the flip-flop and the 3-state signal
connected to the output flip-flop, FPGA Compiler does not infer a 3-
state output flip-flop. The following VHDL and Verilog examples
illustrate a flip-flop not directly driving a 3-state output flip-flop.
Figure 4-1 shows a schematic representation.

The three_ex1 VHDL example follows.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity three_ex1 is
 port (BUS_IN, EN, CLK: in STD_LOGIC;
 BUS_OUT: out STD_LOGIC);
end three_ex1;

architecture RTL of three_ex1 is

signal BUS_IN_REG, BUS_OUT_REG: STD_LOGIC;

begin
sync: process (CLK)
 begin
 if (CLK’ event and CLK= ‘1’) then
 BUS_IN_REG <= BUS_IN;
 BUS_OUT_REG <= BUS_IN_REG;
 end if;
Xilinx/Synopsys Interface Guide 4-11

Xilinx/Synopsys Interface Guide
 end process;
BUS_OUT <= BUS_OUT_REG when (EN= ‘0’) else ‘Z’;

end RTL;

The three_ex1 Verilog example follows.

module three_ex1(BUS_IN, EN, CLK, BUS_OUT);
input BUS_IN ;
input EN ;
input CLK ;
output BUS_OUT ;

reg BUS_OUT_REG, BUS_IN_REG, BUS_OUT;

always @(posedge CLK)
begin
 BUS_OUT_REG = BUS_IN_REG ;
 BUS_IN_REG = BUS_IN ;
end
always @(EN or BUS_OUT_REG)
begin
 if (!EN)
 BUS_OUT = BUS_OUT_REG;
 else
 BUS_OUT = 1’bz;
end

endmodule

Figure 4-1 No Output Register Inferred

BUS_OUT

OBUFT_F

BUS_OUT_REG
BUS_IN

EN

X8564

DBUS_IN_REG

BUFG_F

IBUF

Q

T

FDC

C

D

C

QIFD

CLOCK
4-12 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
Example of Directly Driving the 3-State Signal

The HDL code for the flip-flop must reside in the same process as the
3-state HDL code and must directly drive the 3-state output, as
shown in the sync process in the following VHDL and Verilog
examples. If the code meets these two conditions, FPGA Compiler
infers a registered 3-state output, as illustrated by Figure 4-1.

Having the flip-flop and the 3-state signal in separate processes
causes the insertion of additional logic between the flip-flop and the
3-state signal.

The three_ex2 VHDL example follows.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity three_ex2 is
 port (BUS_IN, EN, CLK: in STD_LOGIC;
 BUS_OUT: out STD_LOGIC);
end three_ex2;

architecture RTL of three_ex2 is

signal BUS_IN_REG: STD_LOGIC;

begin
sync: process (CLK, EN)
 begin
 if (CLK’ event and CLK= ‘1’) then
 BUS_IN_REG <= BUS_IN;
 if (EN= ‘0’) then
 BUS_OUT <= BUS_IN_REG;
 else
 BUS_OUT <= ‘Z’;
 end if;
 end if;
 end process;

end RTL;

The three_ex2 Verilog example follows.
Xilinx/Synopsys Interface Guide 4-13

Xilinx/Synopsys Interface Guide
module three_ex2(BUS_IN, EN, CLK, BUS_OUT) ;
input BUS_IN ;
input EN ;
input CLK ;
output BUS_OUT ;

reg BUS_OUT ;
reg BUS_IN_Q, BUS_IN_REG ;

always @(posedge CLK)
begin
 BUS_IN_Q = BUS_IN ;
 BUS_IN_REG = BUS_IN_Q ;
 if (!EN) BUS_OUT = BUS_IN_REG;
 else BUS_OUT = 1’bz;
end

endmodule

Figure 4-2 Output Register Inferred

Inserting Bidirectional I/Os
FPGA Compiler has the ability to insert non-registered bidirectional
ports. Describe the 3-state signal that drives the output buffer in the
same hierarchy level as the input signal, as in the bidi_reg.vhd and
bidi_reg.v examples in the following section.

BUS_OUT

OBUFT

OFDT

BUS_IN

EN

X8559

DBUS_IN_REG

BUS_OUT_TRI_ENABLE

BUFG

QOFD

C

D

C

C

D

QIFD

QIFD

CLOCK
4-14 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
Instantiating a Registered Bidirectional I/O

The top-level design examples bidi_reg.vhd and bidi_reg.v instantiate
a core design, reg4. In these examples, two clock buffers, CLOCK1
and CLOCK2, automatically infer a BUFG buffer. The reset and load
signals, RST and LOADA, automatically infer an IBUF when you run
the Set Port Is Pad and Insert Pads commands. However, FPGA
Compiler cannot automatically infer the OFDT_F (3-state registered
output buffers with a FAST slew rate) cells in bidirectional I/Os.
Therefore, these cells and the IBUF instantiate into the top-level
design.

The bidi_reg.vhd VHDL example follows.

library IEEE;
use IEEE.std_logic_1164.all;

entity bidi_reg is
 port (SIGA: in STD_LOGIC_VECTOR (3 downto 0);
 LOADA, CLOCK1, CLOCK2, RST: in STD_LOGIC);
end bidi_reg;

architecture STRUCTURE of bidi_reg is
 component reg4
 port (INX: in STD_LOGIC_VECTOR (3 downto 0);
 LOAD, CLOCK, RESET: in STD_LOGIC;
 OUTX: buffer STD_LOGIC_VECTOR (3 downto 0));
 end component;

component OFDT_F
 port (D: in STD_LOGIC;
 C: in STD_LOGIC;
 T: in STD_LOGIC;
 O: out STD_LOGIC);
end component;

component IBUF
 port (I: in STD_LOGIC;
 O: out STD_LOGIC);
end component;

signal INA, OUTA: STD_LOGIC_VECTOR (3 downto 0);
Xilinx/Synopsys Interface Guide 4-15

Xilinx/Synopsys Interface Guide
begin
 U5: reg4 port map (INA, LOADA, CLOCK1, RST, OUTA);
 U0: OFDT_F port map (OUTA(0), CLOCK2, LOADA, SIGA(0));
 U1: OFDT_F port map (OUTA(1), CLOCK2, LOADA, SIGA(1));
 U2: OFDT_F port map (OUTA(2), CLOCK2, LOADA, SIGA(2));
 U3: OFDT_F port map (OUTA(3), CLOCK2, LOADA, SIGA(3));
 U4: IBUF port map (SIGA(0), INA(0));
 U6: IBUF port map (SIGA(1), INA(1));
 U7: IBUF port map (SIGA(2), INA(2));
 U8: IBUF port map (SIGA(3), INA(3));
end STRUCTURE;

The bidi_reg.v Verilog example follows.

module bidi_reg (SIGA, LOADA, CLOCK1, CLOCK2, RST) ;

inout [3:0] SIGA ;
input LOADA ;
input CLOCK1 ;
input CLOCK2 ;
input RST ;

wire [3:0] INA, OUTA ;
// Netlist

reg4 U5 (.INPUT(INA), .LD(LOADA), .CLOCK(CLOCK1), .RESET(RST), \

 .OUT(OUTA)) ;
OFDT_F U0 (.D(OUTA[0]), .C(CLOCK2), .T(LOADA), .O(SIGA[0])) ;
OFDT_F U1 (.D(OUTA[1]), .C(CLOCK2), .T(LOADA), .O(SIGA[1])) ;
OFDT_F U2 (.D(OUTA[2]), .C(CLOCK2), .T(LOADA), .O(SIGA[2])) ;
OFDT_F U3 (.D(OUTA[3]), .C(CLOCK2), .T(LOADA), .O(SIGA[3])) ;
IBUF U4 (.I(SIGA[0]), .O(INA[0])) ;
IBUF U6 (.I(SIGA[1]), .O(INA[1])) ;
IBUF U7 (.I(SIGA[2]), .O(INA[2])) ;
IBUF U8 (.I(SIGA[3]), .O(INA[3])) ;

endmodule

The backslash (“\”) character shows a line break required for
formatting purposes.
4-16 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
Compiling Bidirectional I/O

Do not use the Set Port Is Pad command for the instantiated I/O
cells. For example, in the bidi_reg.vhd example, use the following
commands to insert the I/Os for the LOADA, RST, CLOCK1, and
CLOCK2 signals only.

set_port_is_pad {LOADA RST CLOCK1 CLOCK2}

insert_pads

Before compiling the design, you must place a Dont Touch attribute
on any instantiated I/O cells to prevent their alteration, as shown in
the following example.

dont_touch {U0 U1 U2 U3 U6 U7 U8}

The following example shows the script files used to compile
bidi_reg.vhd and bidi_reg.v.
Xilinx/Synopsys Interface Guide 4-17

Xilinx/Synopsys Interface Guide
The script file for bidi_reg.vhd example follows.

/* ===
*/
/* Sample Script for Synopsys to Xilinx Using
*/
/* the FPGA Compiler */
/* Bidirectional Register Example. */
/* ==
*/

/* +++
*/
/* Read in the design */
/* +++ */
/* Set the top-level modules name for the design */

 TOP = bidi_reg
 SUB = reg4

/* Set the Designer and Company name for documentation */

 designer = “XSI Team”
 company = “Xilinx, Inc”

/* Analyze and Elaborate the design file and specify the design file
*/
/* format */

 analyze –format vhdl SUB + “.vhd”
 analyze –format vhdl TOP + “.vhd”
 elaborate TOP

/* Set the current design to the top level */

 current_design TOP

/* Add pads to the design. Make sure the current design is the */
/* top-level module */

 set_port_is_pad {LOADA RST CLOCK1 CLOCK2}
4-18 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
 insert_pads
 dont_touch {U0 U1 U2 U3 U4 U6 U7 U8}

/* +++ */
/* Compile the design */
/* +++ */
/* Set the synthesis design constraints. */

 remove_constraint –all

/* Synthesize and optimize the design */

 compile –map_effort med

/* +++ */
/* Save the design */
/* +++
*/
/* Write the design report file */

 report_fpga > TOP + “.fpga”
 report_timing > TOP + “.timing”

/* Write out the design to a DB file */

 write –format db –hierarchy –output TOP + “.db”

/* Replace CLBs and IOBs with gates */

 replace_fpga

/* Set the part type */

 set_attribute TOP “part” –type string “4013epq208-3”

/* Save design in XNF format as <design>.sxnf */

 write –format xnf –hierarchy –output TOP + “.sxnf”
Xilinx/Synopsys Interface Guide 4-19

Xilinx/Synopsys Interface Guide
/* Exit the Compiler. */

 exit

The script file for bidi_reg.v example follows.

/* ==
*/
/* Sample Script for Synopsys to Xilinx Using
*/
/* the FPGA Compiler */
/* Bidirectional Register Example. */
/* == */

/* ++ */
/* Read in the design */
/* +++
*/
/* Set the top-level modules name for the design
*/

 TOP = bidi_reg
 SUB = reg4

/* Set the Designer and Company name for documentation. */

 designer = “XSI Team”
 company = “Xilinx, Inc”

/* Analyze and Elaborate the design file and specify the
*/
/* design file format */

 analyze –format verilog SUB + “.v”
 analyze –format verilog TOP + “.v”
 elaborate TOP

/* Set the current design to the top level */

 current_design TOP
4-20 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
/* Add pads to the design. Make sure the current design is the
*/
/* top-level module. */

 set_port_is_pad {LOADA RST CLOCK1 CLOCK2}
 insert_pads
 dont_touch {U0 U1 U2 U3 U4 U6 U7 U8}

/* +++ */
/* Compile the design */
/* +++*/
/* Set the synthesis design constraints. */

 remove_constraint –all

/* Synthesize and optimize the design */

 compile –map_effort med

/* +++
*/
/* Save the design */
/* +++
*/
/* Write the design report file */

 report_fpga > TOP + “.fpga”
 report_timing > TOP + “.timing”

/* Write out the design to a DB file

 write –format db –hierarchy –output TOP + “.db”

/* Replace CLBs and IOBs with gates */

 replace_fpga

/* Set the part type */

 set_attribute TOP “part” –type string “4013epq208-3”
Xilinx/Synopsys Interface Guide 4-21

Xilinx/Synopsys Interface Guide
/* Save design in XNF format as <design>.sxnf */

 write –format xnf –hierarchy –output TOP + “.sxnf”

/* Exit the Compiler. */

 exit

Using Unbonded IOBs
In some package and device pairs, not all pads bond to a package pin.
You can use these unbonded IOBs and the flip-flops inside them in
your design by instantiating them in the HDL code. However,
Synopsys cannot infer unbonded primitives.

A “_U” suffix indicates unbounded primitives. Refer to the “XSI
Library Primitives” appendix for a complete listing of all unbonded
cells.

Adding Pull-Up and Pull-Down Resistors
You can apply pull-up and pull-down resistors to chip-level I/O
ports and you can use them internally. Use the following command
to attach pull-up or pull-down resistors to I/O ports before you issue
the Insert Pads command.

set_pad_type {–pullup | –pulldown} port_name

You can only instantiate internal pull-up and pull-down resistors.
The following table shows which devices require pull-up/pull-down
resistors.

Refer to the “XSI Library Primitives” appendix for a listing of all cells
and their pin names for instantiation.

Table 4-2 Instantiating Pull-up/Pull-down Resistors

XC3000A/L XC4000E/L
XC4000EX/
XL/XLA/XV

XC5200
Virtex/E/-II
Spartan-II

Spartan/XL

Pull-up Pull-up/
Pull-down

Pull-up/
Pull-down

Pull-up/
Pull-down

Pull-up/
Pull-down

Pull-up/
Pull-down
4-22 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
See the “Configuring IOBs” section in this chapter for more
information on pull-up and pull-down resistors for a specific device
family.

Removing the Default Input Delay
The input flip-flops and latches have a default delay preceding the
data to the input flip-flop or latch. This delay prevents any possible
hold-time violations if you have a clock signal that also comes into
the device and clocks the input flip-flop or latch.

You can remove this delay by instantiating a cell that includes the
NODELAY attribute if you need additional input speed and have no
possibility of a hold-time violation. The “XSI Library Primitives”
appendix lists all cells that include a NODELAY attribute. Input flip-
flops or latches with an “_F” suffix have a NODELAY attribute
assigned to the cell.

Initializing the IOB Flip-Flop to Preset
You can initialize IOB flip-flops to either Clear or Preset in XC3000A/
L, XC4000, Spartan and Virtex FPGAs. The default is Clear. To
initialize an I/O flip-flop or latch to Preset, use the following
command to attach an INIT=S attribute to the flip-flop.

set_attribute “register_name” xnf_init \

 “S” type string

Replace register_name with the name of the I/O flip-flop.

You can instantiate I/O cells with the INIT=S attribute already
assigned to them. Refer to the “XSI Library Primitives” appendix for
a list of all cells and their pin names for instantiation.

Inserting Clock Buffers
For designs with global signals, use global clock buffers to take
advantage of the low-skew, high-drive capabilities of the primary
global clock buffer (BUFGP) and the secondary global clock buffer
(BUFGS). When you use the Insert Pads command, FPGA
Compiler automatically inserts a generic global clock buffer (BUFG)
whenever an input signal drives a clock signal. The Xilinx
implementation software automatically selects the clock buffer
Xilinx/Synopsys Interface Guide 4-23

Xilinx/Synopsys Interface Guide
appropriate for your specified design constraints. If you want to use a
specific global buffer, you must instantiate it.

You can instantiate an architecture-specific buffer if you understand
the architecture and want to specify how to use the resources. Each
XC4000E/L device contains four primary and four secondary global
buffers that share the same routing resources. XC4000EX/XL/XLA/
XV devices have eight global buffers; each buffer has its own routing
resources. For all architectures, use the BUFG for up to four
low-skew, high-fanout clock signals.

You can use BUFGS to buffer high-fanout, low-skew signals sourced
from inside the FPGA. To access the secondary global clock buffer for
an internal signal, instantiate the BUFGS_F cell.

Additionally, you can use BUFGP to distribute signals applied to the
FPGA from an external source. A primary global buffer can globally
distribute internal signals, however, the signals must drive an
external pin.

Controlling Clock Buffer Insertion
Because FPGA Compiler assigns a BUFG to any input signal that
drives a clock signal, your design can contain too many clock buffers.
The following examples illustrate how to control clock buffer
insertion.

The following two examples also illustrate a gated clock using VHDL
and Verilog HDL, respectively. By default, Synopsys assigns the
signals IN1, IN2, IN3, IN4, and CLK to a BUFG because they
ultimately connect to a clock pin.

The gate_clock VHDL example follows.

entity gate_clock is
 port (IN1, IN2, IN3, IN4, IN5, CLK, LOAD: in BIT;
 OUT1: buffer BIT);
end gate_clock

architecture RTL of gate_clock is
signal GATECLK: BIT;
begin
GATECLK <= not((((IN1 and IN2) and IN3) and IN4) and CLK);
 process (GATECLK)
 begin
4-24 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
 if (GATECLK’ event and GATECLK= ‘1’) then
 if (LOAD= ‘1’) then
 OUT1 <= IN5;
 else
 OUT1 <= OUT1;
 end if;
 end if;
 end process;
end RTL;

The gate_clock Verilog HDL example follows.

module gate_clock(IN1, IN2, IN3, IN4, IN5, CLK, LOAD, OUT1) ;
input IN1 ;
input IN2 ;
input IN3 ;
input IN4 ;
input IN5 ;
input CLK ;
input LOAD ;
output OUT1;

reg OUT1;

wire GATECLK ;

assign GATECLK = ~(IN1 & IN2 & IN3 & IN4 & CLK) ;

always @(posedge GATECLK)
begin
 if (LOAD == 1’b1)
 OUT1 = IN5 ;
end

endmodule

FPGA Compiler identifies clock ports by tracing back from the clock
pins on the flip-flops. In the following figure, the inputs to the 5-input
NAND gate all have a BUFG inserted.
Xilinx/Synopsys Interface Guide 4-25

Xilinx/Synopsys Interface Guide
Figure 4-3 Gated Clock After Pad Insertion

If your design contains gated clocks or has more than four input pins
that drive clock pins, disable the input pins to stop insertion of a
BUFG. Refer to the “Preventing the Insertion of Clock Buffers”
section in this chapter.

Determining the Number of Clock Buffers
To determine how many clock buffers FPGA Compiler inserted in
your design, use the Report FPGA command after using the Insert
Pads or Compile command. Enter the Report FPGA command as
follows.

report_fpga

The following example shows the output produced when running
the Report FPGA command on the previous gated clock design.

Although clock pads are IOBs, this report lists them separately.

Report : fpga
Design : gate_clock
Version: v1999.10
Date : Fri Feb 25 14:43:20 2000

Xilinx FPGA Design Statistics

OUT1

OBUF_S

IBUF
IN5

LOAD

IN2

IN3

IN4

CLK

IN1

IBUF

BUFG_F

BUFG_F

BUFG_F

BUFG_F

BUFG_F

NAND4
NAND2

INV

X4889

CE Q

FDCE

C

D

4-26 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
FG Function Generators 1
H Function Generators 1
Number of CLB cells: 1
Number of Hard Macros and
 Other Cells: 0
Number of CLBs in
 Other Cells: 0
Total Number of CLBs: 1

Number of Ports: 8
Number of Clock Pads: 5
Number of IOBs: 3

Number of Flip Flops: 1
Number of 3-State Buffers: 0

Total Number of Cells: 9

Preventing the Insertion of Clock Buffers
To prevent FPGA Compiler from inserting the BUFG primitive,
specify the Set Pad Type command with the following options before
inserting the pads.

set_pad_type –no_clock {clock_ports}

Replace clock_ports with the name of the input pins where you do not
want a clock buffer inserted. For the gated clock VHDL and Verilog
examples, enter the following.

set_pad_type –no_clock {IN1, IN2, IN3, IN4, CLK}

Then follow the normal procedures to set the ports as pads and insert
the pads as follows.

set_port_is_pad “*”

insert_pads

Using Memory
You can use on-chip RAM for status registers, index registers, counter
storage, distributed shift registers, LIFO stacks, and FIFO buffers.
Xilinx/Synopsys Interface Guide 4-27

Xilinx/Synopsys Interface Guide
The XC4000 family can efficiently implement RAM and ROM using
CLB function generators. Implement a ROM by describing it
behaviorally as shown in the “Implementing XC4000 RAMs” section.
Alternatively, the XSI XC4000 libraries contain 16 x 1 (16 deep x 1
wide) and 32 x 1 (32 deep x 1 wide) RAM and ROM primitives and 16
x 1 dual-port RAM you can instantiate.

You can also implement memory using the LogiBLOX program.
LogiBLOX can create RAM and ROM between 1–32 bits wide and 2–
256 bits deep. Using LogiBLOX to add RAM or ROM to your design
provides an efficient implementation of your memory in addition to a
simulation model for Register Transfer Level (RTL) simulation.

For VHDL and Verilog examples of instantiating RAM in your
designs using LogiBLOX, refer to the “Using CORE Generator and
LogiBLOX” chapter. Also, refer to the LogiBLOX Guide for more
information on LogiBLOX.

Implementing XC4000 RAMs
Implement RAMs in your HDL with the following methods.

• Instantiate 16 x 1 and 32 x 1 RAMs from the XSI primitive
libraries.

• Instantiate any size RAM using LogiBLOX.

Behaviorally describing RAMs in VHDL creates combinatorial loops
during compiling.
4-28 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
Implementing XC4000 ROMs
Implement ROM in your HDL with the following methods.

• Describe ROM behaviorally.

• Instantiate 16 x 1 and 32 x 1 ROM primitives.

• Instantiate any size ROM using LogiBLOX.

To instantiate the ROM16 x 1 and ROM32 x 1 primitives into your
design, connect the input and output pins to the appropriate signals.
Use the DC Shell Set Attribute command to define the ROM value.

set_attribute “instance_name” \

 xnf_init “rom_value” –type string

For example, if you gave the 16 x 1 ROM an instance name of “U1”
and a hex value of F5A3, you can use the DC Shell Set Attribute
command to set the ROM value as follows.

set_attribute “U1” xnf_init “F5A3” –type string

Compile calculates ROM content values by considering the 16 x 1 or
32 x 1 ROMs 16 or 32 1-bit locations as bits in a 16 or 32 bit word. For
example, for a 32 x 1 ROM, specify an 8-digit hexadecimal (hex) value
in place of the 4-digit hex value. See Figure 4-4.

Refer to the Application Note “Using Select-RAM Memory in XC4000
Series FPGAs” for more information.

Figure 4-4 Implementing ROMs

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ADDR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

ROM16X1

XNF_INIT
0000000011111111

=00FF
H

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

ROM16X1

XNF_INIT
0000111100001111

=0F0F
H

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

ROM16X1

XNF_INIT
0011001100110011

=3333
H

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

ROM16X1

XNF_INIT
0101010101010101

=5555
H

MSB

LSB

15

14

13

12

11

10

9

8

ADDR

15

14

13

12

11

10

9

8

Value

7

6

5

4

3

2

1

0

ADDR

7

6

5

4

3

2

1

0

Value

A[3:0] O[3:0]

ROM16X4

X8001
Xilinx/Synopsys Interface Guide 4-29

Xilinx/Synopsys Interface Guide
The 16 x 4 ROM VHDL and 16 x 4 ROM Verilog HDL examples
illustrate how to define a ROM in VHDL and Verilog HDL,
respectively. FPGA Compiler creates ROMs from optimized random
logic gates implemented using function generators.

The 16 x 4 ROM RTL VHDL example follows.

-- RTL 16x4 ROM Example --
-- rom16x4_4k.vhd --

entity rom16x4_4k is
 port (ADDR: in INTEGER range 0 to 15;
 DATA: out BIT_VECTOR (3 downto 0));
end rom16x4_4k;

architecture RTL of rom16x4_4k is

 subtype ROM_WORD is BIT_VECTOR (3 downto 0);
 type ROM_TABLE is array (0 to 15) of ROM_WORD;
 constant ROM: ROM_TABLE := ROM_TABLE’(
 ROM_WORD’(“0000”),
 ROM_WORD’(“0001”),
 ROM_WORD’(“0010”),
 ROM_WORD’(“0100”),
 ROM_WORD’(“1000”),
 ROM_WORD’(“1000”),
 ROM_WORD’(“1100”),
 ROM_WORD’(“1010”),
 ROM_WORD’(“1001”),
 ROM_WORD’(“1001”),
 ROM_WORD’(“1010”),
 ROM_WORD’(“1100”),
 ROM_WORD’(“1001”),
 ROM_WORD’(“1001”),
 ROM_WORD’(“1101”),
 ROM_WORD’(“1111”),
begin
 DATA <= ROM(ADDR); -- Read from the ROM
end RTL;
4-30 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
The 16 x 4 ROM RTL Verilog example follows.

module rom16x4_4k(ADDR, DATA) ;
input [3:0] ADDR ;
output [3:0] DATA ;

reg [3:0] DATA ;

always @(ADDR)
begin
 case (ADDR)
 4’b0000 : DATA = 4’b0000 ;
 4’b0001 : DATA = 4’b0001 ;
 4’b0010 : DATA = 4’b0010 ;
 4’b0011 : DATA = 4’b0100 ;
 4’b0100 : DATA = 4’b1000 ;
 4’b0101 : DATA = 4’b1000 ;
 4’b0110 : DATA = 4’b1100 ;
 4’b0111 : DATA = 4’b1010 ;
 4’b1000 : DATA = 4’b1001 ;
 4’b1001 : DATA = 4’b1001 ;
 4’b1010 : DATA = 4’b1010 ;
 4’b1011 : DATA = 4’b1100 ;
 4’b1100 : DATA = 4’b1001 ;
 4’b1101 : DATA = 4’b1001 ;
 4’b1110 : DATA = 4’b1101 ;
 4’b1111 : DATA = 4’b1111 ;
 endcase
end

endmodule

Implementing RAM In Virtex Devices
The INIT values for RAM32X 1 and RAM32X1_1 map differently
from 4000EX/XL/XV and SpartanXL.

Virtex maps the lower INIT values to G and upper INIT values to F
for both RAM32X. 4000EX/XL/XV and SpartanXL map those lower
INIT values to F and upper INIT values to G.
Xilinx/Synopsys Interface Guide 4-31

Xilinx/Synopsys Interface Guide
Performing Boundary Scan
The XC4000, XC5200, Spartan, and Virtex FPGA devices contain
boundary-scan facilities compatible with IEEE Standard 1149.1. Refer
to the Development System Reference Guide for a detailed description of
the XC4000 and XC5200 boundary scan capabilities.

Xilinx parts support external (I/O and interconnect) testing and have
limited support for internal self-test.

Full access to the built-in boundary-scan logic exists between power-
up and the start of configuration. Optionally, specify boundary scan
in the design to access built-in logic after configuration. During
configuration, you can use the Sample/Preload and Bypass
instructions only.

To make boundary-scan logic active in a configured FPGA device,
include the boundary-scan cell and its related I/O cells in the
configuration data of your design. For HDL designs, you must
instantiate the boundary-scan symbol, BSCAN, and the boundary
scan I/O pins, TDI, TMS, TCK, and TDO.

Warning: Do not use the following FPGA Compiler boundary scan
commands because they do not work with FPGA devices.

set jtag implementation

set jtag instruction

set jtag port

The following figure illustrates the BSCAN symbol instantiated into
an HDL design.
4-32 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
Figure 4-5 Boundary Scan Symbol Instantiation in XC4000
Family

The following examples show the code used to instantiate the cells in
the previous figure. Additionally, the examples include code samples
for the XC5200 family. The VHDL code for instantiating BSCAN in
the XC5200 family follows.

Note: You must apply a Dont Touch attribute on all of the following
instantiated components.

entity example is
 port (a, b: in bit; c: out bit);
end example;

architecture xilinx of example is
component bscan
 port(tdi, tms, tck: in bit; tdo: out bit);
end component;

component tck
 port (i : out bit);
end component;

component tdi
 port (i : out bit);
end component;

TDI

TMS

TCK

TDO1

TDO2

TDO

DRCK

IDLE

SEL1

SEL2

TDI

TMS

TCK

TDO

BSCAN

From
User Logic

To User
Logic

X8560
Xilinx/Synopsys Interface Guide 4-33

Xilinx/Synopsys Interface Guide
component tms
 port (i : out bit);
end component;

component tdo
 port (o : in bit);
end component;

component ibuf
 port (i: in bit; o: out bit);
end component;

component obuf
 port(i: in bit; o: out bit);
end component;

signal tck_net, tck_net_in : bit;
signal tdi_net, tdi_net_in : bit;
signal tms_net, tms_net_in : bit;
signal tdo_net, tdo_net_out : bit;

begin
u1: bscan port map (tdi=>tdi_net, tms=>tms_net,

tck=>tck_net, tdo=>tdo_net_out);
u2: ibuf port map(i=>tck_net_in, o=>tck_net);
u3: ibuf port map(i=>tdi_net_in, o=>tdi_net);
u4: ibuf port map(i=>tms_net_in, o=>tms_net);
u5: obuf port map(i=>tdo_net_out, o=>tdo_net);
u6: tck port map (i=>tck_net_in);
u7: tdi port map (i=>tdi_net_in);
u8: tms port map (i=>tms_net_in);
u9: tdo port map (o=>tdo_net);

process(b)
begin
if(b’event and b=’1’) then
 c <= a;
end if;
end process;

end xilinx;
4-34 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
The following shows the Verilog code for instantiating BSCAN in the
XC5200 family.

module example (a,b,c);
input a, b;
output c;
reg c;
wire tck_net, tck_net_in;
wire tdi_net, tdi_net_in;
wire tms_net, tms_net_in;
wire tdo_net, tdo_net_out;

BSCAN u1 (.TDI(tdi_net), .TMS(tms_net),
.TCK(tck_net), .TDO(tdo_net));

TDI u2 (.I(tdi_net_in));
TMS u3 (.I(tms_net_in));
TCK u4 (.I(tck_net_in));
TDO u5 (.O(tdo_net_out));

IBUF u6 (.I(tdi_net_in), .O(tdi_net));
IBUF u7 (.I(tms_net_in), .O(tms_net));
IBUF u8 (.I(tck_net_in), .O(tck_net));

OBUF u9 (.I(tdo_net), .O(tdo_net_out));

always@(posedge b)
 c<=a;
endmodule

The Verilog code for instantiating BSCAN in XC4000/XC4000E
appears in the following example. Note the use of upper and lower
case in the sample.

module example (a,b,c);
input a, b;
output c;
reg c;
wire tck_net;
wire tdi_net;
wire tms_net;
wire tdo_net;
BSCAN u1 (.TDI(tdi_net), .TMS(tms_net),

.TCK(tck_net), .TDO(tdo_net));
Xilinx/Synopsys Interface Guide 4-35

Xilinx/Synopsys Interface Guide
TDI u2 (.I(tdi_net));
TMS u3 (.I(tms_net));
TCK u4 (.I(tck_net));
TDO u5 (.O(tdo_net));
always@(posedge b)
 c<=a;
endmodule

The VHDL code for instantiating BSCAN in XC4000/XC4000E
example follows.

entity example is
 port (a, b: in bit; c: out bit);
end example;

architecture xilinx of example is
component bscan
 port(tdi, tms, tck: in bit; tdo: out bit);
end component;

component tck
 port (i : out bit);
end component;

component tdi
 port (i : out bit);
end component;

component tms
 port (i : out bit);
end component;

component tdo
 port (o : in bit);
end component;

signal tck_net : bit;
signal tdi_net : bit;
signal tms_net : bit;
signal tdo_net : bit;

begin
4-36 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
u1: bscan port map (tdi=>tdi_net, tms=>tms_net,
tck=>tck_net, tdo=>tdo_net);

u2: tck port map (i=>tck_net);
u3: tdi port map (i=>tdi_net);
u4: tms port map (i=>tms_net);
u5: tdo port map (o=>tdo_net);

process(b)
begin
if(b’event and b=’1’) then
 c <= a;
end if;
end process;

end xilinx;

Using the Global Set/Reset Net
All Xilinx FPGA devices have a dedicated Global Set/Reset (GSR) net
that initializes all CLBs and IOB flip-flops. The function of the GSR
net is separate from and overrides the individual flip-flop or latch
Preset (PRE) and Direct Clear (CLR) pins.

If your design includes a signal used to globally initialize all the flip-
flops or latches, use the GSR net to increase design performance by
reducing the overall routing congestion. The GSR net, a dedicated
routing resource, exists outside of the general purpose interconnect.
You can disconnect your design’s global initialization signal from the
flip-flops and latches in your design and implement this function
using the device’s dedicated GSR net.
Xilinx/Synopsys Interface Guide 4-37

Xilinx/Synopsys Interface Guide
Figure 4-6 Emulation of Power-on State “1” with Inverters
(XC3000A/L, XC3100A, and XC5200)

Accessing Global Set/Reset Using STARTBUF
Access an FPGA’s GSR signal by attaching a net to the input pin on
the STARTBUF cell. Asserting the net attached to the STARTBUF
block’s GSR pin also asserts FPGA Global Set/Reset causing every
flip-flop and latch in the device to assume its power-on state.

You must instantiate the STARTBUF block.

The GSR net does not appear in the pre-placed and routed netlist.
Asserting the GSR signal to High (the default) sets every flip-flop and
latch to the same state it had at the end of configuration, illustrated in
the following tables. When you simulate the placed and routed
design, the simulator’s translation program correctly inserts the
functionality.

Any signal can drive the STARTUP block’s GSR pin, however, do not
use flip-flop or latch output signals.

CLK

QD

CLR

PRE

QD

C

X8003
4-38 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
Synthesizing/Simulating for VHDL Global Set/Reset
Emulation

VHDL requires a testbench to control all signal ports. You can
instantiate certain VHDL-specific components, explained in the
following sections, in the RTL and post-synthesis VHDL description
to allow the simulation of the global signals for global set/reset and
global 3-state.

NGD2VHDL creates a port in your back-annotated design entity for
stimulating the global set/reset or 3-state enable signals. This port
does not actually exist on the configured part.

When running NGD2VHDL, you do not need to use the –gp switch
to create an external port if you instantiate a STARTUP block in your
implemented design. The port is already identified and connected to
the global set/reset or 3-state enable signal. If you do not use the –gp
option or a STARTBUF block, you must use special components, as
described in the following sections.

Using STARTBUF in VHDL

STARTBUF replaces STARTUP. With STARTBUF you can
functionally simulate the GSR/GR net in both function and timing
simulation. By connecting the input pin of the STARTBUF to a top-
level port and using STARTBUF as the source for all asynchronous
set/reset signals in a design, Xilinx software can automatically
optimize the design to use the GSR/GR. Because you can use
STARTBUF in functional simulation (unlike STARTUP), when you
use STARTBUF you can map to the GSR/GR in a device. You can still
use STARTUP, but it does not always provide correct GSR/GR in
HDL flows.

The STARTBUF component passes a reset or 3-state signal in the
same way that a buffer allows simulation to proceed and also
instantiates the STARTUP block for implementation. One version of
STARTBUF works for all devices, however, the XC5200 and the
XC4000 STARTUP blocks have different pin names. Implementation
with the correct STARTUP block occurs automatically. The following
shows an instantiation example of the STARTBUF component.

U1: STARTBUF port map (GSRIN => DEV_GSR_PORT, GTSIN
=>DEV_GTS_PORT, CLKIN => ‘0’, GSROUT => GSR_NET,
Xilinx/Synopsys Interface Guide 4-39

Xilinx/Synopsys Interface Guide
GTSOUT => GTS_NET, Q2OUT => open, Q3OUT => open,
Q1Q4OUT => open, DONEINOUT => open):

You can use one or both of the input ports (GSRIN and GTSIN) of the
STARTBUF component and the associated output ports (GSROUT
and GTSOUT). You can use pins left open to pass configuration
instructions to the implementation tools by connecting the
appropriate signal to the port instead of leaving it open.

Instantiating a STARTUP Block in VHDL

The STARTUP block traditionally instantiates to identify the GR,
PRLD, or GSR signals for implementation. However, simulation can
occur only when the net attached to the GSR or GTS goes off the chip
because the STARTUP block does not have a simulation model. You
can use the new components described below to simulate global set/
reset or 3-state nets whether or not the signal goes off the chip.

Setting Direct Preset or Direct Clear
You can program each flip-flop and latch as either Preset or Clear but
not both. The device’s automatic assertion of its own GSR net
asynchronously sets flip-flops and latches as either Preset or Cleared
upon completion of configuration. Use individual flip-flop and latch
Preset (PRE) and Clear (CLR) pins to set them as preset or cleared.

The power-on state of a register or latch and the selection of PRE or
CLR pin must match. For example, a register with a CLR pin assumes
the value of 0 on power-up. Alternatively, a register with a power-up
state of 0 can only have a CLR pin.

To get an asynchronous set or asynchronous reset flip-flop, describe
the behavior in the RTL code. If you only want to describe the power-
on state of an flip-flop, connect the asynchronous set or asynchronous
reset signal of the RTL flip-flop to the ROCBUF.

Increasing Performance with the GSR Net
Many designs have a net that initializes the majority of the design’s
flip-flops. If this signal initializes all the design’s flip-flops, you can
use the GSR net.
4-40 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
To have your HDL simulation match that of the resulting design,
modify your HDL code so that asserting the GSR signal presets or
clears every flip-flop and latch. You must ensure that this signal does
not get routed around general purpose interconnect but instead uses
the dedicated global routing resource. Disconnect this signal with the
Disconnect Net command after you compile your design but before
you save it.

Alternatively, the Xilinx tools move this signal on to the device’s
dedicated GSR routing network when the following conditions
apply.

• The asynchronous Preset or Clear pin of every register in your
design that has this pin connects to the same net.

• That net connects to the GSR pin of the STARTUP block.

• You use STARTBUF (see the “Using the Global Set/Reset Net”
section).

The following figure illustrates this flow.

Figure 4-7 Increasing Performance with GSR Net

CLK

QD

CLK

QD

CLK

QD

IBUF

CLK

CLR CLR

QD

CLK

QD QD FDC

FDC FDP FDC

PRE

IBUF
PORT
RESET

PORT
RESET

RESET
NET

STARTUP

GSR

CLK

STARTUP

GSR

X8002
Xilinx/Synopsys Interface Guide 4-41

Xilinx/Synopsys Interface Guide
The following VHDL and Verilog examples illustrate a design that
uses the GSR net. The design contains two flip-flops, one reset and
one set when the signal RST is High.

The following example shows VHDL code before using the GSR net.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity gsr_ex is
 port (CLK,RST : in STD_LOGIC;
 ST: buffer std_logic_vector (1 downto 0));
end gsr_ex;

architecture EXAMPLE of gsr_ex is

begin
 process (CLK, RST)
 begin
 if RST= ‘1’ then
 ST <= “01”;
 elsif (CLK’event and CLK= ‘1’) then
 ST <= ST + “01”;
 end if;
 end process;

end EXAMPLE;

The following example shows Verilog code before using the GSR net.

module gsr_ex (CLK, RST, ST) ;
input CLK ;
input RST ;
output [1:0] ST;

reg [1:0] ST;

always @(posedge CLK or posedge RST)
begin
 if (RST == 1’b1)
 ST = 2’b01 ;
 else
4-42 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
 ST = ST + 1’b1 ;
end

endmodule

Add the reset signal in your design to the GSR pin of the STARTUP
block. This makes the Xilinx tools move this signal on to the
dedicated routing network if all other conditions are satisfied.

To utilize the GSR net, add the STARTUP block to your design by
instantiation, illustrated in the following examples. The following
example shows VHDL code using the GSR net.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity top_gsr is
 port (CLK,RST : in STD_LOGIC;
 ST: buffer STD_LOGIC_VECTOR (1 downto 0));
end top_gsr;

architecture EXAMPLE of top_gsr is
 component STARTUP
 port (GSR: in STD_LOGIC);
 end component;

 component gsr_ex
 port (CLK,RST: in STD_LOGIC;
 ST : buffer STD_LOGIC_VECTOR (1 downto 0));
 end component;

 begin

 U1 : STARTUP port map (GSR=>RST);
 U2 : gsr_ex port map (CLK=>CLK,RST=>RST,ST=>ST);
end EXAMPLE;

The following example shows Verilog code using the GSR net.

module top_gsr (CLK, RST, ST) ;
input CLK ;
input RST ;
Xilinx/Synopsys Interface Guide 4-43

Xilinx/Synopsys Interface Guide
output [1:0] ST;

STARTUP U1 (.GSR(RST)) ;
gsr_ex U2 (.CLK(CLK), .RST(RST), .ST(ST)) ;

endmodule

Because the STARTUP block does not use any outputs in this
example, FPGA Compiler removes the STARTUP block unless you
specify the Dont Touch attribute for U1. You must issue this
command before inserting the I/O pads.

Using the Xilinx DesignWare Library
The XC4000, XC5200, Spartan, and Virtex DesignWare libraries
describe adders, subtracters, comparators, incrementers, and
decrementers that map to the fast carry logic structures available in
the target architecture.

Improving Design Area and Speed
For XC4000, XC5200, Spartan, and Virtex designs using VHDL or
Verilog arithmetic operators, take advantage of the Xilinx
DesignWare (XDW) library. This library contains the arithmetic
functions that utilize the XC4000, XC5200, Spartan, and Virtex
dedicated carry logic to improve both the area and speed of the
design.

The following table lists the VHDL and Verilog arithmetic operators
and the XDW modules to which they map.

Table 4-3 Arithmetic Operators for XDW Modules

Operators XDW Module

+ ADD_SUB

– ADD_SUB

<, <=, >, >= COMPARE

+ 1 INC_DEC

– 1 INC_DEC
4-44 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
The XDW library contains twos complement and unsigned binary
modules of widths 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, and 48.
Additionally, you can use available 64-bit widths for the COMPARE
module only. Operands falling between bit ranges map to the next
higher bit-width module. The Xilinx design implementation tools
remove any unused logic when implementing a smaller bit width or
when adding, subtracting, or comparing with a constant value.

The XDW library contains area and speed information for its
modules. This information allows FPGA Compiler and Design
Compiler to compare XDW implementations of arithmetic functions
to other DesignWare libraries available at compile time. XSI then
selects the implementation that best meets your timing and area
constraints.

XC4000, Spartan and Virtex devices accommodate two bits of
arithmetic function per CLB, and XC5200 devices accommodate four
bits per CLB. XC4000, Spartan, and Virtex devices implement
arithmetic functions in one vertical column of CLBs. The carry
propagation direction is upward in XC4000EX/XL/XLA/XV,
Spartan, and Virtex devices and up or down in XC4000E/L devices.
XC5200 devices implement arithmetic functions in two vertical
columns of CLBs and have an upward carry propagation direction.

The Xilinx place and route tools determine the best placement for the
CLB columns in the target device and break or wrap a column if
constrained by the physical boundaries of the device. However, as a
general rule, choose a target device that can accommodate the
“tallest” arithmetic structure in your design without altering the
shape of this structure. Selecting the correct device makes it easier to
place and route predominately data path-based designs.

Creating Timing Specifications
The timing constraints issued to Synopsys to control the synthesis
process pass through to the design implementation tools to control
the place and route process. To get the best possible results, make
these constraints realistic and achievable.

During the synthesis of your design, area and timing constraints can
impact implementation almost as much as changes made to your
HDL code. Carefully apply area and timing constraints. During the
implementation of your design, timing constraints have a direct
impact on run time and performance verification. For example, the
Xilinx/Synopsys Interface Guide 4-45

Xilinx/Synopsys Interface Guide
run time required to find a place and route solution to support the 40
MHz operation of a design takes longer than that required to find a 4
MHz solution. Meaningful and detailed timing constraints also allow
the design implementation tools to report the status of your design’s
timing in terms of your timing goals.

The DC2NCF program converts timing constraints applied to your
design in the Synopsys environment to equivalent constraints that
control the Xilinx place and route process. Automatic translation of
these constraints offers an advantage because you do not need to
apply the constraints twice (once for Synopsys and again for Xilinx).
The constraints used by Xilinx are equivalent to those applied with
Synopsys.

DC2NCF supports translation of the following Synopsys timing
constraints.

• create_clock

• set_input_delay

• set_output_delay

• set_max_delay

• set_false_path

If you have additional Synopsys timing constraint commands in your
Synopsys script file, DC2NCF issues a warning and does not translate
them.
4-46 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
DC2NCF translates a Synopsys DC file to a Xilinx Netlist Constraints
File (NCF). The DC file is a Synopsys script file containing the
constraints that have been applied to your design. EDIF2NGD or
XNF2NGD reads the output NCF file. The constraints in the NCF file
become part of the NGO file produced by EDIF2NGD or XNF2NGD.
The following example shows how to translate a DC file to an NCF
file.

dc2ncf dc_file[.dc] [–o ncf_file[.ncf]] [–w |
–wildcard]

Note Braces “{“, should not be used in the DC2NCF command line
syntax.

When you specify the –w option, DC2NCF creates an NCF file with
wildcards. The –w option can significantly increase run time. An
NCF backup file without wildcards saves as ncf_file.ncf_orig. To use
the original file without wildcards, rename ncf_file.ncf_orig to
ncf_file.ncf.

Following the DC2NCF Design Flow
Before running DC2NCF, apply your timing constraints to your
design and then compile it. Also, when using FPGA Compiler for
XC4000 designs, run the Replace FPGA command, then create a
netlist and a corresponding script file that contains the constraints.

DC2NCF can incorrectly translate the timing constraint commands in
user-created script files. Always generate script files as described in
the following sections using either DC Shell or Design Analyzer.

Creating the Netlist and Script File (Design Compiler)

You can use DC Shell or Design Analyzer to create your design’s
netlist and the Synopsys constraints script file.

From the DC Shell command line, perform the following steps.

1. Flatten your design’s hierarchy by entering the following.

ungroup –all –flatten

2. Enter the following to create the netlist.

write –format edif –hierarchy –output \

 design_name.sedif
Xilinx/Synopsys Interface Guide 4-47

Xilinx/Synopsys Interface Guide
The “\” indicates you issue this command in one line, not two as
presented here.

3. To write your design’s constraints as a Synopsys script file, enter
the following.

write_script > design_name.dc

From Design Analyzer, perform the following steps.

1. Select File → Save As

The Save File dialog box appears.

2. Select the EDIF option in the File Format field. Change the
extension to .sedif in the File Name field.

3. Turn off the Save All Designs in Hierarchy option.

4. Select OK.

5. Select Setup → Command Window to get the command window.

6. At the command window prompt, enter the following.

ungroup –all –flatten

7. To write your design’s constraints as a Synopsys script file, select
the design setup function, File →Save Info → Design
Setup.

The Save Design Setup dialog box appears.

8. Select OK.

Creating the Netlist and Script File (FPGA Compiler)

Before you create the netlist or the constraints file, you must flatten
any hierarchy in your design. Flattening your design removes
hierarchy information from the Synopsys internal database.
However, the hierarchical net names and instance names assigned to
objects during compilation are retained and written to the output
netlist. The Xilinx software reconstructs most of your design’s
hierarchy from the information contained in the instance names and
net names.

Use the DC Shell or Design Analyzer to flatten your design, create
your design’s netlist, and create the Synopsys constraints script file.
4-48 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
To flatten your design’s hierarchy prior to writing a netlist and
constraints file from the DC Shell command line, perform the
following steps.
Xilinx/Synopsys Interface Guide 4-49

Xilinx/Synopsys Interface Guide
1. Enter the following to flatten the design.

ungroup –flatten –all

2. To create your design’s netlist in XNF format, enter the following.

write –format xnf –output design_name.sxnf

3. To write your design’s constraints as a Synopsys script file, enter
the following.

write_script > design_name.dc

To flatten your design’s hierarchy from Design Analyzer, perform the
following steps.

1. Select Setup → Command Window.

The Command Window appears.

2. Enter the following at the command line.

ungroup –all –flatten

3. Select File → Save As.

The Save File dialog box appears.

4. Select the XNF option in the File Format field. Change the .xnf
extension to .sxnf in the File Name field.

5. Turn off the Save All Designs in Hierarchy option.

6. Select OK.

7. To write your design’s constraints as a Synopsys script file, select
the design setup function, File → Save Info → Design
Setup. The Save Design Setup dialog box appears.

8. Select OK.

Understanding DC2NCF Translation Limitations
This section lists the Synopsys commands you can use to create
timing specifications for your Xilinx designs and provides
information about DC2NCF support for the Synopsys timing
commands.
4-50 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
Limitations of Create Clock

The Create Clock command applies a constraint of period_value
nanoseconds to all paths between the registers reached by tracing
forward from the entries on the port_or_pin_list.

create_clock [port_or_pin_list] [–name clock_name] \

 [–period period_value] [–waveform edge_list]

Limitations of the Create Clock command follow.

• Virtual clocks

DC2NCF does not support virtual clocks and therefore does not
support Create Clock statements without a port_or_pin_list.

• Complex clock waveforms

Since DC2NCF only supports single-cycle clock waveforms, the
waveform edge_list variable can only contain two values.

• Targets for Create Clock

DC2NCF translates the Create Clock command into the Xilinx
PERIOD constraint, applied to chip-level input (or bidirectional)
ports and to the outputs of primitive Xilinx cells. Therefore, the
port_or_pin_list variable can only include references to these types
of nodes.

Limitations of Set Input Delay and Set Output Delay

The Set Input Delay command specifies that data arriving at the
inputs listed in the port_or_pin_list delays externally by the number of
nanoseconds specified by delay_value.

set_input_delay delay_value \

[–clock clock_name [–clock_fall] \

[–level_sensitive]] \

[–rise | –fall] [–max] [–min] [–add_delay] \

port_or_pin_list

The Set Output Delay command specifies that data arriving at the
outputs listed in the port_or_pin_list drives into an external delay of
delay_value nanoseconds.

set_output_delay delay_value \
Xilinx/Synopsys Interface Guide 4-51

Xilinx/Synopsys Interface Guide
[–clock clock_name [–clock_fall] \

[–level_sensitive]] \

[–rise | –fall] [–max] [–min] \

[–add_delay] port_or_pin_list

Therefore, constrain internal paths starting (Set Input Delay) or
ending (Set Output Delay) at any of the nodes listed in the
port_or_pin_list more tightly to accommodate these external margins.

Limitations of the Set Input Delay and Set Output Delay commands
follow.

• Minimum delay constraints

Normally, the –min switch specifies the minimum value of an
external delay. However, because Xilinx allows constraining only
maximum delays within a device, DC2NCF does not support the
–min switch. (This also makes the –max switch redundant.)

• Rising and falling constraints

Because Xilinx does not categorize timing paths by their
sensitivity to rising or falling edges at their inputs, DC2NCF does
not support the Rise, Fall, and Clock_fall switches.

• Latch versus register path sources

Because Xilinx does not compute path delays differently
depending on the type of sequential cell that sources the path,
DC2NCF does not support the Level Sensitive switch.

• Targets for Set Input Delay and Set Output Delay

DC2NCF translates the Set Input Delay and Set Output Delay
commands into the Xilinx OFFSET constraint, applied only to
chip-level input or bidirectional ports (Set Input Delay) and
output or bidirectional ports (Set Output Delay). Therefore, the
port_or_pin_list variable can only include references to these types
of objects. For example, external delays applied to the ports of
hierarchical sub-modules do not translate.
4-52 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
Arrival times specified with the –clock clock_name switch must
conform to the OFFSET command usage restrictions. Although
the clock referred to by clock_name can contain chip-level I/O
ports and cell pin-names, the translation of the Set Input Delay
and Set Output Delay commands applies only to those clocks
assigned to chip-level I/O ports. Therefore, specify arrival times
only with respect to clocks applied externally (not internally).

Limitations of Set Max Delay and Set False Path

The Set Max Delay command specifies the upper delay limits for all
paths that start at nodes listed in the from_list and end at nodes listed
in the to_list.

set_max_delay delay_value [–rise | –fall] \

[–from from_list] [–to to_list] \

[–group_path group_name] [–reset_path]

The Set False Path command specifies that paths starting at nodes
listed in the from_list and ending at nodes listed in the to_list are not
significant for timing.

set_false_path [–rise | –fall] \

[–setup | –hold] [–from from_list] [–to to_list] \

[–reset_path]

Limitations of the Set Max Delay and Set False Path commands
follow.

• Rising and falling constraints

Because Xilinx does not categorize timing paths by their
sensitivity to rising or falling edges at their inputs, DC2NCF does
not support the Rise and Fall switches.

• Path Grouping (Set Max Delay)

Synopsys uses a path grouping mechanism for directing the logic
optimizer to certain areas of your design; this does not impact the
resulting timing specification. Therefore, DC2NCF does not
support the –group_path group_name switch.

• Iterative path constraints
Xilinx/Synopsys Interface Guide 4-53

Xilinx/Synopsys Interface Guide
• You can use the –reset_path switch prior to compilation to
remove a constraint between the indicated path start and end
points. Because DC2NCF reads script files generated after
compilation, the –reset_path switch does not appear in the
output script file. Therefore, DC2NCF does not support the –
reset_path switch.

• Targets for Set Max Delay and Set False Path

DC2NCF translates the Set Max Delay and Set False Path
commands to several Xilinx timing constraint commands, adding
elements in the from_list and the to_list to Xilinx timegroups
using the TIMEGROUP command. Issue a constraint between the
two timegroups using the FROM:<group>:TO:<group>:<delay>ns
(Set Max Delay) and FROM:<group>:TO:<group>:TIG; (Set False
Path) commands.

Xilinx allows only certain nodes for path start points and end
points. These nodes include RAMs, latches, registers and I/O
ports. Therefore, from_list and to_list can only include references
to these types of objects.

• The Replace FPGA command removes Set Max Delay and Set
False Path constraints (FPGA Compiler only).

The Replace FPGA command removes any Set Max Delay or Set
False Path constraints. As a result, when you use the Write Script
command after Replace FPGA. Write Script does not include in
the DC file it creates any Set Max Delay or Set False Path
constraints applied before Replace FPGA. To include these
constraints in the DC file, you must re-apply them after you use
the Replace FPGA command. Also, you must use the full
hierarchical names with the Set Max Delay and Set False Path
commands.

The VHDL Set Max Delay and Set False Path example follows.

analyze –f vhdl file1.vhd
analyze –f vhdl file2.vhd
.
.
elaborate TOPLVLENTITY
 set_port_is_pad “*”
insert_pads
/* Set Timing Constraints */
4-54 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
create_clock...
set_max_delay...
set_false_path...
set_input_delay...
set_output_delay...
 compile
replace_fpga
 ungroup –all –flatten
/ *Reapply Timing Constraints */
report_port
all_clocks
all_registers
set_max_delay...
set_false_path...
write_script > “top.dc”
sh dc2ncf “top.dc”
exit

The Verilog Set Max Delay and Set False Path example follows.

read –f verilog file1.v
read –f verilog file2.v
.
.
read –f verilog filen.v
 set_port_is_pad “*”
insert_pads
/* Set Timing Constraints */
create_clock...
set_max_delay
set_false_path
 compile
replace_fpga
ungroup –all –flatten
/* Reapply Timing Constraints */
report_port
all_clocks
all_registers
set_max_delay...
set_false_path...
write_script > “top.dc”
sh dc2ncf “top.dc”
exit
Xilinx/Synopsys Interface Guide 4-55

Xilinx/Synopsys Interface Guide
Set Multicycle Path

DC2NCF does not support translation of the Set Multicycle Path
command. However, you can achieve equivalent functionality with
the Set Max Delay command. These two constraints differ in the
interpretation of their numerical field.

The syntax of the two commands follows.

set_multicycle_path path_multiplier,[–rise | –fall] \

[–setup | –hold] [–start | –end] \

[–from from_list] [–to to_list] [–reset_path] \

set_max_delay delay_value [–rise | –fall] \

[–from from_list] [–to to_list] \

[–group_path group_name] [–reset_path]

Delay_value specifies the absolute delay value in nanoseconds for the
path between the indicated start and end points. The period of the
clock that controls the path between the indicated start and end
points multiplies path_multiplier and specifies the path delay.

You can use the Set Max Delay command instead of the Set
Multicycle Path command by using the clock period multiplied by
the path_multiplier for the delay_value. The following example
illustrates this command substitution.

create_clock my_clock_port –period 50 \

set_multicycle_path 2 –from find(cell,“a_reg”) \

–to find(cell,“b_reg”)

Alternatively, you can express this as shown in the following
example.

create_clock my_clock_port –period 50 \

set_max_delay 100 –from find(cell,“a_reg”) \

–to find(cell,“b_reg”)
4-56 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
Note: When DC2NCF translates Synopsys timing commands into
Xilinx syntax, point-to-point exception commands (such as Set Max
Delay and Set False Path) result in timegroup statements in the
resulting NCF file. For identification purposes, the names allocated to
timegroups include the line number of the related command in the
Synopsys script file. The following example shows the translation of a
line of a Synopsys script file.

set_max_delay 57 –from find(clock,clocka)

The DC2NCF output NCF file appears as follows.

TIMEGROUP tg_5_dest = FFS:LATCHES:RAMS:PADS;

ts_01 = FROM:clocka:TO:tg_5_dest:57;

Compiling Your Design
After you insert the I/O pads, you can optimize your design for area,
speed, or a combination of both. To get the most effective results from
FPGA Compiler, apply accurate and achievable constraints. For
example, if you set a timing goal of 0 ns on all ports, FPGA Compiler
attempts to meet this goal by duplicating logic to reduce critical
paths. This can result in a significant and possibly unwarranted
increase in CLB and interconnect usage.

The following sections describe the commands you use to compile
and optimize your HDL design.

Optimizing Logic Across Hierarchical Boundaries
CLBs contain Boolean logic implemented in both function generators
and flip-flops. Compiling a hierarchical design or a design that uses a
DesignWare module does not optimize the logic across the
hierarchical boundary because DesignWare modules exist inside
their own hierarchical boundaries. Therefore, some CLBs only
implement flip-flops and contain unused function generators and
other CLBs only implement function generators and contain unused
flip-flops. Additionally, the Boolean logic in one hierarchy is not
optimized with that in another to reduce the CLB area or logic levels.

The choice of hierarchical boundaries can have a significant impact
on the area and speed of the synthesized design. Using FPGA
Compiler, you can optimize a design while preserving these
hierarchical boundaries.
Xilinx/Synopsys Interface Guide 4-57

Xilinx/Synopsys Interface Guide
The TOP design, illustrated in the following figure, references two
sub-blocks, one completely combinatorial (block1) and one
completely sequential (block2).

Figure 4-8 Sequential and Combinatorial Design

FPGA Compiler cannot move logic across levels of hierarchy. To
maintain the hierarchy you need two CLBs to implement the TOP
design. FPGA Compiler uses one CLB to implement the OR gate and
another to implement the FDC flip-flop.

However, if FPGA Compiler merges two subdesigns into a single
level of hierarchy, you need only one CLB to implement the TOP
design, illustrated in the following figure. FPGA Compiler can merge
the combinatorial and sequential logic into one CLB.

Figure 4-9 Merging into a Single Level of Hierarchy

To check if FPGA Compiler can combine the combinatorial and
sequential logic across hierarchical boundaries, optimize the design
with and without hierarchy, and then compare the results as
described in the following sections.

OR2

BLOCK 2BLOCK1

TOP

OUT1
IN1

IN2

CLOCK

X4887

D QFDC

C

OR2

CLB

TOP

OUT1
IN1

IN2

CLOCK

X4894

D QFDC

C

4-58 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
By default, FPGA Compiler does not flatten your design hierarchy.
You must use the Compile command with the Ungroup All option to
flatten your design. However, FPGA Compiler only partially
optimizes logic across hierarchical modules. Full optimization is
possible across those parts of your design hierarchy ungrouped in
FPGA Compiler. Flatten or reconstruct hierarchy artificially prior to
using the Compile command by issuing the Group and Ungroup
commands. Follow the guidelines for controlling flattening in the
Synopsys Design Compiler Family Reference Manual.

Using a Flattening Optimization Strategy

Flattening eliminates the existing logic structure. In general, you can
flatten random control logic because automatic structuring usually
improves upon manual structuring. For FPGA designs, flatten
designs when the number of CLBs needed to implement a Boolean
function seems too high or there are too many logic levels. You
probably do not need to flatten regular or highly structured designs
such as adders and ALUs designed with an explicit structure.

Flattening works especially well for the FPGA CLB structure because
FPGA Compiler has a built-in optimizer for Boolean logic. This
algorithm works efficiently when the structure decomposes
sufficiently so that the Boolean logic can map into the CLB function
generators.

Compiling the Design with Hierarchy

To compile the design and maintain its hierarchy, enter the following
command.

compile –map_effort [low|med|high] \

–boundary_optimization

This command enables some logic optimization to occur across
hierarchical boundaries. For more information on this option, refer to
the Synopsys Design Compiler Family Reference Manual.

Even a flat design can end up containing hierarchical blocks after
compiling. These hierarchical blocks contain either Synopsys
DesignWare modules or XDW modules mapped during the
optimization process.
Xilinx/Synopsys Interface Guide 4-59

Xilinx/Synopsys Interface Guide
Compiling the Design without Hierarchy

To compile the design without hierarchy, enter the following
command.

compile –map_effort [low|med|high] –ungroup_all

This command creates a flattened design and then optimizes it.

If your design contains Synopsys DesignWare modules (after the first
compile), re-compile your design using the Ungroup All option. This
command does not optimize XDW modules but instead optimizes the
entirely combinatorial Synopsys DesignWare modules. You cannot
optimize XDW modules because FPGA Compiler interprets them as
“black boxes.” The CLBs that implement the XDW parts have unused
flip-flops but the Xilinx design implementation tools can correct this
later on in the implementation flow.

Using the Ungroup command with the All Flatten option and then
compiling differs substantially from invoking the Compile command
with the Ungroup All option. If you run the Ungroup command
before using the Compile command, DesignWare components
inferred during compilation retain their hierarchy and can cause the
usage of unnecessary CLBs. See your Synopsys documentation for
more information on the Ungroup command.

Compiling a Design with Instantiated I/O Cells
This section describes the design flow if your design contains
instantiated I/O cells. If you instantiate all I/O buffers (FPGA
Compiler does not need to automatically insert I/O buffers), do not
use the Set Port Is Pad and Insert Pads commands. Place a Dont
Touch attribute on all instantiated I/O buffers.

If your design contains some instantiated I/O buffers and you want
FPGA Complier to automatically insert the rest of the I/O buffers, do
the following.

• Use the Set Port Is Pad command only on the I/Os that you want
the FPGA Compiler to insert.

• Place a Dont Touch attribute on all instantiated I/O buffers
before the design is compiled.

• Issue the Insert Pads command.
4-60 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
See the bidi_reg.vhd and bidi_reg.v examples in the “Inserting
Bidirectional I/Os” section for designs that contain both instantiated
I/Os and I/Os inserted using FPGA Compiler. The bidi_reg.script
(VHDL) in the “Inserting Bidirectional I/Os” section provides an
example script file illustrating the correct design flow.

Compiling XC4000, Spartan, and Virtex Designs
The following sample script file demonstrates how to compile your
XC4000 designs using FPGA Compiler.

/* ==*/
/* Sample Script for Synopsys to Xilinx Using */
/* FPGA Compiler */
/* Targets the Xilinx XC4028EX-3 and assumes a VHDL */
/* source file by way of an example. */
/* For general use with XC4000E/EX architectures. */
/* Not suitable for use with XC3000A/XC5200 */
/* architectures. */
/* ==*/

/* === */
/* Set the name of the design’s top-level module. */
/* (Makes the script more readable and portable.) */
/* Also set some useful variables to record the */
/* designer and company name. */
/* === */

TOP = calc
MOD1 = clockgen
MOD2 = count3
MOD3 = statmach
MOD4 = stack
MOD5 = bardec
MOD6 = seg7dec
MOD7 = alu
MOD8 = control
MOD9 = switch7
MOD10 = debounce
designer = “XSI Team”
company = “Xilinx, Inc”
Xilinx/Synopsys Interface Guide 4-61

Xilinx/Synopsys Interface Guide
/* === */
/* Analyze and Elaborate the design file and specify */
/* the design file format. */
/* === */

analyze –format vhdl MOD1 + “.vhd”
analyze –format vhdl MOD2 + “.vhd”
analyze –format vhdl MOD3 + “.vhd”
analyze –format vhdl MOD4 + “.vhd”
analyze –format vhdl MOD5 + “.vhd”
analyze –format vhdl MOD6 + “.vhd”
analyze –format vhdl MOD7 + “.vhd”
analyze –format vhdl MOD8 + “.vhd”
analyze –format vhdl MOD9 + “.vhd”
analyze –format vhdl MOD10 + “.vhd”
analyze –format vhdl TOP + “.vhd”
elaborate TOP

/* === */
/* Set the current design to the top level. */
/* === */
 current_design TOP

/* === */
/* Set the synthesis design constraints. */
/* === */

 remove_constraint –all

/* === */
/* Apply dont_touch attributes to instantiated prims */
/* === */

 dont_touch STARTUPBLK
 dont_touch “OSCILLATOR/OSCILLATOR”
 dont_touch “OSCILLATOR/CLOCK_BUF”

/* === */
/* Indicate those ports on the top-level module that */
/* should become chip-level I/O pads. Assign any I/O */
/* attributes or parameters and perform the I/O */
4-62 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
/* synthesis. */
/* === */

 set_port_is_pad “*”
 set_pad_type –slewrate HIGH all_outputs()
 insert_pads

/* === */
/* Synthesize and optimize the design */
/* === */

 compile –boundary_optimization

/* === */
/* Write the design report files. */
/* === */

 report_fpga > TOP + “.fpga”
 report_timing > TOP + “.timing”

/* === */
/* Write out the design to a DB file. (Post compile) */
/* === */

 write –format db –hierarchy –output TOP + “_compiled.db”

/* === */
/* Replace CLBs and IOBs with gates for non-Virtex */
/* parts. For Virtex parts do not use replace_fpga */
/* === */

 replace_fpga

/* === */
/* Set the part type. */
/* === */

 set_attribute TOP “part” –type string “4028expg299-3”

/* === */
Xilinx/Synopsys Interface Guide 4-63

Xilinx/Synopsys Interface Guide
/* Write out the design to a DB. (Post replace_fpga) */
/* === */

 write –format db –hierarchy –output TOP + “.db”

/* === */
/* Flatten the design's hierarchy to rationalize */
/* netlist and constraints files */
/* === */

 ungroup –all –flatten

/* === */
/* Save design in EDIF format as <design>.sedif */
/* === */

 write –format xnf –hierarchy –output TOP + “.edif”

/* === */
/* Write-out the timing constraints that were */
/* applied earlier. */
/* === */

 write_script > TOP + “.dc”

/* === */
/* Call the Synopsys-to-Xilinx constraints translator*/
/* utility DC2NCF to convert the Synopsys constraints*/
/* to a Xilinx NCF file. You may want to view */
/* dc2ncf.log to review the translation process. */
/* === */

/* sh dc2ncf TOP + “.dc” */

/* === */
/* Exit the Compiler. */
/* === */

 exit
4-64 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
/* === */
/* Now run the Xilinx design implementation tools. */
/* === */

Creating the Area Report
FPGA Compiler reports area with the Report FPGA command as
follows.

report_fpga

The statistics reported by this command include the number of the
following elements used in your design.

• F, G, and H function generators

• XDW cells

• Instantiated cells

• 3-state buffers

• Flip-flops

• IOBs

The Report FPGA command also reports the number of CLBs used
for the design on the basis of the mapping performed by FPGA
Compiler.

The Report FPGA command provides an accurate CLB count when
FPGA Compiler provides packing information to the place and route
tools. However, the Synopsys output netlist suppresses packing data.
As a result, the actual CLB count can vary between FPGA Compiler’s
Report FPGA count and MAP’s mapping report. The Synopsys
output netlist suppresses packing data because it impacts the
routability of the design. For better results with the Xilinx tools,
ensure that the software controls the allocation of flip-flops and
function generators to CLBs. You can reactivate the Synopsys
packing data.

The reported number of CLBs can vary during design
implementation, however, the number of flip-flops, F, G, and H
function generators does not. Therefore, you can accurately assess a
design’s area in these terms. Use the Synopsys CLB count as a
conservative estimate.
Xilinx/Synopsys Interface Guide 4-65

Xilinx/Synopsys Interface Guide
Run the Report FPGA command after compiling your design
because the Compile command maps the logic into CLBs and IOBs.
Also, run this command before replacing the CLB and IOBs with
gates (before running the Replace FPGA command).

The area utilization report below illustrates the Report FPGA output
for the bidi_reg design. The report shows the number of CLBs used.

Report : fpga
Design : bidi_reg
Version: v1999.10
Date : Fri Feb 25 14:43:20 2000

Xilinx FPGA Design Statistics

FG Function Generators 2
H Function Generators 0
Number of CLB cells: 2
Number of Hard Macros and
 Other Cells: 4
Number of CLBs in
 Other Cells: 0
Total Number of CLBs: 2

Number of Ports: 8
Number of Clock Pads: 2
Number of IOBs: 2

Number of Flip Flops: 4
Number of 3-State Buffers: 4

Total Number of Cells: 14

Evaluating Timing Delays
The Synopsys tools report all delays in nanoseconds. The reported
delays include logic-level and interconnect delays. Because FPGA
Compiler synthesizes CLBs and IOBs (XC4000, Spartan, and Virtex
devices) or LUTs and flip-flops (XC3000A, XC3100A/L, XC5200, and
4-66 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
XC9000 devices), it reports logic-level delays with a higher degree of
accuracy than Design Compiler. Because Design Compiler
synthesizes only logic gates, it provides only estimates of logic-level
delays. Logic-level delays are worst case.

Both FPGA Compiler and Design Compiler estimate possible
interconnect delays on the basis of a net’s fanout. These estimates
allow you to evaluate your design’s performance prior to performing
place and route. FPGA Compiler applies the wire-load model only to
nets between CLBs and IOBs (XC4000 devices) or between LUTs, I/
Os, and flip-flops (XC3000A, XC3100A/L, and XC5200 devices).
Design Compiler’s estimates of interconnect delays based on fanout
match FPGA Compiler’s. However, because Design Compiler does
not have information on how your design maps and packs into LUTs
or CLBs, it applies the wire-load model to every net in your design.
This results in a less accurate net contribution to overall path delays.
You can use either average or worst-case wire-load models.

To evaluate the timing results, use the Report Timing command.

report_timing

Refer to the Synopsys Design Compiler Family Reference Manual for
information on other report options.

Run the Report Timing command after compiling the design because
the Compile command maps the logic into CLBs and IOBs, and
before running the Replace FPGA command, which replaces the
CLBs and IOBs with gates.

Only XC4000 and Spartan designs require the Replace FPGA
command.

Synopsys assigns a default “average case” wire-load model to all nets
in your design. Refer to the “Setting the Wire-Load Model” section at
the beginning of this chapter for more information.

Generating Reports for Debugging
FPGA Compiler includes additional commands that provide CLB
and IOB information for debugging purposes.

Use the following commands before using the Replace FPGA
command to replace CLBs and IOBs with gates.
Xilinx/Synopsys Interface Guide 4-67

Xilinx/Synopsys Interface Guide
Generating a Configuration Report
You can generate a report that gives you CLB and IOB configuration
information similar to the reports generated with the Xilinx software.
This report contains information cell configuration and the logic
function it implements.

To generate a CLB and IOB configuration report, first generate a
symbol or schematic view for the design using either of the following
methods.

• From Design Analyzer Menu, select Tools → FPGA Compiler
→ Report → Cell → Apply.

• From the DC shell prompt, enter report_cell, ENTER.

The system displays the following output in the Command window.

Report : cell
Design : count8
Version: v1999.10
Date : Fri Feb 25 14:55:16 2000

Attributes:
 b - black box (unknown)
 BO - reference allows boundary optimization
 h - hierarchical
 n- noncombinational
 r - removable
 u- contains unmapped logic

Cell Reference Library Area Attributes
--

U62 iob_4000 xfpga_4000-5 1.00 n
U64 iob_4000 xfpga_4000-5 1.00 n
U66 iob_4000 xfpga_4000-5 1.00 n
U68 iob_4000 xfpga_4000-5 1.00 n
U70 iob_4000 xfpga_4000-5 1.00 n
U72 iob_4000 xfpga_4000-5 1.00 n
U74 iob_4000 xfpga_4000-5 1.00 n
U76 iob_4000 xfpga_4000-5 1.00 n
4-68 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
U78 iob_4000 xfpga_4000-5 1.00 n
U80 iob_4000 xfpga_4000-5 1.00 n
U82 BUFG_F xprim_4000-5 0.00 n
U83 clb_4000 xfpga_4000-5 1.00 n
U85 clb_4000 xfpga_4000-5 1.00 n
U87 clb_4000 xfpga_4000-5 1.00 n
U89 clb_4000 xfpga_4000-5 1.00 n
add_21/plus/LEFT_UNSIGNED_ARG_799
 count8_inc_dec_ub_8_0 4.00 BO, h, n
--

Total 16 cells 18.00
Detailed FPGA Configuration Information:
Cell Name: U62 TYPE: IOB
 OUT:O
 PAD:FAST I1: I2: TRI:

Cell Name: U64 TYPE: IOB
 OUT:O
 PAD:FAST I1: I2: TRI:

Cell Name: U66 TYPE: IOB
 OUT:O
 PAD:FAST I1: I2: TRI:

Cell Name: U68 TYPE: IOB
 OUT:O
 PAD:FAST I1: I2: TRI:

Cell Name: U70 TYPE: IOB
 OUT:O
 PAD:FAST I1: I2: TRI:

Cell Name: U72 TYPE: IOB
 OUT:O
 PAD:FAST I1: I2: TRI:

Cell Name: U74 TYPE: IOB
 OUT:O
 PAD:FAST I1: I2: TRI:
Xilinx/Synopsys Interface Guide 4-69

Xilinx/Synopsys Interface Guide
Cell Name: U76 TYPE: IOB
 OUT:O
 PAD:FAST I1: I2: TRI:

Cell Name: U78 TYPE: IOB
 OUT:O
 PAD:FAST I1: I2: TRI:

Cell Name: U80 TYPE: IOB
 OUT:O
 PAD:FAST I1: I2: TRI:

Cell Name: U83 TYPE: CLB
 X: Y: XQ:QX YQ:QY
 H1: DIN:C1 SR:C2 EC:C3
 DX:DIN DY:G FFX:EC:RESET:K
 FFY:EC:RESET:K
 EQUATE G = (G1)
 FFX_NAME:QOUT_reg<1> FFY_NAME:QOUT_reg<0>

Cell Name: U85 TYPE: IOB
 X: Y: XQ:QX YQ:QY
 H1: DIN:C1 SR:C2 EC:C3
 DX:DIN DY:G FFX:EC:RESET:K

FFY:EC:RESET:K
 EQUATE G = (G1)
 FFX_NAME:QOUT_reg<3> FFY_NAME:QOUT_reg<2>

Cell Name: U87 TYPE: IOB
 X: Y: XQ:QX YQ:QY
 H1: DIN:C1 SR:C2 EC:C3
 DX:DIN DY:G FFX:EC:RESET:K

FFY:EC:RESET:K
 EQUATE G = (G1)
 FFX_NAME:QOUT_reg<5> FFY_NAME:QOUT_reg<4>

Cell Name: U89 TYPE: IOB
 X: Y: XQ:QX YQ:QY
 H1: DIN:C1 SR:C2 EC:C3
 DX:DIN DY:G FFX:EC:RESET:K

FFY:EC:RESET:K
4-70 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
 EQUATE G = (G1)
 FFX_NAME:QOUT_reg<7> FFY_NAME:QOUT_reg<6>

Generating a Hierarchical Schematic
As an alternative to interpreting the Report Cell output listing, you
can direct FPGA Compiler to replace all CLB and IOB cells with an
equivalent set of logic from the target libraries. Use the generated
schematic to determine what logic implemented the CLBs and IOBs.

To generate a hierarchical CLB and IOB schematic, perform the
following steps.

1. Save your original design as a DB file using one of the following
methods. You do this because the commands used to generate
the hierarchical CLB and IOB schematic alter your design’s
hierarchy and logical representation.

Select File → Save As → File Format ‘DB’ from the
Design Analyzer menu then click OK, or enter the following in the
command window.

write –format db –hierarchy –output design.db

2. Select Tools → FPGA Compiler → FPGA Cells to Gates
Options from the Design Analyzer menu, or enter the following
in the command window.

replace_fpga

After you finish viewing the hierarchical schematic, read in the
original DB file using one of the following methods.

Select File → Read → File Format ‘DB’ from the Design
Analyzer menu, specifying the appropriate file name. Then click
OK, or enter the following in the command window.

read –format db design.db

Creating a Level for Each CLB and IOB
Create a hierarchy level for each CLB and IOB or a hierarchy level for
each function generator to assist you in locating logic or signals for
debugging purposes. To create levels of hierarchy in Design
Analyzer, select Tools → FPGA Compiler → FPGA Cells to
Gates Options → Create a Level of Hierarchy for each
CLB and IOB.
Xilinx/Synopsys Interface Guide 4-71

Xilinx/Synopsys Interface Guide
You can also enter the following at the DC Shell prompt.

replace_fpga –group_cells

After you select these options, the resulting logic does not accurately
reflect the timing of the actual CLB and IOB implementation. Timing
or area reports then produce inaccurate results.

Generating a Level for Each Function Generator
Generate hierarchical schematics that show the logic in each function
generator it implements. This process replaces each CLB by an F, G,
or H function generator, along with the used flip-flops. The function
generators add an additional level of hierarchy. To create a level of
hierarchy for each function generator, select Tools → FPGA
Compiler → FPGA Cells to Gates Options → Create a
Level of Hierarchy for each “Table-lookup” from the
Design Analyzer menu.

You can also enter the following at the DC Shell prompt.

replace_fpga –group_tlus

You can now view the implementation of the function generators.

Writing and Saving Your Design
After your design meets your timing and area requirements, you can
save the design as a DB file. For XC4000, Spartan, and Virtex devices
and FPGA Compiler only, replace the CLBs and IOBs with gates. For
FPGA Compiler, set the design part type and any other supporting
information. Then, write and save your design as a netlist in either
XNF (FPGA Compiler non-Virtex architectures) or EDIF (FPGA
Compiler and Design Compiler for Virtex architectures) formats.

Saving the DB File
Save the Synopsys database file before converting your design to
gates by running the Replace FPGA command (XC4000, Spartan, and
FPGA Compiler only). If you use the Replace FPGA command
options for debugging, such as Group TLUS and Group Cell, save the
DB file before running these debugging options.

To save the DB file, choose one of the following methods.

• Enter the following from the Design Analyzer menu.
4-72 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
File → Save As

File name: design_name.db

File Format: db

Save all Designs in Hierarchy: on

OK

• Type the following at the command line. (Select the top level of
your design.)

write –format db –hierarchy –output design_name.db

Replacing CLBs and IOBs with Gates
This section applies to XC4000 and Spartan devices and FPGA
Compiler.

After compiling with FPGA Compiler, XC4000 and Spartan designs
contain CLB and IOB elements used to determine the best
implementation of a design for a given set of constraints. Before
writing an output netlist, you must convert these CLBs and IOBs into
gates recognizable by the Xilinx software. The mapping information
passes to the netlist with the FMAP, HMAP, and, optionally, BLKNM
parameters, so you can map your design according to FPGA
Compiler’s directions.

Invoking the Replace FPGA Command

Enter the following command at the command line at the top level of
your design.

replace_fpga

Replacing CLBs and IOBs in Designs with Hierarchy

Running the Replace FPGA command with either the Group Cells or
the Group TLUS option and then writing the netlist file generates
netlists for each level of hierarchy in your design. If you use the
Group Cells option, each CLB transforms into a level of hierarchy
with a netlist created for each CLB. Similarly, if you use the Group
TLUS option, each function generator transforms into a level of
hierarchy.

If you use these options, perform the following steps.
Xilinx/Synopsys Interface Guide 4-73

Xilinx/Synopsys Interface Guide
1. Delete the design from memory.

2. Read in the saved DB file saved prior to the Replace FPGA
command.

3. Run the Replace FPGA command without any options.

Controlling the Synopsys Mapping
This section applies only to FPGA Compiler.

By default, the FPGA Compiler XNF Writer contains information on
how it should map the logic into the CLB and IOBs. FPGA Compiler
uses the FMAP and HMAP symbols to map Boolean logic into F and
H function generators, and the BLKNM attribute to group flip-flops
and function generators into a CLB.

When the XNF Writer includes FPGA Compiler’s mapping
information in the netlist, the accuracy of the estimated timing
information increases.

FPGA Compiler provides efficient mapping information, so leave the
mapping on. However, using FPGA Compiler to perform mapping
decreases the MAP program’s processing time.

Block names can restrict placement and routing. For this reason,
FPGA Compiler by default does not write the BLKNM attributes.

The following section describes how to remove FMAP and HMAP
information and restore BLKNM attributes.
4-74 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
Removing FMAP and HMAP Symbols

To remove the FMAP and HMAP mapping, enter the following at the
command line.

set_attribute find(design,"*") \

"xnfout_write_map_symbols" –type boolean FALSE

Restoring BLKNM Attributes

To restore the creation of BLKNM attributes, enter the following at
the command line.

set_attribute find(design,"*") \

"xnfout_use_blknames" –type boolean TRUE

Setting the Design Part Type
Type the following command at the command line to select a specific
part for the design. The following example uses a 4005EPC84–4
device.

set_attribute design_name "part" \

–type string "4005epc84–4"

You can also specify the part type when running NGDBuild.

Saving the Design Netlist File
Follow the instructions in the appropriate section below to save your
design netlist file.

Saving your Netlist in EDIF Format (Design Compiler)

Save your design netlist file in EDIF format with a .sedif extension to
denote its source. NGDBuild processes netlists from Synopsys in a
slightly different way than other netlists. The .sedif extension
indicates to NGDBuild to use the Synopsys design flow.

You can save your design as an SEDIF file by either of the following
methods.
Xilinx/Synopsys Interface Guide 4-75

Xilinx/Synopsys Interface Guide
• Select your design and then select the following from the Design
Analyzer menu.

File → Save As

File name: design_name.sedif

File Format: edif

Save all Designs in Hierarchy: on

OK

• Enter the following at the command line. (Select the top level of
your design.)

write –format edif –hierarchy –output \

 design_name.sedif

Saving your Netlist in XNF Format (FPGA Compiler)

Save your design netlist file in XNF format with a .sxnf extension to
denote its source. NGDBuild processes netlists from Synopsys in a
slightly different way than other netlists. The .sxnf extension
indicates to NGDBuild to use the Synopsys design flow.

The XNF netlist format can convey your design’s logical hierarchy
only with hierarchical instance names and net names. Therefore,
flatten your design’s hierarchy prior to writing out a netlist in XNF
format. Although this removes the design hierarchy from the
Synopsys design database, hierarchical net and instance names
remain unchanged. As a result, the XNF file still conveys your
design’s hierarchy. After you have flattened your design, you can
then write out the netlist.

You can save your design as an SXNF file by either of the following
methods.

• Select your design and then select the following from the Design
Analyzer menu.

Setup → Command Window

ungroup –all –flatten

File → Save As
4-76 Xilinx Development System

Synthesizing Your Design with FPGA Compiler
File name: design_name.sxnf

File Format: xnf

Save all Designs in Hierarchy: off

OK

• Enter the following at the command line. (Select the top level of
your design.)

ungroup –all –flatten

write –format xnf –output design_name.sxnf

Using the Xilinx Development System
To translate your design to a bit file so the Xilinx tools can program
your device, perform the following steps.

1. Run NGDBuild on the SXNF or SEDIF file to create an NGD file.

2. Run the MAP program on the NGD file to create a mapped NCD
file.

3. Run the TRACE program to determine if PAR will meet your
timing goals.

4. Run PAR on the NCD file to place and route your design.

5. Run TRACE again on your placed and routed design.

6. Run NGDAnno on your routed design to create an NGA file.

7. Run either NGD2VHDL or NGD2VER on the NGA file to create a
VHD or VER file that can be simulated with the appropriate
simulators.

Run the BitGen program to create a bitstream for programming
the FPGA.
Xilinx/Synopsys Interface Guide 4-77

Xilinx/Synopsys Interface Guide
4-78 Xilinx Development System

Chapter 5

Using CORE Generator and LogiBLOX

CORE Generator is a graphic user interface (GUI) tool for creating
RLOC’d cores. CORE Generator optimizes core layout to the target
FPGA architecture, allowing higher performance. CORE Generator
differs from LogiBLOX but this information is included here because
both provide a GUI toolset you can use to create your design.

Refer to the CORE Generator documentation for more information
about using that product with XSI.

LogiBLOX is a GUI tool for creating high-level modules such as
counters, shift registers, and multiplexers. LogiBLOX includes both a
library of generic modules and a set of tools for customizing them.
You can also use the modules you create in your HDL designs.
LogiBLOX generates a simulation model (VHDL, EDIF, or Verilog)
for each LogiBLOX module during design entry. This enables
immediate simulation of LogiBLOX designs without logic
implementation.

Refer to the LogiBLOX Guide for a complete explanation of LogiBLOX.

Note LogiBLOX does not support Virtex or its derivatives.

This chapter includes the following sections.

• “Using CORE Generator”

• “Specifying Inputs and Outputs in LogiBLOX”

• “Using LogiBLOX in the HDL Design Flow”

• “Instantiating RAM”
Xilinx/Synopsys Interface guide 5-1

Xilinx/Synopsys Interface guide
Using CORE Generator
The basic flow of using CORE Generator with XSI involves selecting a
core in CORE Generator, entering parameters, then generating the
core. You then instantiate the cores in your XSI design.

The CORE Generatordocumentation provides details about how to
use CORE Generatorwith XSI.

Apply a Don’t Touch attribute to all CORE Generator cores used in
XSI.

Specifying Inputs and Outputs in LogiBLOX
Use the LogiBLOX Module Selector GUI, shown in the following
figure, to create LogiBLOX modules. Specifying a LogiBLOX module
consists of selecting or deselecting optional pins on the symbol, and
specifying various module attributes, resulting in a module
customized for a specific function.
5-2 Xilinx Development System

Using CORE Generator and LogiBLOX
Figure 5-1 Module Selector

After you complete the module specification, LogiBLOX uses its
symbol generator, model generator, and netlist generator to create
the following three outputs and store them in the current project
directory.

• A schematic symbol for inclusion on the schematic

The symbol generator creates a symbol definition file that your
third-party interface converts into a schematic symbol.

For Synopsys or synthesis tools, the symbol generator creates a
Verilog/VHDL instantiation template.

• An RTL HDL simulation model

The model generator creates an RTL HDL simulation model for
the LogiBLOX module.
Xilinx/Synopsys Interface guide 5-3

Xilinx/Synopsys Interface guide
The RTL model permits immediate simulation of your design in
those environments that support mixed schematic and RTL
simulation.

• Gate-level netlists, produced as an alternative simulation
medium

The netlist generator creates a gate-level netlist for the LogiBLOX
module converted to the third-party’s simulation format. These
netlists permit immediate simulation of the design in gate-level
simulation environments.

Using LogiBLOX in the HDL Design Flow
You can instantiate LogiBLOX components in your HDL code to take
advantage of their high-level functionality.

Express each LogiBLOX module in HDL code with a component
declaration describing the module type and a component
instantiation describing how the module connects to the other design
elements.

Follow these steps to use the LogiBLOX program.

1. Invoke the Module Selector from an icon or from the command
line.

2. Configure your project directory using the LogiBLOX Setup
window. The default directory is your current directory.

3. Select a base module type (for example, Counter, Memory, or
Shift-register)

4. Customize the module by selecting pins and specifying
attributes.

5. Press OK after completely specifying a module. Pressing OK
initiates the generation of a component instantiation declaration,
an RTL model, and an implementation netlist.

6. Deposit the HDL module declaration or instantiation into your
HDL design.

7. Complete the signal connections of the instantiated LogiBLOX
module to the rest of your HDL design.
5-4 Xilinx Development System

Using CORE Generator and LogiBLOX
8. Conduct functional simulation on your design. The HDL
simulator reads the component declaration and looks for an RTL
model.

9. Apply a Dont Touch attribute to all LogiBLOX modules.

10. Implement your design by invoking the Xilinx implementation
tools.

11. Simulate your post-layout design by converting your design back
to a timing netlist and invoking the back-annotation flow.

Instantiating RAM
You can implement memory using LogiBLOX, creating RAM and
ROM between 1 to 32 bits wide and 2 to 256 bits deep. Using
LogiBLOX to add RAM or ROM to your design provides an efficient
implementation of your memory in addition to a simulation model
for RTL simulation.

Note: For Verilog designs, use the Remove Design command on
instantiated LogiBLOX memory before writing out the design.

You can instantiate RAM in your designs using LogiBLOX, as shown
in the following VHDL and Verilog examples. A sample script file
follows each example. Refer to the LogiBLOX Guide for more
information about using LogiBLOX.

The following example shows how to instantiate RAM using
LogiBLOX with VHDL.

library IEEE;
use IEEE.std_logic_1164.all;

entity test is
port (ADDRESS: IN std_logic_vector(5 downto 0);
 DATAOUT: OUT std_logic_vector(3 downto 0);
 DATAIN: IN std_logic_vector(3 downto 0);
 WRITEN: IN std_logic;
 CLK: IN std_logic);
end test;

architecture inside of test is

component testram
Xilinx/Synopsys Interface guide 5-5

Xilinx/Synopsys Interface guide
 port (A: IN std_logic_vector(5 downto 0);
 DO: OUT std_logic_vector(3 downto 0);
 DI: IN std_logic_vector(3 downto 0);
 WR_EN: IN std_logic;
 WR_CLK: IN std_logic);
end component;

begin

U0: testram port map(A=>ADDRESS,DO=>DATAOUT,DI=>DATAIN,
 WR_EN=>WRITEN,WR_CLK=>CLK);

end inside;

/*===*/
/* Sample Script for Synopsys to Xilinx Using */
/* FPGA Compiler with LogiBLOX Memory */
/* Targets the Xilinx XC4028EX-3 and assumes a */
/* VHDL source file by way of an example. */
/* */
/* For general use with XC4000E/EX architectures.*/
/* Not suitable for use with XC3000A/XC5200 */
/* architectures. */
/*===*/

/* === */
/* Set the name of the design’s top-level module.*/
/* (Makes the script more readable and portable.)*/
/* Also set some useful variables to record the */
/* designer and company name. */
/* ==*/

 TOP = test
 /* ========================== */
 /* Note: Assumes design file- */
 /* name and entity name are */
 /* the same (minus extension) */
 /* ========================== */

 designer = "XSI Team"
 company = "Xilinx, Inc"
5-6 Xilinx Development System

Using CORE Generator and LogiBLOX
 part = "4028expg299-3"

/* === */
/* Analyze and Elaborate the design file and specify */
/* the design file format. */
/* === */

 analyze –f vhdl TOP + ".vhd"
 elaborate TOP

/*== */
/* Set the current design to the top level.*/

/* === */
 current_design TOP

/*== */
/* Set the synthesis design constraints. */
/*== */

 remove_constraint –all

/* Some example constraints */
/* create_clock <clock_port_name> –period 50
 set_input_delay 5 –clock <clock_port_name> \
 { <a_list_of_input_ports> }
 set_output_delay 5 –clock <clock_port_name> \
 { <a_list_of_output_ports> }
 set_max_delay 100 –from <source> –to <destination>
 set_false_path –from <source> –to <destination> */

/* Place dont_touch on LogiBLOX instantiation */

 set_dont_touch {U0}

/* === */
/* Indicate those ports on the top-level module that */
/* should become chip-level I/O pads. Assign any I/O */
/* attributes or parameters and perform the I/O */
Xilinx/Synopsys Interface guide 5-7

Xilinx/Synopsys Interface guide
/* synthesis. */
/* === */

 set_port_is_pad "*"

/* Some example I/O parameters */
/* set_pad_type –pullup <port_name>
 set_pad_type –no_clock all_inputs()
 set_pad_type –clock <clock_port_name>
 set_pad_type –exact BUFGS_F <hi_fanout_port_name>
 set_pad_type –slewrate HIGH all_outputs() */

 /* ============================= */
/* Note: Synopsys slew-control= */
/* HIGH is the same as Xilinx's */
/* slewrate=SLOW. Synopsys slew- */
/* control=LOW is same as Xilinx */
/* slewrate=FAST. */
/* ============================= */
 insert_pads

/* === */
/* Synthesize and optimize the design */
/* === */

 compile –boundary_optimization

/* === */
/* Write the design report files. */
/* === */

 report_fpga > TOP + ".fpga"
 report_timing > TOP + ".timing"

/* == */
/* Write out the design to a DB file. (Post compile) */

/* === */
 write –format db –hierarchy –output TOP + "_compiled.db"
5-8 Xilinx Development System

Using CORE Generator and LogiBLOX
/* === */
/* Replace CLBs and IOBs with gates. */
/* === */

 replace_fpga

/* === */
/* Set the part type for the output netlist. */
/* === */

 set_attribute TOP "part" –type string part

/* === */
/* Optional attribute to remove the FPGA Compiler's */
/* mapping structures from the design. This permits */
/* The Xilinx design implementation tools to map the */
/* design instead. */
/* === */

/* set_attribute find(design,"*") "xnfout_write_map_symbols" \
 –type boolean FALSE */

/* ==*/
/* Add any I/O constraints to the design. */
/* === */

/* set_attribute <port_name> "pad_location" \
 –type string "<pad_location>" */

/* === */
/* Write-out the timing constraints that were */
/* applied earlier. (Note that any design hierarchy */
/* needs to be flattened before the constraints are */
/* written-out.) */
/* === */

 ungroup –all –flatten
 write_script > TOP + ".dc"

/* Write out the design as a .sxnf file */
Xilinx/Synopsys Interface guide 5-9

Xilinx/Synopsys Interface guide
 write –f xnf –h –o TOP + ".sxnf"

/* === */
/* Call the Synopsys-to-Xilinx constraints translator*/
/* utility DC2NCF to convert the Synopsys constraints*/
/* to a Xilinx NCF file. You may like to view */
/* dc2ncf.log to review the translation process. */
/* === */

 sh dc2ncf TOP + ".dc"

/* === */
/* Exit the Compiler. */
/* == */

 exit

/* === */
/* Now run the Xilinx design implementation tools. */
/* === */

The following example shows how to instantiate RAM using
LogiBLOX with Verilog.

module test(address,dataout,datain,writen,clk);

input [5:0] address;
output [3:0] dataout;
input [3:0] datain;
input writen;
input clk;

testram U0
(.A(address),
 .DO(dataout),
 .DI(datain),
 .WR_EN(writen),
 .WR_CLK(clk));

endmodule
5-10 Xilinx Development System

Using CORE Generator and LogiBLOX
//---
// LogiBLOX SYNC_RAM Module "testram"
// Created by LogiBLOX version M1.2.11
// on Sun May 18 19:34:35 1997
// Attributes
// MODTYPE = SYNC_RAM
// BUS_WIDTH = 4
// DEPTH = 64
//---

module testram(A, DO, DI, WR_EN, WR_CLK);

input [5:0] A;
output [3:0] DO;
input [3:0] DI;
input WR_EN;
input WR_CLK;
endmodule

/* ==*/
/* Sample Script for Synopsys to Xilinx Using */
/* FPGA Compiler with */
/* LogiBLOX Memory */
/* */
/* Targets the Xilinx XC4028EX-3 and assumes a */
/* Verilog source file by way of an example. */
/* */
/* For general use with XC4000E/EX architectures. */
/* Not suitable for use with XC3000A/XC5200 */
/* architectures. */
/* ==*/

/* === */
/* Set the name of the design’s top-level module. */
/* (Makes the script more readable and portable.) */
/* Also set some useful variables to record the */
/* designer and company name. */
/* === */

 TOP = test
Xilinx/Synopsys Interface guide 5-11

Xilinx/Synopsys Interface guide
 /* ========================== */
 /* Note: Assumes design file- */
 /* name and entity name are */
 /* the same (minus extension) */
 /* ========================== */

 designer = "XSI Team"
 company = "Xilinx, Inc"
 part = "4028expg299-3"

/* === */
/* Analyze and Elaborate the design file and specify */
/* the design file format. */
/* === */

 read –f verilog "testram.v"
 read –f verilog TOP + ".v"

/* === */
/* Set the current design to the top level. */
/* === */

 current_design TOP

/* === */
/* Set the synthesis design constraints. */
/* === */

 remove_constraint –all

/* Some example constraints */
/* create_clock <clock_port_name> –period 50
 set_input_delay 5 –clock <clock_port_name> \
 { <a_list_of_input_ports> }
 set_output_delay 5 –clock <clock_port_name> \
 { <a_list_of_output_ports> }
 set_max_delay 100 –from <source> –to <destination>
 set_false_path –from <source> –to <destination>
*/
5-12 Xilinx Development System

Using CORE Generator and LogiBLOX
/* Place dont_touch on LogiBLOX instantiation */

 set_dont_touch {U0}

/* === */
/* Indicate those ports on the top-level module that */
/* should become chip-level I/O pads. Assign any I/O */
/* attributes or parameters and perform the I/O */
/* synthesis. */
/* === */

 set_port_is_pad "*"

/* Some example I/O parameters */
/* set_pad_type –pullup <port_name>
 set_pad_type –no_clock all_inputs()
 set_pad_type –clock <clock_port_name>
 set_pad_type –exact BUFGS_F <hi_fanout_port_name>
 set_pad_type –slewrate HIGH all_outputs() */

 /* ============================= */
 /* Note: Synopsys slew-control= */
 /* HIGH is the same as Xilinx's */
 /* slewrate=SLOW. Synopsys slew- */
 /* control=LOW is same as Xilinx */
 /* slewrate=FAST. */
 /* ============================= */

 insert_pads

/* === */
/* Synthesize and optimize the design */
/* === */

 compile –boundary_optimization

/* === */
/* Write the design report files. */
/* === */
Xilinx/Synopsys Interface guide 5-13

Xilinx/Synopsys Interface guide
 report_fpga > TOP + ".fpga"
 report_timing > TOP + ".timing"

/* === */
/* Write out the design to a DB file. (Post compile) */
/* === */

 write –format db –hierarchy –output TOP + "_compiled.db"

/* === */
/* Replace CLBs and IOBs with gates. */
/* === */

 replace_fpga

/* === */
/* Set the part type for the output netlist. */
/* === */

 set_attribute TOP "part" –type string part

/* === */
/* Optional attribute to remove the FPGA Compiler's */
/* mapping structures from the design. This permits */
/* The Xilinx design implementation tools to map the */
/* design instead. */
/* === */

/* set_attribute find(design,"*") "xnfout_write_map_symbols" \
 –type boolean FALSE */

/* === */
/* Add any I/O constraints to the design. */
/* === */

/* set_attribute <port_name> "pad_location" \
 –type string "<pad_location>" */

/* === */
5-14 Xilinx Development System

Using CORE Generator and LogiBLOX
/* Write-out the timing constraints that were */
/* applied earlier. (Note that any design hierarchy */
/* needs to be flattened before the constraints are */
/* written-out.) */
/* === */

 ungroup –all –flatten
 write_script > TOP + ".dc"

/* Remove the LogiBLOX Memory from the Environment */
/* This is done to prevent insure that the */
/* .ngo file from LogiBLOX is used. */

 remove_design testram

/* Write out the design as a .sxnf file */

 write –f xnf –h –o TOP + ".sxnf"

/* === */
/* Call the Synopsys-to-Xilinx constraints translator*/
/* utility DC2NCF to convert the Synopsys constraints*/
/* to a Xilinx NCF file. You may like to view */
/* dc2ncf.log to review the translation process. */
/* === */

 sh dc2ncf TOP + ".dc"

/* === */
/* Exit the Compiler. */
/* === */

 exit

/* === */
/* Now run the Xilinx design implementation tools. */
/* === */
Xilinx/Synopsys Interface guide 5-15

Xilinx/Synopsys Interface guide
Instantiating RAM or ROM with FPGA Compiler
Use the following procedures and examples to instantiate a
LogiBLOX RAM or ROM in Verilog or VHDL with FPGA Compiler.

1. Create a LogiBLOX RAM/ROM with the LogiBLOX GUI.

When specifying options for LogiBLOX, specify the vendor type
as Synopsys. Also specify in the LogiBLOX GUI whether you
need Verilog or VHDL files.

2. For Verilog, create an NGC, VEI, and V file. For VHDL, create a
NGC, VHI, and VHD file.

The V and VHD files are simulation models. The VEI and VHI
files are templates which assist in instantiating the LogiBLOX
into your HDL. The NGC file is the actual LogiBLOX module for
your design.

3. For the Verilog flow, use the name of the NGC file as the name of
the module instantiation in the Verilog code.

The VEI file contains the module name, pin names, and port
names needed to instantiate the LogiBLOX memory. Do not just
rename the VEI file to a V file. Use the VEI file as a template for
instantiating the LogiBLOX memory in your design.

4. For the Verilog flow, make an empty Verilog file for the
LogiBLOX module to tell the Synopsys netlist writer the pin
directions for the LogiBLOX module.

5. A module with pin names and pin directions exists in the .vei file
produced by LogiBLOX. Cut this empty module out and place it
in a Verilog file with the same name as the LogiBLOX module
you created.

Read this file into Synopsys during the compile of your design.

6. For the Verilog flow, after instantiating the LogiBLOX into your
design, place a Dont Touch attribute on every instantiated
LogiBLOX instance.

7. For the Verilog flow, synthesize the design with the normal XSI
run script.

Note Before writing out the netlist file, remove the LogiBLOX
memory from the Synopsys memory. This prevents Synopsys
from overwriting the LogiBLOX module.
5-16 Xilinx Development System

Using CORE Generator and LogiBLOX
8. For VHDL, use the name of the NGC file as the name of the
component instantiation in the VHDL code. The VHI file contains
an example of how to instantiate the LogiBLOX into VHDL.

9. For VHDL, after instantiating the LogiBLOX into your VHDL
code, place a Dont Touch attribute on every instantiated
LogiBLOX instance.

10. For VHDL, synthesize the design. The synthesis run script for
VHDL is the same as the standard XSI run script.

The following example shows the testram LogiBLOX module V file
created from the VEI file.

module testram(A, DO, DI, WR_EN, WR_CLK);
input [5:0] A;
output [3:0] DO;
input [3:0] DI;
input WR_EN;
input WR_CLK;
endmodule

The following example shows the instantiation of a LogiBLOX design
in Verilog code.

module test(address,dataout,datain,writen,clk);
input [5:0] address;
output [3:0] dataout;
input [3:0] datain;
input writen;
input clk;
testram U0
(.A(address)
 .DO(dataout),
 .DI(datain),
 .WR_EN(writen),
 .WR_CLK(clk));
endmodule

The following example shows the run script for compiling a
LogiBLOX design in Verilog.

read -f verilog “testram.v” read -f verilog
“test.v”

set_port_is_pad “*” insert_pads
compile
Xilinx/Synopsys Interface guide 5-17

Xilinx/Synopsys Interface guide
replace_fpga
ungroup -all -flatten
write_script test.dc
sh dc2ncf test.dc
remove_design testram
write -f xnf -h -o “test.sxnf”

The following example shows an instantiation of a LogiBLOX design
in VHDL code.

library IEEE;
use IEEE.std_logic_1164.all;
entity test is
port (ADDRESS: IN std_logic_vector(5 downto 0);
 DATAOUT: OUT std_logic_vector(3 downto 0);
 DATAIN: IN std_logic_vector(3 downto 0);
 WRITEN: IN std_logic;

 CLK: IN std_logic);
end test;
architecture inside of test is
component testram
 port (A: IN std_logic_vector(5 downto 0);
 DO: OUT std_logic_vector(3 downto 0);
 DI: IN std_logic_vector(3 downto 0);
 WR_EN: IN std_logic;
 WR_CLK: IN std_logic);
end component;
begin
U0: testram port

map(A=ADDRESS,DO=DATAOUT,DI=DATAIN,
 WR_EN=WRITEN,WR_CLK=CLK);
end inside;

The following example shows a run script for instantiated LogiBLOX
designs in VHDL code.

analyze -f vhdl “test.vhd” elaborate test
set_port_is_pad “*” insert_pads
compile
replace_fpga
ungroup -all -flatten
write_script test.dc
sh dc2ncf test.dc
write -f xnf -h -o “test.sxnf”
5-18 Xilinx Development System

Using CORE Generator and LogiBLOX
Instantiating RAM or ROM with FPGA Compiler II
Use the following procedures to instantiate a LogiBLOX RAM or
ROM in Verilog or VHDL with FPGA Compiler II.

1. Create a LogiBLOX RAM or ROM with the LogiBLOX GUI.

When specifying options for LogiBLOX, specify the vendor type
as Synopsys. Also specify in the LogiBLOX GUI whether you
need Verilog or VHDL files.

2. For Verilog, create an NGC, VEI, and V file. For VHDL, create an
NGC, VHI, and VHD file.

The V and VHD files are simulation models. The VEI and VHI
files are templates which assist in instantiating the LogiBLOX
into your HDL. The NGC file is the actual LogiBLOX module for
your design.

3. For the Verilog flow, use the name of the NGC file as the name of
the module instantiation in the Verilog code.

The VEI file contains the module name, pin names, and port
names needed to instantiate the LogiBLOX memory. Do not
rename the VEI file to a V file. Use the VEI file as a template for
instantiating the LogiBLOX memory in your design.

4. For the Verilog flow, make an empty Verilog file for the
LogiBLOX module to tell the Synopsys netlist writer the pin
directions for the LogiBLOX module.
Xilinx/Synopsys Interface guide 5-19

Xilinx/Synopsys Interface guide
5. In the VEI file produced by LogiBLOX, there is a module with pin
names and pin directions. Cut this empty module out and place it
in a Verilog file with the same name as the LogiBLOX module
you created.

Read this file into FPGA Compiler II during the compiling of
your design.

6. After implementing the design files in FPGA Compiler II, notice
in the Warnings window a number of warnings about the
instantiated LogiBLOX module. FPGA Compiler II reports that it
cannot link to the instantiated design. Also, FPGA Compiler II
can report that some of the wires attached to the instantiated
LogiBLOX have multiple drivers. Ignore these warnings.

Additionally, after implementing the design, in the modules view
in the Edit Constraints view, all instantiated LogiBLOX modules
are tagged as UNLINKED, a normal situation. UNLINKED
means that FPGA Compiler II cannot find a library cell in its
synthesis library that matches, a normal situation because the
instantiated LogiBLOX is a black-box.

7. After implementing the design, if the implementation icon
contains a “!” mark, optimize (synthesize) the design and write
out the netlist file.

8. For VHDL, use the name of the NGC file as the name of the
component instantiation in the VHDL code.

The VHI file contains an example of how to instantiate the
LogiBLOX into VHDL.

9. After implementing the design files in FPGA Compiler II, notice
in the Warnings window a number of warnings about the
instantiated LogiBLOX module. FPGA Compiler II reports that it
cannot link to the instantiated design. Also, FPGA Compiler II
can report that some of the wires attached to the instantiated
LogiBLOX have multiple drivers. Ignore these warnings.

Additionally, after implementing the design, in the modules view
in the Edit Constraints view, all instantiated LogiBLOX modules
are tagged as UNLINKED, a normal situation. UNLINKED
means that FPGA Compiler II cannot find a library cell in its
synthesis library that matches, a normal situation because the
instantiated LogiBLOX is a black-box.
5-20 Xilinx Development System

Using CORE Generator and LogiBLOX
10. After implementing the design, if the implementation icon
contains a “!” mark, optimize (synthesize) the design and write
out the netlist file.

The following examples shows the testram LogiBLOX module V file
created from the VEI file.

module testram(A, DO, DI, WR_EN, WR_CLK);
input [5:0] A;
output [3:0] DO;
input [3:0] DI;
input WR_EN;
input WR_CLK;
endmodule

The following example shows the instantiation of a LogiBLOX design
in Verilog code.

module test(address,dataout,datain,writen,clk);
input [5:0] address;
output [3:0] dataout;
input [3:0] datain;
input writen;
input clk;
testram U0
(.A(address),
 .DO(dataout),
 .DI(datain),
 .WR_EN(writen),
 .WR_CLK(clk));
endmodule

The following examples shows an instantiation of a LogiBLOX design
in VHDL code.

library IEEE;
use IEEE.std_logic_1164.all;
entity test is
port (ADDRESS: IN std_logic_vector(5 downto 0);
 DATAOUT: OUT std_logic_vector(3 downto 0);

 DATAIN: IN std_logic_vector(3 downto 0);
 WRITEN: IN std_logic;
 CLK: IN std_logic);
end test;
architecture inside of test is
Xilinx/Synopsys Interface guide 5-21

Xilinx/Synopsys Interface guide
component testram
 port (A: IN std_logic_vector(5 downto 0);
 DO: OUT std_logic_vector(3 downto 0);
 DI: IN std_logic_vector(3 downto 0);
 WR_EN: IN std_logic;
 WR_CLK: IN std_logic);
end component;
begin
U0: testram port

map(A=ADDRESS,DO=DATAOUT,DI=DATAIN,
 WR_EN=WRITEN,WR_CLK=CLK);
end inside;
5-22 Xilinx Development System

Chapter 6

Simulating Your Design

You can efficiently verifyyour design changes with the XSI VHDL
and Verilog simulation options described in this chapter. VHDL
simulation supports the VHDL Initiative Towards ASIC Libraries
(VITAL) standard, which allows you to simulate with any VITAL-
compliant simulator, including Synopsys VSS. Built-in Verilog
support allows you to simulate with Cadence Verilog-XL and other
compatible simulators.

XSI simulation options provide the following.

• Fast, timing-accurate, gate-level HDL simulation with the VHDL,
VITAL-compliant, or Verilog versions of the SimPrim Library

• RTL or post-synthesis, functional verification of designs
containing instantiated Xilinx Unified Library components, using
either the VITAL or Verilog versions of the UniSim Library

• Support for FPGA architecture features such as Global Set/Reset,
Oscillator, RAM, and ROM

This chapter includes the following sections:

• “Simulation Design Flow Overview”

• “Using Simulation Libraries”

• “Working with the VITAL Standard”

• “VHDL and Verilog Simulation Flow”

• “Synthesizing/Simulating for VHDL Global Set/Reset
Emulation”

• “NGDBuild Support of Multiple Device Architectures”

• “Recommended VSS Simulation Strategy”

• “VSS Simulation Flow”
Xilinx/Synopsys Interface Guide 6-1

Xilinx/Synopsys Interface Guide
• “Editing the VSS Setup File”

• “Creating a Testbench File”

• “Using RTL Simulation”

• “Implementing Your Design”

Simulation Design Flow Overview
A typical single chip VHDL or Verilog simulation design flow
includes the following steps, illustrated in Figure 6-1

1. Generation of a VHDL RTL description

2. VHDL RTL simulation

3. Synthesis implementation

4. Optional unit delay gate-level functional simulation

5. Xilinx Implementation

6. Timing simulation
6-2 Xilinx Development System

Simulating Your Design
Figure 6-1 HDL Simulation Design Flow

Using Simulation Libraries
This section provides information on the libraries needed to simulate
your VHDL and Verilog designs.

UniSim Library
To make an RTL simulation FPGA-specific, the design must contain
instantiated Unified Library or LogiBLOX components. To support
these instantiations, Xilinx provides a functional UniSim library and
a behavioral LogiBLOX library. The VHDL and Verilog versions of

X9246

UniSim

(VITAL)

(VITAL)

Original HDL Source Testbench

UniSim source code for RTL
simulation of instantiated
unified library primitives.

.synopsys_vss.setup

VSS v1998.08
or later

.sim .sim

VHDLAN -i VHDLAN -i

.vhd .vhd

VHDLAN -i

UniSim
Xilinx/Synopsys Interface Guide 6-3

Xilinx/Synopsys Interface Guide
the UniSim library differ because of variations in language features
and methodologies. You can also use the UniSim library for post-
synthesis, gate-level simulation as discussed in the “VHDL and
Verilog Simulation Flow” section.

UniSim Library Structure

Use the UniSim Library for functional simulation only; it contains
default unit delays. Structures differ for the library directories for
VHDL and Verilog. Only one VHDL library exists for all Xilinx
technologies. However, some components contain configuration
statements to select the appropriate functionality for a specific
architecture. A single library makes it easier to switch between
technologies. Because Verilog does not have configuration
statements, separate libraries are provided for each technology.

The UniSim Library contains all the Xilinx Unified Library
components inferred by most synthesis tools. In addition, the UniSim
Library contains commonly instantiated components such as IOs and
memory components. Use your synthesis tool’s module generators or
LogiBLOX to generate higher order functions such as adders,
counters, and RAM.

Schematic macros are not provided because schematic vendors
usually provide the lower-level netlist when a synthesis tool imports
a design. This lower-level netlist for a schematic macro is required for
implementation as well.

Compile the VHDL library using the Xilinx-supplied source files in
$XILINX/vhdl/src/unisims. Compile the source files into a library
named UNISIM.
6-4 Xilinx Development System

Simulating Your Design
You need to compile the Verilog library only if your Verilog simu-
lator supports compiled simulation. Some Xilinx device families, (for
example, XC3000), have some library components with a slightly
different functionality than the same library components of other
Xilinx device families. Separate libraries are provided for those
device families. The Verilog libraries located in $XILINX/verilog/
src/unisims are in upper case. If needed, you can find the lower case
versions of these libraries in the Xilinx Cadence Interface located in
$XILINX/cadence/data.

A few differences exist between the upper and lower case versions of
the Verilog UniSim libraries. For example, because buf, pullup, and
pulldown are reserved words in Verilog, the lower case version of the
UniSim library uses buff, pullup1, and pulldown1, and the upper
case version uses BUF, PULLUP, and PULDOWN.

UniSim Library Files

You can compile the UniSim VHDL Library to any physical location
on your system. You can find the VHDL source files in $XILINX/
vhdl/src/unisims, listed below in the order in which you must
compile them with the Synopsys VSS compiler.

1. unisim_VCOMP.vhd (component declaration file)

2. unisim_VCOMP52K.vhd (substitutional component declaration
file for XC5200 designs)

3. unisim_VPKG.vhd (package file)

4. unisim_VITAL.vhd (model file)

5. unisim_VITAL52K.vhd (additional model file for XC5200
designs)

6. unisim_VCFG4K.vhd (configuration file for XC4000 edge
decoders)

7. unisim_VCFG52K.vhd (configuration file for XC5200 internal
decoders)
Xilinx/Synopsys Interface Guide 6-5

Xilinx/Synopsys Interface Guide
You can find the uppercase Verilog components in individual
component files in the following directories.

• $XILINX/verilog/src/uni3000 (Series 3000)

• $XILINX/verilog/src/uni5200 (Series 5200)

• $XILINX/verilog/src/uni9000 (Series 9000)

• $XILINX/verilog/src/unisims (All other devices)

UniSim Library Component Instantiation

You must refer to the compiled UniSim Library in your VHDL code
to instantiate components from this library in your design for RTL
simulation. The VHDL simulation tool must map the logical library
to the physical location of the compiled library. Verilog must also
map to the UniSim Verilog library. Even though VHDL component
declarations are provided in the library, component declarations are
required in the RTL code for synthesis.

SimPrim Library
Use the SimPrim (simulation primitive) library for post-NGDBuild,
post-map partial timing, and full timing back-annotated simulation.

LogiBLOX Library
Use the LogiBLOX module generator to create schematic-based
modules such as adders, counters, and large memory blocks. For
your HDL designs, use LogiBLOX to generate large blocks of
memory for instantiation. Refer to the “Using CORE Generator and
LogiBLOX” chapter and LogiBLOX Guide for more information.

LogiBLOX Library Compilation

You can compile the LogiBLOX VHDL library to any physical
location. You can find the VHDL source files in $XILINX/vhdl/src/
logiblox, listed below in the order in which you must compile them.

1. mvlutil.vhd

2. mvlarith.vhd

3. logiblox.vhd
6-6 Xilinx Development System

Simulating Your Design
LogiBLOX Library Component Instantiation

Simulate LogiBLOX components with behavioral code not intended
for synthesis. The synthesizer processes the component as a “black
box.” The implementation software reads the NGO file created by
LogiBLOX. You can find the source libraries for LogiBLOX in
$XILINX/vhdl/src/logiblox. The LogiBLOX tool creates the actual
models. You must compile the package files into a library called
LOGIBLOX. You should compile the LogiBLOX component model in
your working directory with your design.

Working with the VITAL Standard
VITAL was created to promote the standardization of VHDL libraries
and simulators from different vendors. VITAL also defines a standard
for back-annotation of timing information to VHDL simulators.

The IEEE-STD 1076.4 VITAL standard accelerates gate-level
simulations. Check with your simulator company to verify they
support this standard. Also, make sure you use the proper settings
and VHDL packages for this standard.

Your simulator can also accelerate IEEE-1164, the standard logic
package for Types. VITAL libraries require overhead for timing
checks and back-annotation styles. The UniSim Library turns off
these timing checks because they do not apply to unit delay
functional simulation. The SimPrim back-annotation library by
default turns on these timing checks. However, you can turn them off
by editing and recompiling the SimPrim components file.

VHDL and Verilog Simulation Flow
HDL simulation can occur at five different steps in the design flow, as
listed below. Subsequent sections describe each step in more detail.

The following figure illustrates the design flow.

• Register Transfer Level (RTL)

• Post-synthesis, pre-NGDBuild

• Post-NGDBuild, pre-MAP

• Post-MAP partial timing (CLB and IOB block delays only; no net
delays)
Xilinx/Synopsys Interface Guide 6-7

Xilinx/Synopsys Interface Guide
• Post-route full timing (block and net delays)

Figure 6-2 VHDL and Verilog Simulation Flow

Simulating at Register Transfer Level (RTL)
RTL simulation allows you to verify or simulate your HDL design at
the system or chip level. High-level RTL language constructs usually
describe the system or chip at this level. You can use VHDL and
Verilog simulators to check your design’s functionality before you
implement it in gates.

X9379

VHDL or
Verilog SimPrim

Library

VHDL or
Verilog Designs

NGD

NGDAnnoNGM

PAR

Simulation

EDIF 2 0 0 &
Constraints

UCF
User Constraints File XNF and

Constraints

NCF
Netlist Constraint File

NGA

Synthesis
Libraries

Testbench
Stimulus

NCD & Constraints

NCD & Constraints

NGDBuild

MAP

RTL

CPLD Fitter
Partial Timing

Full Timing

VHDL or Verilog
UniSim Library

Synthesis

Verilog and
SDF 2.1

VHDL and
SDF 2.1

Netlist Translation Out
6-8 Xilinx Development System

Simulating Your Design
Use a testbench to model the environment of the system or chip. At
this level, you can use the UniSim library to instantiate components
from the Xilinx Unified Library. You can also instantiate LogiBLOX
components if you do not want to use modules generated by your
synthesis tool.

Conducting a Post-Synthesis (pre-NGDBuild) Gate-
Level Functional Simulation

After synthesizing the system or chip to gates, re-use the testbench in
post-synthesis, gate-level functional simulation to simulate the
synthesized result. Check consistency with your original design
description. In the Xilinx design flow, post-synthesis, gate-level
simulation includes any simulation performed after any of the
synthesis, map, or place and route steps.

A post-synthesis, pre-NGDBuild gate-level functional simulation
allows you to directly verify your design after synthesis. Any
differences in the behavior of the original RTL description and the
synthesized design can indicate a problem with your synthesis tool.
Not all synthesis tools support post-synthesis simulation. The
synthesis tool must be able to write VHDL or Verilog output in terms
of the UniSim library.

LogiBLOX components remain behavioral models, expanded and
represented as gates. The library usage guidelines for RTL simulation
also apply to post-synthesis gate-level functional simulation.

Conducting a Post-NGDBuild (Pre-Map) Gate-Level
Functional Simulation

If your synthesis tool cannot write UniSim-compatible VHDL or
Verilog netlists, you cannot simulate the synthesis output. In this
case, use post-NGDBuild (pre-MAP) gate-level functional simulation
with generic SimPrim library models. As with the post-synthesis, pre-
NGDBuild simulation, this type of gate-level simulation allows you
to verify that your design synthesized correctly.
Xilinx/Synopsys Interface Guide 6-9

Xilinx/Synopsys Interface Guide
Conducting a Post-Route Full Timing (Block and Net
Delays) Simulation

After using PAR to route your design, you can simulate it with the
actual block and net timing delays with the same testbench used in
the earlier behavioral simulation. The back-annotation process
produces a netlist of SimPrims annotated with the appropriate block
and net delay data from the place and route process.

Different simulation libraries are required to support simulation
before and after you run NGDBuild on your design. Prior to
NGDBuild, designs are expressed as netlists containing Unified
Library components. After NGDBuild, designs are expressed as
netlists containing SimPrims. While the impact of these library
changes are not apparent, designs need different simulation libraries
for pre- and post-implementation simulation. Additionally, pre- and
post-implementation netlists include different gate-level components.

Synthesizing/Simulating for VHDL Global Set/Reset
Emulation

VHDL requires a testbench to control all signal ports. You can
instantiate certain VHDL-specific components, explained in the
following sections, in the RTL and post-synthesis VHDL description
to allow the simulation of the global signals for global set/reset and
global 3-state.

NGD2VHDL creates a port in your back-annotated design entity for
stimulating the global set/reset or 3-state enable signals. This port
does not actually exist on the configured part.

When running NGD2VHDL, you do not need to use the –gp switch
to create an external port if you instantiated a STARTUP block in your
RTL design. The port is already identified and connected to the global
set/reset or 3-state enable signal. If you do not use the –gp switchor
did not instantiate a STARTUP block, you must use special
components, as described in the following sections.

Note Xilinx recommends that you do not use GSR to reset user Flip-
flops on Virtex/Spartan-II
6-10 Xilinx Development System

Simulating Your Design
Using STARTBUF in VHDL
STARTBUF replaces STARTUP. With STARTBUF, you can
functionally simulate the GSR/GR net in both functional and timing
simulation. By connecting the input pin of the STARTBUF to a top-
level port and using STARTBUF as the source for all asynchronous
set/reset signals in a design, the Xilinx software can automatically
optimize the design to use the GSR/GR in a device. Also, unlike
STARTUP, when you instantiate STARTBUF in your design, you can
perform functional simulation of the GSR/GR net.

The STARTBUF component passes a reset or 3-state signal in the
same way that a buffer allows simulation to proceed and also
instantiates the STARTUP block for implementation. One version of
STARTBUF works for all devices, however, the XC5200 and the
XC4000 STARTUP blocks have different pin names. Implementation
with the correct STARTUP block occurs automatically. The following
shows an instantiation example of the STARTBUF component.

U1: STARTBUF port map (GSRIN => DEV_GSR_PORT, GTSIN
=>DEV_GTS_PORT, CLKIN => ‘0’, GSROUT => GSR_NET,
GTSOUT => GTS_NET, Q2OUT => open, Q3OUT => open,
Q1Q4OUT => open, DONEINOUT => open):

You can use one or both of the input ports (GSRIN and GTSIN) of the
STARTBUF component and the associated output ports (GSROUT
and GTSOUT). You can use pins left “open” to pass configuration
instructions to the implementation tools by connecting the
appropriate signal to the port instead of leaving it open.

Instantiating a STARTUP Block in VHDL
The STARTUP block is traditionally instantiated to identify the GR,
PRLD, or GSR signals for implementation. However, simulation can
occur only when the net attached to the GSR or GTS goes off the chip
because the STARTUP block does not have a simulation model. You
can use the new components described below to simulate global set/
reset or 3-state nets whether or not the signal goes off the chip.
Xilinx/Synopsys Interface Guide 6-11

Xilinx/Synopsys Interface Guide
Generating a Reset-On-Configuration in VHDL
The Reset-On-Configuration (ROC) component generates a reset
pulse during back-annotation if you do not use the –gp option or
STARTUP block options. Therefore, you can instantiate the ROC in
the front end to match for functionality with GSR, GR, or PRLD (done
in both functional and timing simulation). During back-annotation,
the entity and architecture for the ROC component are placed in your
design’s output VHDL file.

In the front end, the entity and architecture reside in the UniSim
Library, and require a component declaration and instantiation.

The ROC component generates a one-time initial pulse to drive the
GR, GSR, or PRLD net starting at time “0” for a user-defined pulse
width. You can set the pulse width with a generic in a configuration
statement. The default value of the generic “width” is 0 ns, which
disables the ROC component and holds the global set/reset net low.

The ROC component allows you to simulate with the same testbench
as in RTL simulation, and also allows you to control the width of the
GSR signal in your implemented design.

One of the easiest methods for mapping the generic involves
configuring your testbench. An example testbench configuration for
setting the generic follows.

CONFIGURATION cfg_my_timing_testbench OF my_testbench IS
 FOR my_testbench_architecture
 FOR ALL:my_design USE ENTITY work.my_design(structure);
 FOR structure
 FOR ALL:roc ENTITY work.roc (roc_v);
 GENERIC MAP (width => 100 ms)
 END FOR;
 END FOR;
 END FOR;
 END FOR;
END cfg_my_timing_testbench;

The following shows an instantiation example of the ROC
component.

U1: ROC port map (O => GSR_NET);
6-12 Xilinx Development System

Simulating Your Design
Using ROCBUF in VHDL
The ROCBUF component allows you to provide a stimulus for the
ROC signal through a testbench. However, the port connected to it
does not implement as a chip pin. Use the –gp switch with
NGD2VHDL to use the port in timing simulation. The following
example shows an instantiation of the ROCBUF component.

U1: ROCBUF port map (I => SIM_GSR_PORT, O => GSR_NET);

Generating a 3-State-On-Configuration in VHDL
The 3-State-On-Configuration (TOC) component generates a pulse on
the design’s 3-state net if you do not use the –tp option or STARTUP
block options. The entity and architecture for the TOC component are
placed in your design’s output VHDL file.

The TOC component generates a one-time initial pulse to drive the
design’s 3-state net starting at time ‘0’ for a user-defined pulse width.
You can set the pulse width with a generic in a configuration
statement. The default value of “width,” 0 ns, disables the TOC
component and causes the 3-state enable to be held low.

The TOC component allows you to simulate with the same testbench
as in the RTL simulation, and also allows you to control the width of
the 3-state enable signal in your implemented design.

The TOC components require a value for the generic width, usually
specified with a configuration statement. Otherwise, you must
include a generic map as part of the component instantiation. You
can set the generic width with any generic mapping method. Set the
“width” generic after consulting The Programmable Logic Data Book
for the particular part and mode you have implemented. For
example, a XC4000E part can vary from 10 ms to 130 ms. Use the
TPOR (Power-On Reset) parameter found in the Configuration
Switching Characteristics tables for Master, Slave, and Peripheral
modes.

One of the easiest methods for mapping the generic is to configure
your testbench. An example testbench configuration for setting the
generic follows.
Xilinx/Synopsys Interface Guide 6-13

Xilinx/Synopsys Interface Guide
CONFIGURATION cfg_my_timing_testbench OF my_testbench IS
 FOR my_testbench_architecture
 FOR ALL:my_design USE ENTITY work.my_design(structrue);
 FOR structure
 FOR ALL:toc ENTITY work.toc (toc_v);
 GENERIC MAP (width => 100 ms)
 END FOR;
 END FOR;
 END FOR;
 END FOR;
END cfg_my_timing_testbench;

The following example shows an instantiation of the TOC
component.

U2: TOC port map (O => GTS_NET);

Using TOCBUF in VHDL
The TOCBUF allows you to provide a stimulus for the global 3-state
signal (GTS) through a testbench. However, the port connected to it
does not implement as a chip pin. Use the –tp switch with
NGD2VHDL to use the port in timing simulation. The following
example shows an instantiation of the TOCBUF component.

U2: TOCBUF port map (I =>SIM_GTS_PORT, O =>GTS_NET);

Using Oscillators in VHDL
The SimPrim library does not include a generic oscillator component
because the oscillator components in the UNISIM library are device
dependent. After back-annotation, your VHDL design output
contains the oscillator entity and architectures. The UniSim Library
instantiates and simulates oscillators for functional simulation. You
must set the period of the base frequency for simulation because the
default period of 0 ns disables the oscillator. The oscillator’s
frequency can vary significantly with process and temperature.

Before setting the base period parameter, consult The Programmable
Logic Data Book for the part you are using. For example, for a XC4000
on-chip oscillator, the base frequency ranges from 4 MHz to 10 MHz,
and is nominally 8 MHz. Therefore, the base period generic
“period_8m” for the XC4000E OSC4 VHDL model ranges from 250 ns
to 100ns, as shown in the following example.
6-14 Xilinx Development System

Simulating Your Design
CONFIGURATION cfg_my_functional_testbench OF my_testbench IS
 FOR my_testbench_architecture
 FOR ALL: my_design USE ENTITY work.my_design (my_design_rtl);
 FOR my_design_rtl
 FOR ALL:my_submodule USE ENTITY work.my_submodule

 (my_submodule_rtl);
 FOR my_submodule_rtl
 FOR all: osc4 USE ENTITY work.osc4 (structure)
 GENERIC MAP (period_8m => 125 nS);
 END FOR;
 END FOR;
 END FOR;
 END FOR;
 END FOR;
 END FOR;
END cfg_my_functional_testbench;

Using Global Set/Reset Emulation in Verilog
For more information, refer to the Xilinx/Concept-HDL Interface Guide.

Using Global 3-State Emulation in Verilog
For more information, refer to the Xilinx/Concept-HDL Interface Guide.

Using Oscillators in Verilog
For more information, refer to the Xilinx/Concept-HDL Interface Guide.

NGDBuild Support of Multiple Device Architectures
Note Refer to Figure 6-2

NGDBuild processes multiple device architectures with the same
core map and place and route software. NGDBuild performs two
functions during design implementation.

• NGDBuild stores your design’s elements in a single database so
that subsequent operations, such as mapping and routing, are
performed on the entire design.

• NGDBuild creates an native generic database (NGD) netlist,
which consists of technology-independent primitives common to
all FPGAs (SimPrims).
Xilinx/Synopsys Interface Guide 6-15

Xilinx/Synopsys Interface Guide
The MAP program reads this NGD file and creates a native circuit
description (NCD) file, a physical description of your design in terms
of the target device.

Next, the PAR program places and routes the NCD file. NGDAnno
creates an NGA file, a back-annotated NGD file.

Recommended VSS Simulation Strategy
Because of the flexibility of the simulation environment, you can
verify your design using various methods. The following steps,
explained in subsequent sections, show you one recommended flow
for FPGA simulation.

1. Create a .synopsys_vss.setup file.

Before you can begin simulation, you must create a simulation
setup file.

2. Specify the initial states of your registers in your VHDL source
file.

 If you use attributes at the DC Shell command line or in Design
Analyzer to control the initial states of the registers in your
design, RTL simulation does not reflect those initial states.

3. Create a test bench file.

By following the guidelines described in this section, you can use
the same test bench for both RTL and timing simulation.

4. Perform RTL simulation.

This step allows you to debug the behavior of your source design
before implementing it in an FPGA.

5. Implement the design in an FPGA.

This step provides the necessary physical resource information
necessary for timing simulation.

6. Prepare the timing model.

The NGD2VHDL program prepares a back-annotated timing
model of your design for simulation.

7. Perform timing simulation.
6-16 Xilinx Development System

Simulating Your Design
By re-using the RTL simulation test bench file, you can easily
compare results and prevent errors caused by accidental
differences between separate test bench files.

VSS Simulation Flow
The VSS simulation flows appear in the following two figures.

Figure 6-3 RTL Simulation

X9246

UniSim

(VITAL)

(VITAL)

Original HDL Source Testbench

UniSim source code for RTL
simulation of instantiated
unified library primitives.

.synopsys_vss.setup

VSS v1998.08
or later

.sim .sim

VHDLAN -i VHDLAN -i

.vhd .vhd

VHDLAN -i

UniSim
Xilinx/Synopsys Interface Guide 6-17

Xilinx/Synopsys Interface Guide
Figure 6-4 Back-annotation Simulation

Editing the VSS Setup File
To properly analyze and simulate Xilinx designs using VSS, you must
edit your Synopsys VSS setup file, .synopsys_vss.setup. You can find
a sample VSS setup file in $XILINX/synopsys/examples/
template.synopsys_vss. setup. You can copy this file to your project
directory and rename it .synopsys_vss.setup.

The following example shows the sample VSS setup file in $XILINX/
synopsys/examples/template.synopsys_vss. setup. Make sure you
have included the information in this file in your VSS setup file.

X9247

Source Core SimPrims
(Back-Annotation

Simulation Primitives)

VHDLAN -i

SimPrim

(VITAL)

(VITAL)

.synopsys_vss.setup

Testbench

.sim

VHDLAN -i

.vhd

SimPrim

.sim

VHDLAN -i

.vhd

Back-annotation
netlist and timing

.sdf

VSS v1998.08
6-18 Xilinx Development System

Simulating Your Design
-- === --
-- Template .synopsys_vss.setup file for Xilinx design --
-- For use with Synopsys VSS. --
-- === --
-- === --
-- Set any simulation preferences. --
-- === --
CS_COMPILED = FALSE
TIMEBASE = NS
TIME_RES_FACTOR = 0.1
-- == --
-- Define a work library in the current project dir --
-- to hold temporary files and keep the project area --
-- uncluttered. Note: You must create a subdirectory --
-- in your project directory called WORK. --
-- == --
WORK > DEFAULT
DEFAULT : ./WORK
-- == --
-- Note that the following simulation libraries are --
-- provided ready-analyzed with VSS v9701. If you’re --
-- using a later version of VSS then refer to the --
-- automatic compile scripts provided in the --
-- appropriate library’s source directory, e.g. --
-- $XILINX/synopsys/libraries/sim/src/unisims --
-- == --
UNISIM : $XILINX/synopsys/libraries/sim/lib/unisims

-- == --
-- VITAL SimPrim libraries provided to support back- --
-- annotated simulation only. --
-- == --
SIMPRIM : $XILINX/synopsys/libraries/sim/lib/simprims
-- == --
-- Packages used by LogiBLOX functional simulation --
-- models only. I.e. To support behavioral simulation --
-- of VHDL designs with instantiated LogiBLOX cells. --
-- == --
LOGIBLOX : $XILINX/synopsys/libraries/sim/lib/logiblox

-- == --
-- Xilinx XC9000 FTGS simulation libraries. --
Xilinx/Synopsys Interface Guide 6-19

Xilinx/Synopsys Interface Guide
-- == --
XC9000 : $XILINX/synopsys/libraries/sim/lib/xc9000/ftgs

Creating a Testbench File
Follow the instructions in the testbench.vhd file included with the
stopwatch tutorial to create a testbench file for your design. See the
XSI tutorial at http://support.xilinx.com/support/techsup/
tutorials/index.htm for more information about creating a testbench
for Xilinx devices. You can use the same testbench for RTL and timing
simulation.

After you have created a testbench file, you can begin using the VSS
simulator for RTL simulation.

Using RTL Simulation
Use RTL simulation to debug your logic before fitting your design
into an FPGA.

Generally RTL level simulation does not require VITAL or Verilog
unified library models because VHDL simulators can simulate
behavioral code. However if your design contains instantiated
components (such as RAMs, ROMs, input registers, INFF, clock
buffers), the simulator must have access to VITAL or Verilog models
for these front end unified library components.

During simulation, analyze your design’s modules according to
hierarchical precedence with the lowest first (analyze the testbench
last). Analyze the RTL models for all instantiated primitives, followed
by the design files, with the Synopsys VHDLAN command.

vhdlan –i module.vhd

.

.

.

vhdlan –i testbench.vhd
6-20 Xilinx Development System

http://support.xilinx.com/support/techsup/tutorials/index.htm
http://support.xilinx.com/support/techsup/tutorials/index.htm

Simulating Your Design
Note: Use the –i option on the VHDLAN command. While this
option can result in a slight increase in simulation time, it is not
dependent on any operating system or C compilers. Additionally,
VHDLAN can analyze your design in compiled or interpretive
modes. While the compiled mode usually accelerates simulation run
times, it reduces debugger visibility into the simulation. For more
information, refer to the Synopsys documentation.

After analyzing all your design modules (including the testbench),
start the simulator. The simulator comes in two versions, a graphic
debugging environment, VHDLDBX, and a command-line driven
simulator, VHDLSIM. VHDLDBX allows you to select the desired
configuration from a graphic window. VHDLSIM requires you to
specify the desired configuration at the command line. In either case,
select the configuration name associated with your testbench entity.

For example, consider a testbench with the following entity and
architecture statements.

entity my_testbench is
end my_testbench;
architecture my_vectors of my_testbench is
.
.
begin
.
.
end my_vectors;

At a minimum, you then require a configuration of the following
type.

Configuration my_configuration of my_testbench is
 for my_vectors
 end for;
end my_configuration;

To start VHDLDBX on this design, perform the following steps.

1. Enter the following at the UNIX command line.

vhdldbx

2. Select my_configuration from the command list.

3. Press OK.
Xilinx/Synopsys Interface Guide 6-21

Xilinx/Synopsys Interface Guide
To start VHDLSIM on this design, enter the following command at
the UNIX command line.

vhdlsim my_configuration

For an example of how to use these tools, refer to the XSI tutorial at
http://support.xilinx.com/support/techsup/tutorials/index.htm.
Also, see the Synopsys user documentation for more information.

The stopwatch tutorial provides the behv_sim.csh script file. This
script illustrates the necessary steps to perform an RTL simulation on
the stopwatch design. You can modify behv_sim.csh to use with your
designs. This script analyzes the VHDL files, and starts the VSS
VHDL Debugger (VHDLDBX). During simulation, the testbench
applies stimulus to the design, and monitors and records its outputs.

Implementing Your Design
After debugging your design using RTL simulation, you can compile
it using synthesis and implement it in an FPGA using the Xilinx
software. You must implement your design before performing timing
simulation.

Use DC Shell commands or Design Analyzer, as described in the
“Synthesizing Your Design with FPGA Compiler and Design
Compiler” chapter, to create the XNF or EDIF netlist file required by
the Xilinx software. This gate-level netlist file contains components
from the appropriate library but not timing information. The Xilinx
software processes the netlist file and places the logical design into
the physical architecture of your target FPGA.

After the Xilinx software implements the design, the actual target
device timing information is available for timing simulation.

Using the stopwatch design as an example, the following steps
provide an overview of the implementation procedure.

1. Compile the design, targeting the appropriate libraries, and
create an XNF or EDIF netlist by executing the following
command at the command line.

dc_shell –f watch.script

During processing, the system displays informational messages.

2. Run NGDBuild to process the netlist. NGDBuild translates the
Synopsys-generated netlist to a Xilinx netlist.
6-22 Xilinx Development System

http://support.xilinx.com/support/techsup/tutorials/index.htm

Simulating Your Design
ngdbuild –p parttype watch

3. Run the MAP program. MAP allocates the logic to CLBs and
IOBs.

map watch

4. Run PAR, which produces a placed and routed design. The –w
option specifies the output file name.

PAR watch –w watch_routed

5. Run NGDAnno, which relates the placed and routed design with
the original design to ensure the retention of as many of the
original component and net names as possible.

ngdanno watch_routed watch

6. Run NGD2VHDL, which creates a structural VHDL netlist for
use as a simulation model and a corresponding SDF file
containing timing information.

ngd2vhdl watch_routed

When simulating, you must analyze your design’s modules
according to hierarchical precedence with the lowest first (structural
netlist first, followed by the testbench).

vhdlan –i routed_design.vhd

vhdlan –i testbench.vhd

Note: VHDLAN can analyze your design in compiled or interpretive
modes. While the compiled mode usually accelerates simulation run
times, it reduces debugger visibility into the simulation. For more
information, refer to the Synopsys documentation.

The VHDL Simulator launches and reads in the testbench, the back-
annotated VHDL model for your placed and routed design, and the
associated SDF file.

For timing simulation, the simulator starts in the same way as for RTL
simulation, but with the addition of the following two command line
options.

• The name of the SDF file that contains the timing information

• The instance in the testbench where you apply timing
information
Xilinx/Synopsys Interface Guide 6-23

Xilinx/Synopsys Interface Guide
The following examples illustrate these two command line options.

• VHDLSIM Example

vhdlsim –sdf_top my_testbench/instance_name \

–sdf routed_design.sdf my_configuration

• VHDLDBX Example

vhdldbx –sdf_top my_testbench/instance_name \

–sdf routed_design.sdf my_configuration

Where instance_name is the instance name of the unit under test in
your testbench.

Note: You can also specify the –sdf_top and –sdf options in the
arguments field of the initial window that appears when you start
VHDLDBX.

The stopwatch tutorial provides the tim_sim.csh script file. This
script provides the necessary steps to perform a timing simulation
with the VSS simulator. You can modify this script to use with your
designs. You can use the same testbench you used to perform an RTL
simulation to perform a timing simulation.
6-24 Xilinx Development System

Chapter 7

Using Files, Programs, and Libraries

This chapter describes the files, programs, and Xilinx-supplied
libraries you need to translate your HDL design using Synopsys
FPGA Compiler or Design Compiler.

This chapter includes the following sections.

• “Understanding the XSI Directory Structure”

• “Using File Descriptions”

• “Using Program Descriptions”

• “Using Supplied Libraries Descriptions”

Understanding the XSI Directory Structure
This section describes the XSI directory tree. This directory tree
allows you to easily find XSI files, programs, and libraries.

$XILINX/synopsys/
 |-- data (contains at the minimum synopsys.acd and nbexpand.acd
files)
 |
 |-- libraries
 | |-- sim
 | | |-- lib
 | | |-- logiblox (compiled LOGIBLOX simulation library)
 | | | | |-- sparc
 | | | |
 | | | |-- simprims (compiled SIMPRIM simulation
library)
 | | | | |-- sparc
 | | | |
 | | | |-- xc9000
Xilinx/Synopsys Interface Guide 7-1

Xilinx/Synopsys Interface Guide
 | | | | |-- ftgs (compiled FTGS simulation library)
 | | | |

 | | | |-- xdw (compiled xdw simulation library)
 | | | |-- sparc
 | | |
 | | |-- src
 | | |-- logiblox (LOGIBLOX simulation library source)
 | | |
 | | |-- simprims (SIMPRIM simulation library source)
 | | |
 | | |-- xc9000
 | | | |-- ftgs (FTGS simulation library source)
 | | |
 | | |-- xdw (XDW simulation library source)
 | |
 | |-- syn
 | | *.sdb (compiled symbol libraries)
 | | *.sldb (compiled synthetic libraries)
 | | *.db (compiled synthesis libraries)
 | |
 | |-- dw
 | |-- lib
 | | |-- xc4000e (compiled Design Ware library)
 | | |-- xc4000ex
 | | |-- xc4000l
 | | |-- xc4000xl
 | | |-- xc4000xv
 | | |-- xc5200
 | | |-- xc9000
 | | |-- Spartan
 | | |-- SpartanXL
 | | |-- Spartan-II
 | | |-- Virtex
 | | |-- Virtex2
 | | |-- VirtexE
 | |
 | |-- src
 | |-- xc4000e (Design Ware library source)
 | |-- xc4000ex
 | |-- xc4000l
 | |-- xc4000xl
7-2 Xilinx Development System

Using Files, Programs, and Libraries
 | |-- xc4000xv
 | |-- xc5200
 | |-- xc9000
 | |-- Spartan
 | |-- SpartanXL
 | | |-- Spartan-II
 | | |-- Virtex
 | | |-- Virtex2
 | | |-- VirtexE
 |
 |-- examples (example setup files)
 | |-- training
 | |
 | |-- bscan
 | | |-- vhdl
 | | |-- verilog
 | |
 | |-- bigadder
 | | |-- vhdl
 | | |-- verilog
 | |
 | |-- bufg
 | | |-- vhdl
 | | |-- verilog
 | |
 | |-- ram
 | | |-- vhdl
 | | |-- verilog
 | |
 | |-- resource
 | | |-- vhdl
 | | |-- verilog
 | |
 | |-- tbufmux
 | |-- vhdl
 | |-- verilog
 |
 |-- tutorial
 |
 |-- fpga
 | |-- vhdl
 |
Xilinx/Synopsys Interface Guide 7-3

Xilinx/Synopsys Interface Guide
 |-- dc
 | |-- vhdl
 |
 |-- cpld
 |-- verilog
 |-- vhdl

Using File Descriptions
This section describes the files you need to translate, map, place, and
route your design using the XSI and Synopsys tools.

Table 7-1 File Descriptions

File Description
FPGA Compiler
or Design
Compiler

design_name.script The design_name.script file is user-created and
contains the commands for Synopsys FPGA
Compiler or Design Compiler. These
commands specify the operating conditions,
the name and format of the design file, and
synthesis directives. Script files can have
extensions other than .script.

Both

design_name.v The .v extension indicates the Verilog HDL
format.

Both

design_name.vhd The .vhd extension indicates the VHDL format. Both

.synopsys_dc.setup The .synopsys_dc.setup file is the startup file
for the Synopsys synthesis tools. It must reside
in your home directory or working directory.

Both

XC4000e.sdb The XC4000e.sdb file contains XC4000E
schematic symbols for Synopsys.

Both

XC4000ex.sdb The XC4000ex.sdb file contains XC4000EX
schematic symbols for Synopsys.

Both

XC4000xv.sdb The XC4000xv.sdb file contains XC4000XV
schematic symbols for Synopsys.

Both

XC5200.sdb The XC5200.sdb file contains XC5200 schematic
symbols for Synopsys.

Both
7-4 Xilinx Development System

Using Files, Programs, and Libraries
XC3000a.sdb The XC3000a.sdb file contains XC3000A
schematic symbols for Synopsys.

Both

spartan.sdb The spartan.sdb file contains Spartan schematic
symbols for Synopsys.

Both

spartanxl.sdb The spartanxl.sdb file contains SpartanXL
schematic symbols for Synopsys.

Both

virtex.sdb The virtex.sdb file contains Virtex schematic
symbols for Synopsys.

Both

XC9000.sdb The XC9000.sdb file contains XC9000 schematic
symbols for Synopsys.

Both

.sim VSS simulation uses SIM files. Both

design_name.sxnf The design_name.sxnf file is the synthesized
design generated by the Synopsys synthesis
tools.

FPGA Compiler

design_name.sedif The design_name.sedif file is the synthesized
design generated by the Synopsys synthesis
tools using the EDIF syntax.

Design Compiler

design_name.ncf DC2NCF creates the design_name.ncf file.
DC2NCF converts timing constraints applied to
your design in the Synopsys environment to
equivalent constraints that control the Xilinx
place and route process.

Both

design_name.ngo EDIF2NGD or XNF2NGD create the
design_name.ngo file, which contains a logical
description of your design in terms of its
original components and hierarchy.

Both

design_name.ngd The NGDBuild program generates the
design_name.ngd file, a binary file containing a
logical description of your design in terms of
both its original components and hierarchy, and
the NGD primitives to which your design is
reduced.

Both

Table 7-1 File Descriptions

File Description
FPGA Compiler
or Design
Compiler
Xilinx/Synopsys Interface Guide 7-5

Xilinx/Synopsys Interface Guide
Using Program Descriptions
This section describes the programs you use when translating,
mapping, placing, and routing your design using the XSI and
Synopsys tools. You can use the following programs with both
Design Compiler and FPGA Compiler

design_name.ncd The MAP program generates the
design_name.ncd file, a physical description of
your design in terms of the components in the
target Xilinx device.

Both

design_routed.ncd The design_routed.ncd file, generated by PAR, is
your placed and routed design.

Both

design_name.nga NGDAnno generates the design_name.nga file, a
back-annotated NGD file.

Both

design_name.vhd This file is the VHDL timing simulation model
created by the NGD2VHDL program.

Both

design_name.sdf This file is the timing back-annotation file
created by the NGD2VHDL program.

Both

Table 7-2 Program Descriptions

Program Description

Design Analyzer Design Analyzer is the Synopsys graphic interface to the Synopsys
synthesis tools.

DC Shell DC Shell is the Synopsys UNIX command-line interface for entering
commands, arguments, and options to the Synopsys synthesis tools.

Synlibs This program displays the target and link libraries for the specified
part type and speed grade. You can append the output of the Synlibs
command to the .synopsys_dc.setup file.
You must list the libraries in your setup file in the order that they appear in
the Synlibs output.

VHDLAN The VHDLAN program analyzes a VHD source file for simulation.
Use the –i option with this program.

Table 7-1 File Descriptions

File Description
FPGA Compiler
or Design
Compiler
7-6 Xilinx Development System

Using Files, Programs, and Libraries
Using Supplied Libraries Descriptions
This section describes the Xilinx-supplied libraries and supported
part types and speed grades. Table 7-3 contains the following
variables.

• family refers to the family of Xilinx devices, for example, 4000e,
4000ex, or 3000a.

• parttype refers to the specific Xilinx device, for example, 4003e,
4005e, or 3120a.

• 4kparttype refers to the specific Xilinx XC4000 device, for example,
4003e or 4005e.

VHDLDBX The VHDLDBX program is the VHDL Debugger, a graphic interface
to the VHDL simulator. Through its dialog box, you can issue
simulator commands, view command output, and view source code.

NGDBUILD This program reads a netlist file in XNF or EDIF format and creates
an NGD file describing a logical design.

DC2NCF This program translates a Synopsys DC file to a netlist constraints
file (NCF) file. The DC file is a Synopsys file containing your design
constraints.

MAP This program maps a logical design to a Xilinx FPGA.

TRACE This program provides static timing analysis of your design based on
input timing constraints.

PAR This program takes an NCD file, places and routes the design, and
outputs an NCD file, which is then used by the BitGen program.

NGDAnno This program distributes delays, setup and hold times, and pulse
widths found in the physical NCD design file back to the logical
NGD file.

NGD2VHDL or
NGD2VER

These programs convert Xilinx NGD format into structural HDL for
gate-level simulation. Netlist consists of SimPrims.

BitGen This program produces a bitstream for Xilinx device configuration. It
takes a fully routed NCD file as its input and creates a configuration
bitstream.

Table 7-2 Program Descriptions

Program Description
Xilinx/Synopsys Interface Guide 7-7

Xilinx/Synopsys Interface Guide
• –s indicates the part type’s speed grade, for example, –5. Not all
speed grades are available for all part types. Run Synlibs with the
–h option to get a listing of all available part type and speed
grade combinations.

Table 7-3 Library Descriptions

Library Description
FPGA Compiler
or Design
Compiler

xgen_3000a.db The xgen_3000a.db library describes the
XC3000a cells that do not contain timing
information, for example, CLBMAP, PULLUP,
net flags, and VCC.

Both

xgen_3000l.db The xgen_3000l.db library describes the
XC3000l cells that do not contain timing
information, for example, CLBMAP, PULLUP,
net flags, and VCC.

Both

xgen_3100l.db The xgen_3100l.db library describes the
XC3100l cells that do not contain timing
information, for example, CLBMAP, PULLUP,
net flags, and VCC.

Both

xgen_4000e.db The xgen_4000e.db library describes the
XC4000e cells that do not contain timing
information, for example, FMAP, PULLUP,
and VCC.

Both

xgen_4000l.db The xgen_4000l.db library describes the
XC4000l cells that do not contain timing
information, for example, FMAP, PULLUP,
and VCC.

Both

xgen_4000ex.db The xgen_4000ex.db library describes the
XC4000ex cells that do not contain timing
information, for example, FMAP, PULLUP,
and VCC.

Both

xgen_4000xl.db The xgen_4000xl.db library describes the
XC4000xl cells that do not contain timing
information, for example, FMAP, PULLUP,
and VCC.

Both
7-8 Xilinx Development System

Using Files, Programs, and Libraries
xgen_4000xla.db The xgen_4000xla.db library describes the
XC4000xla cells that do not contain timing
information, for example, FMAP, PULLUP,
and VCC.

Both

xgen_4000xv.db The xgen_4000xv.db library describes the
XC4000xv cells that do not contain timing
information, for example, FMAP, PULLUP,
and VCC.

Both

xgen_5200.db The xgen_5200.db library describes the
XC5200 cells that do not contain timing
information, for example, FMAP, PULLUP,
and VCC.

Both

xprim_family-s.db The xprim_family-s.db libraries describe the
Xilinx XC4000E/L/EX/XL/XLA/XV,
XC3000A/L, XC3100A/L, and XC5200 gates,
flip-flops, input/output buffers, and other
simple circuit elements whose delays do not
vary with the density of the part. These files
contain worst-case commercial (WCCOM)
timing information.

Both

xprim_parttype–s.db The xprim_ parttype–s.db libraries describe
the Xilinx XC4000E/L/EX/XL/XLA/XV,
XC3000A/L, XC3100A/L, and XC5200 3-state
buffers, clock buffers, I/O decoders, and
other simple circuit elements whose delays
vary with the density of the part. These files
contain WCCOM timing information.

Both

xio_4kparttype–s.db The xio_4kparttype–s.db libraries describe the
Xilinx XC4000E/L/EX/XL/XLA/XV input/
output buffers whose delays vary with the
device type. These files contain WCCOM
timing information.

Both

Table 7-3 Library Descriptions

Library Description
FPGA Compiler
or Design
Compiler
Xilinx/Synopsys Interface Guide 7-9

Xilinx/Synopsys Interface Guide
xio_5kparttype–s.db The xio_5kparttype–s.db libraries describe the
Xilinx XC5200 input/output buffers whose
delays vary with the device type. These files
contain WCCOM timing information.

Both

xfpga_family–s.db The xfpga_family–s.db libraries describe the
Xilinx XC4000E/L/EX/XL/XLA/XV,
XC3000A/L, XC3100A/L, and XC5200 CLB
and IOB primitives, which allow the FPGA
Compiler to directly map to CLBs and IOBs.
These files contain WCCOM timing
information.

FPGA Compiler

xdc_family–s.db The xdc_ family–s.db libraries contain Boolean
functions to which the Synopsys tools map.

Design Compiler

xdw_4000e.sldb The xdw_4000e.sldb library contains the
DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to Xilinx
DesignWare modules.

Both

xdw_4000l.sldb The xdw_4000l.sldb library contains the
DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to Xilinx
DesignWare modules.

Both

xdw_4000ex.sldb The xdw_4000ex.sldb library contains the
DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to Xilinx
DesignWare modules.

Both

xdw_4000xl.sldb The xdw_4000xl.sldb library contains the
DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to Xilinx
DesignWare modules.

Both

Table 7-3 Library Descriptions

Library Description
FPGA Compiler
or Design
Compiler
7-10 Xilinx Development System

Using Files, Programs, and Libraries
xdw_4000xla.sldb The xdw_4000xla.sldb library contains the
DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to Xilinx
DesignWare modules.

Both

xdw_4000xv.sldb The xdw_4000xv.sldb library contains the
DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to Xilinx
DesignWare modules.

Both

xdw_5200.sldb The xdw_5200.sldb library contains the
DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to Xilinx
DesignWare modules.

Both

xdw_spartan.sldb The xdw_spartan.sldb library contains the
DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to Xilinx
DesignWare modules.

Both

xdw_spartanxl.sldb The xdw_spartanxl.sldb library contains the
DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to Xilinx
DesignWare modules.

Both

xdw_virtex.sldb The xdw_virtex.sldb library contains the
DesignWare macros that allow adders,
subtracters, incrementers, decrementers, and
comparators to map directly to Xilinx
DesignWare modules.

Both

xprim_family/*.ngl Data files containing XSI library component
expansion for NGDBuild.

Both

Table 7-3 Library Descriptions

Library Description
FPGA Compiler
or Design
Compiler
Xilinx/Synopsys Interface Guide 7-11

Xilinx/Synopsys Interface Guide
Finding Supported Part Types and Speed Grades
Run Synlibs with the –h option to get a listing of all available part
type and speed grade combinations. You can also refer to the Xilinx
online Data Book at http://www.xilinx.com for current speed grade
information.

Finding Unsupported Part Types and Speed Grades
If designing for a part type or speed grade for which no libraries are
available, use the libraries for the closest part type or speed grade in
the same family. Indicate the part type or speed grade actually used
when you run PAR. The timing constraints in the NCF file can need
adjustment.

Note: For more information on specifying the part type, refer to the
Development System Reference Guide.
7-12 Xilinx Development System

http://www.xilinx.com

Appendix A

XSI Library Primitives

You can find the XSI primitives in the XSI-supplied libraries in FPGA
Compiler and FPGA Express; you can instantiate them in your VHDL
or Verilog HDL file. Use the synlibs program to list the appropriate
libraries for a specific part type. Refer to the “Getting Started” chapter
for information on how to use synlibs.

In the primitive tables in this appendix, the names of the inputs and
outputs follow the primitive names, the applicable architecture, and
any important notes. All primitives in the libraries contain timing
parameters. The Notes column includes specific timing details and
additional functional information.

Although Synopsys cannot synthesize some primitives (primitives
with the Dont Touch and Dont Use attributes), you can instantiate
them. An asterisk (*) next to the primitive name indicates that you
can instantiate it. Refer to the Synopsys documentation for more
information on the Dont Touch and Dont Use attributes. Use the
name of a primitive to instantiate it. In addition, you must identify
the signals connected to the input and output pins when instantiating
a primitive.

In general, pins are organized with data pins before control pins.
When several pins are part of a bus, they are listed with the MSB first.
Buses of four or more bits follow bus notation, for example, A<7:0>.
Buses with fewer bits are kept as separate signals.

Synopsys FPGA Compiler II does not recognize the underscore
character (“_”) as valid.
Xilinx/Synopsys Interface Guide A-1

Xilinx/Synopsys Interface Guide
The following sections are included in this appendix.

• “Generating a List of XSI Library Primitives”

• “Obtaining XSI Library Primitive Pin Order”

• “Understanding Virtex-Specific Cell Names”

• “Xilinx DesignWare Modules”

• “Post-Configuration Initialization States”

Generating a List of XSI Library Primitives
You can use the following procedure to generate a list of the XSI
library primitives provided in this appendix.

1. Start DC Shell or Design Analyzer in a directory that contains
your .synopsys_dc.setup file. Ensure this setup file points to the
libraries you need to synthesize your designs in the XSI design
flow.

2. In the command window of Design Analyzer or in DC Shell,
enter the following command.

read –f db link_library

3. In the command window of Design Analyzer or in DC Shell,
enter the following command.

list –files

This command lists all the library files in memory.

4. For each item in the list, enter the following command.

find cell filename/*

filename is the .db library file.

For example, for the library file xfpga_4000e-3.db the Find Cell
command lists the following.

xfpga_4000e-3/clb_4000

xfpga_4000e-3/iob_4000

The library file lists first, followed by the library primitive.
A-2 Xilinx Development System

XSI Library Primitives
Obtaining XSI Library Primitive Pin Order
Positional notation allows you to instantiate a primitive without
explicitly specifying the pins for that component. To use this
notation, you must know the pin order of the primitive. You can use
the following procedure to obtain the pin order for any of the XSI
library primitives provided in this appendix.

1. Start DC Shell or Design Analyzer in a directory that contains
your .synopsys_dc.setup file.

2. In DC Shell or in the command window of Design Analyzer,
enter the following command.

read –f db link_library

3. In DC Shell or in the command window of Design Analyzer,
enter the following command.

list –files

This command lists all the library files in memory. Know which
file contains the relevant primitive.

4. In DC Shell or in the command window of Design Analyzer,
enter the following command.

find (pin, “dbfilename/cellname/*”)

dbfilename is the name of the .db file that contains the primitive
and cellname is the relevant primitive.

For example, the following command finds the pin order of the
OR2 primitive in the XC4000EX library.

find (pin, “xprim_4000ex-3/OR2/*”)

This results in the following pin order.

{“O” “I1” “I0”}

Alphabetical List of Primitives for All Architectures
This section lists the XSI primitives in alphabetical order with their
associated output, input, and bidirectional pins. In addition, the pins
are listed in the order used for positional notation. For example, the
pins for ACLK are listed with the O pin first, followed by the I pin.
Therefore, you can instantiate ACLK with only the signal (wire)
Xilinx/Synopsys Interface Guide A-3

Xilinx/Synopsys Interface Guide
names; you do not need to declare the ACLK pins. You can also find
the applicable architecture and any notes in the tables included in this
section.

Using the Dont Touch Attribute
An asterisk (*) next to a primitive name indicates that you must
instantiate it. Also, you must apply the Dont Touch attribute to
instantiated primitives. Refer to the Synopsys documentation for
more information on the Dont Touch attribute.

Synopsys FPGA Compiler II does not recognize the underscore
character (“_”) as valid.

Setting the INIT Attribute
Before you can apply the INIT attribute to instantiated RAM and
ROM primitives, you must modify the Synopsys dc.setup_dc file,
which resides in $XILINX/synopsys/examples/
template.synopsys_dc_setup_fc. Change the following line in that
file.

edifout_write_properties_list = “instance_number \
pad_location part”

The new line, after the changes, appears as follows.

edifout_write_properties_list = “instance_number \
pad_location part” “INIT”

Primitive Name Suffixes
The following table lists the primitive name suffixes and their
corresponding descriptions.

Table A-1 Primitive Name Suffixes

Suffix Description

I Inverted global reset (INIT=S)

_F Fast implementation of clock buffer (using dedicated
input clock pad) or fast slew rate for output buffers;
NODELAY attribute added for input registers
A-4 Xilinx Development System

XSI Library Primitives
Virtex-Specific Primitive Name Suffixes
The following table lists the Virtex primitive name suffixes and their
corresponding descriptions.

_M Medium implementation of clock buffer (using
dedicated input clock pad) or medium slew rate for
output buffers; MEDDELAY attribute added for input
registers

_S Slow slew rate

_U Unbonded pad

_1 Inverted clock or gate on flip-flop or latch

_FLAG Net/pin constraints

_TTL TTL-compatible level

_CMOS CMOS-compatible level

CAP Capacitive slew rate

RES Resistive slew rate

_N Inverted output in a bidirectional buffer

Table A-2 Virtex Primitive Name Suffixes

Suffix Description

_D Both local and general output pin

_L Single local output pin

_AGP Advanced graphic port

_CTT Center tap terminated, low-level, high-speed interface
standard

_GTL Gunning transistor logic

_GTLP Gunning transistor logic plus

_HSTL_I High speed transceiver logic, Class 1: 1.5 volt output
buffer supply voltage-based interface standard

_HSTL_III High speed transceiver logic, Class II

_HSTL_IV High speed transceiver logic, Class IV

Table A-1 Primitive Name Suffixes

Suffix Description
Xilinx/Synopsys Interface Guide A-5

Xilinx/Synopsys Interface Guide
Architecture Abbreviations
This appendix uses the architecture abbreviations listed in the
following table.

_LVCOMS2 Low-voltage CMOS, 2.5 volt or lower

_PCI33_3 Peripheral Component Interconnect (33 MHz, 3.3 V)

_PCI33_5 Peripheral Component Interconnect (33 MHz, 5V)

_PCI66_3 Peripheral Component Interconnect (66 MHz, 3.3 V)

_SSTL2_I Stub series terminated logic for 2.5 volts, Class I

_SSTL2_II Stub series terminated logic for 2.5 volts, Class II

_SSTL3_I Stub series terminated logic for 3.3 volts, Class I

_SSTL3_II Stub series terminated logic for 3.3 volts, Class II

_F_x Fast slew where drive (x) equals 2, 4, 6, 8, 12, 16, or 24
in units of milliamps (ma)

_S_x Slow slew where drive (x) equals 2, 4, 6, 8, 12, 16, or 24
in units of milliamps (ma)

_Sx Single-port synchronous block RAM, where x equals
the port bit width

_Sx_Sy Dual-port synchronous block RAM, where x equals
the first port bit width and y equals the second port
bit width

_VIRTEX Virtex-specific component for use in STARTUP,
STARTBUF, CAPTURE, and BSCAN

Table A-3 Architecture Abbreviations

Architecture Abbreviation

XC3000A/L and XC3100A/L 3

XC4000E and XC4000L 4E

XC4000EX/XL/XLA/XV 4X

XC5200 5

XC9000 9

Table A-2 Virtex Primitive Name Suffixes

Suffix Description
A-6 Xilinx Development System

XSI Library Primitives
Primitive Tables
The following tables describe the XSI primitives.

Spartan/ XL S

Virtex/-II/E and Spartan-II V

Table A-4 “A”

Name Output Input Architecture Notes

ACLK* O I 3 Alternate

ACLK_F O I 3 Alternate;
using
dedicated
pad

AND2 O I1, I0 3, 4E, 4X, 5, 9, S, V

AND3 O I2, I1, I0 3, 4E, 4X, 5, 9, S, V

AND4 O I3, I2, I1, I0 3, 4E, 4X, 5, 9, S, V

AND5 O I4, I3, I2, I1, I0 3, 4E, 4X, 5, 9, S,

AND12 O I11, I10, I9, I8, I7,
I6, I5, I4, I3, I2, I1,
I0

5, (macros
only)

AND16 O I15, I14, I13, I12,
I11, I10, I9, I8, I7,
I6, I5, I4, I3, I2, I1,
I0

5, (macros
only)

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-3 Architecture Abbreviations

Architecture Abbreviation
Xilinx/Synopsys Interface Guide A-7

Xilinx/Synopsys Interface Guide
Table A-5 “B”

Name Output Input Architecture Notes

BSCAN
What about
BSCAN_Spa
rtan-II &
BSCAN_VI
RTEX?

TDO, DRCK,
IDLE, SEL1,
SEL2, RESET,
UPDATE,
SHIFT

TDI, TMS,
TCK, TDO1,
TDO2

4E, 4X, 5, S No delay. RESET,
UPDATE, and
SHIFT outputs are
only applicable to
the XC5200.

BUF O I 3, 4E, 4X, 5, S, V No delay

BUFFCLK O I 4X

BUFG* O I 3, 4E, 4X, 5, S, V No pad delay
included

BUFGE O I 4X

BUFG_F O I 3, 4E, 4X, 5, S, Fast implementation
of BUFG; using
dedicated pad

BUFGLS O I 4X and SpartanXL

BUFGP_F O I 4E, Spartan (not
SpartanXL),

Fast implementation
of BUFGP; using
dedicated pad

BUFGS* O I 4E, Spartan (not
SpartanXL)

No pad delay
included

BUFGS_F O I 4E, Spartan (not
SpartanXL)

Fast implementation
of BUFGS; using
dedicated pad

BUFT O I, T 3, 4E, 4X, 5, S, V, 9
(not XC9500XL and
XC9500XV)

Synopsys tools
synthesize an
internal 3-state
condition using
BUFTs.

BYPOSC* I 5

An asterisk (*) next to a primitive name indicates that you must instantiate it.
A-8 Xilinx Development System

XSI Library Primitives
Table A-6 “C”

Name Output Input Architecture Notes

C_FLAG* I 3, 4E/L/EX/XL/
XLA/XV, 5, S

Signal is on a
critical path.

CK_DIV* OSC1, OSC2 C 5

CLBMAP_PLC* A, B, C, D, E,
K, EC, DI,
RD, X, Y

3 Pins locked to
external signals;
function generator
closed to additional
logic

CLBMAP_PLO* A, B, C, D, E,
K, EC, DI,
RD, X, Y

3 Pins locked to
external signals;
function generator
open to additional
logic

CLBMAP_PUC* A, B, C, D, E,
K, EC, DI,
RD, X, Y

3 Pins unlocked from
signals; function
generator closed to
additional logic

CLBMAP_PUO* A, B, C, D, E,
K, EC, DI,
RD, X, Y

3 Pins unlocked from
signals; function
generator open to
additional logic

CY_MUX* CO DI, CI, S 5 Carry chain
multiplexer.

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-7 “D”

Name Output Input Architecture Notes

DEC_CC4* O C_IN, A3....A0 5,
(No primitives,
macros only.)

4-bit internal
decoder built using
C4_MUXes and
lookup tables

DEC_CC8* O C_IN, A7....A0 5,
(No primitives,
macros only.)

8-bit internal
decoder built using
CY_MUXes and
lookup tables
Xilinx/Synopsys Interface Guide A-9

Xilinx/Synopsys Interface Guide
DEC_CC16* O C_IN, A15....A0 5,
(No primitives,
macros only.)

16-bit internal
decoder built using
C4_MUXes and
lookup tables

DECODE1_INT* O I 4E/L/EX/XL/
XLA/XV

1-bit edge decoder;
no pull-up resistor;
input from internal
logic

DECODE1_IO* O I 4E/L/EX/XL/
XLA/XV

1-bit I/O edge
decoder; no pull-up
resistor

DECODE4* O A3....A0 4E, 4X, 5,
No primitives,
macros only.)

4-bit I/O edge
decoder; no pull-up
resistor. In 4E/L/
EX/XL/XV a 4-bit
internal decoder
built using
CY_MUXes and
lookup tables (5)

DECODE8* O A7....A0 4E, 4X, 5,
No primitives,
macros only.)

8-bit I/O edge
decoder; no pull-up
resistor. In 4E/L/
EX/XL/XV an 8-bit
internal decoder
built using
CY_MUXes and
lookup tables (5)

DECODE16* O A15....A0 4E, 4X, 5,
No primitives,
macros only.)

16-bit I/O edge
decoder; no pull-up
resistor. In 4E/L/
EX/XL/XV a 16-bit
internal decoder
built using
CY_MUXes and
lookup tables (5)

Table A-7 “D”

Name Output Input Architecture Notes
A-10 Xilinx Development System

XSI Library Primitives
DECODE32* O A31....A0 5,
No primitives,
macros only.)

In 4E/L/EX/XL/
XV a32-bit internal
decoder built using
CY_MUXes and
lookup tables (5)

DECODE64* O A63....A0 5,
No primitives,
macros only.)

In 4E/L/EX/XL/
XV a 64-bit internal
decoder built using
CY_MUXes and
lookup tables (5)

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-8 “F”

Name Output Input Architecture Notes

F5_MUX* O I1, I2, DI 5 Used to connect two
FMAPs to form a 5-
input function.

F5MAP_PUC* I5, I4, I3, I2,
I1, 0

5 Pins unlocked from
signals; function
generator closed to
additional logic.

FDC Q D, C, CLR (3, 4E, 4X, 5, S, 9 are
all macros.) V is
only primitive.

With Clear Direct;
initial startup value
is 0

FDC_1 Q D, C, CLR (3, 4E, 4X, 5, S, 9 are
all macros.) V is
only primitive.

FDCE Q D, C, CE,
CLR

3, 4E, 4X, 5, S, 9, V Clock Enable with
Clear Direct; initial
startup value is 0

FDCE_1 Q D, C, CE,
CLR

(3, 4E, 4X, 5, S, are
all macros.) V is
only primitive.

Table A-7 “D”

Name Output Input Architecture Notes
Xilinx/Synopsys Interface Guide A-11

Xilinx/Synopsys Interface Guide
FDP Q D, C, PRE (4E, 4X, 5, S, 9 are
all macros.) V is
only primitive.

With Preset Direct;
initial startup value
is 1

FDPE Q D, C, CE,
PRE

4E, 4X, S, V, 9
5 - macro

Clock Enable with
Preset Direct; initial
startup value is 1

FDPEI Q D, C, CE,
PRE

3, 5 Clock Enable with
Preset Direct; initial
startup value is 1

FDPEI_1 Q D, C, CE,
PRE

3, 5

FDPI Q D, C, PRE 3, 5 With Preset Direct;
initial startup value
is 1

FDPI_1 Q D, C, PRE 3, 5

FMAP_PLC* I4, I3, I2, I1, 0 4E, 4X, 5, S, V Pins locked to
external signals;
function generator
closed to additional
logic.

FMAP_PLO* I4, I3, I2, I1, 0 4E, 4X, 5, S, V Pins locked to
external signals;
function generator
open to additional
logic.

FMAP_PUC* I4, I3, I2, I1, 0 4E, 4X, 5, S, V Pins unlocked from
signals; function
generator closed to
additional logic.

FMAP_PUO* I4, I3, I2, I1, 0 4E, 4X, 5, S, V Pins unlocked from
signals; function
generator open to
additional logic.

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-8 “F”

Name Output Input Architecture Notes
A-12 Xilinx Development System

XSI Library Primitives
Table A-9 “G”

Name Output Input Architecture Notes

GCLK* O I 3 Global

GCLK_F O I 3 Global; using
dedicated pad

GND G 3, 4E, 4X, 5, S, 9, V

GXTL* O 3- macro only Crystal; no
delay

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-10 “H”

Name Output Input Architecture Notes

HMAP_PUC* I3, I2, I1, 0 4E, 4X, S

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-11 “I”

Name Output In-out Input Architecture Notes

IBUF O I 3, 4E, 4X, 5, 9, S, V
(refer to Table A-2)

IBUF_F* O I 3, 4E, 4X, 5, 9, S, V Includes
NODELAY
attribute

IBUF_U* O I 3, 4E, 4X, 5, 9, S, Unbonded pad

IBUFN O I I 3, 4E/L/EX/XL/
XLA/XV, 5, S

Slow output
slew rate

IFD Q D, C 3
(4E, 4X, 5, 9, V are
macros)

IFD_F Q D, C 3
(4E, 4X, 5, 9, V are
macros)

Includes
NODELAY
attribute

IFD_M* Q D, C 3
(4E, 4X, 5, 9, V are
macros)

Includes
MEDDELAY
attribute
Xilinx/Synopsys Interface Guide A-13

Xilinx/Synopsys Interface Guide
IFD_U* Q D, C 3
(4E, 4X, 5, 9, V are
macros)

Unbonded pad

IFDI* Q D, C 4E, 4X, S, V are only
macros.

INIT=S;
inverted Global
Reset

IFDI_F* Q D, C 4E, 4X, S, V are only
macros.

Includes
NODELAY
attribute;
INIT=S;
inverted Global
Reset

IFDI_M* Q D, C 4E, 4X, S, V are only
macros.

Includes
MEDDELAY
attribute

IFDI_U* Q D, C 4E, 4X, S, V are only
macros.

Unbonded pad;
INIT=S;
inverted Global
Reset

IFDX* Q D, C,
CE

4E, 4X, S
Virtex-macro only

IFDX_F* Q D, C,
CE

4E, 4X, S
Virtex-macro only

NODELAY
attribute added

IFDX_M* Q D, C,
CE

4E, 4X, S
Virtex-macro only

Includes
MEDDELAY
attribute

IFDX_U* Q D, C,
CE

4E, 4X, S
Virtex-macro only

IFDXI* Q D, C,
CE

4E, 4X, S
Virtex-macro only

IFDXI_F* Q D, C,
CE

4E, 4X, S
Virtex-macro only

NODELAY
attribute added

IFDXI_M* Q D, C,
CE

4E, 4X, S
Virtex-macro only

Includes
MEDDELAY
attribute

Table A-11 “I”

Name Output In-out Input Architecture Notes
A-14 Xilinx Development System

XSI Library Primitives
IFDXI_U* Q D, C,
CE

4E, 4X, S
Virtex-macro only

ILD Q D, G 3
(4E, 4X,5,S, , 9 are
macros only)

ILD_1 Q D, G (3, 4E, 4X, 5, S, are
macros only)

ILD_1F Q D, G (3, 4E, 4X, 5, S, are
macros only)

NODELAY
attribute added

ILD_1M* Q D, G (3, 4E, 4X, 5, S, are
macros only)

Includes
MEDDELAY
attribute

ILD_1U* Q D, G (3, 4E, 4X, 5, S, are
macros only)

Unbonded pad

ILDI_1* Q D, G (4E, 4X, S, are macros
only)

Inverted Global
Reset

ILDI_1F* Q D, G (4E, 4X, S, are macros
only)

NODELAY
attribute
added;
initializes High

ILDI_1M* Q D, G (4E, 4X, S, are macros
only)

Includes
MEDDELAY
attribute

ILDI_1U* Q D, G 4E, 4X, S, are macros Unbonded pad;
inverted Global
Reset

ILDX_1* Q D, G,
GE

4E, 4X, S
V are macros

ILDX_1F* Q D, G,
GE

4E, 4X, S
are macros

NODELAY
attribute added

ILDX_1M* Q D, G,
GE

4E, 4X, S
are macros

Includes
MEDDELAY
attribute

Table A-11 “I”

Name Output In-out Input Architecture Notes
Xilinx/Synopsys Interface Guide A-15

Xilinx/Synopsys Interface Guide
ILDX_1U* Q D, G,
GE

4E, 4X, S
are macros

Unbonded pad

ILDXI_1* Q D, G,
GE

4E, 4X, S
are macros

ILDXI_1F* Q D, G,
GE

4E, 4X, S
are macros

NODELAY
attribute added

ILDXI_1M* Q D, G,
GE

4E, 4X, S
are macros

Includes
MEDDELAY
attribute

ILDXI_1U* Q D, G,
GE

4E, 4X, S
are macros

Unbonded pad

ILFFX_F* Q D, GF,
CE, C

4X, SpartanXL NODELAY
attribute added

ILFFX_M* Q D, GF,
CE, C

4X, SpartanXL Includes
MEDDELAY
attribute

ILFFXI_F* Q D, GF,
CE, C

4X, SpartanXL NODELAY
attribute added

ILFFXI_M* Q D, GF,
CE, C

4X, SpartanXL Includes
MEDDELAY
attribute

ILFLX_F* Q D, GF,
GE, G

4X, SpartanXL NODELAY
attribute added

ILFLX_M* Q D, GF,
GE, G

4X, SpartanXL Includes
MEDDELAY
attribute

ILFLX_1F* Q D, GF,
GE, G

4X, SpartanXL NODELAY
attribute added

ILFLX_1M* Q D, GF,
GE, G

4X, SpartanXL Includes
MEDDELAY
attribute

ILFLXI_1F* Q D, GF,
GE, G

4X, SpartanXL NODELAY
attribute added

Table A-11 “I”

Name Output In-out Input Architecture Notes
A-16 Xilinx Development System

XSI Library Primitives
ILFLXI_1M* Q D, GF,
GE, G

4X, SpartanXL Includes
MEDDELAY
attribute

INV O I 3, 4E, 4X, 5, S, 9, V No delay

IOBUF O IO I, T 3, 4E/L/EX/XL/
XLA/XV, 5, S, V (refer
to Table A-2)

Slow slew rate

IOBUF_F O IO I, T 4XV Fast output
slew rate

IOBUF_S O IO I, T 4XV Slow output
slew rate

IOBUF_N_F O IO I, T 3, 4E/L/EX/XL/XLA,
5, S

Fast output
slew rate
;output is
inverted

IOBUF_N_S O IO I, T 3, 4E/L/EX/XL/XLA,
5, S

Slow output
slew rate
;output is
inverted

IOBUF_24 O IO I, T 4XV Slow output
slew rate

IOBUF_F_24 O IO I, T 4XV Fast output
slew rate

IOBUFD O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output
slew rate
;Input, output,
or both can be
inverted and an
open drain
output
is generated.

IOBUFD_24 O IO I 4XV Slow output
slew rate

Table A-11 “I”

Name Output In-out Input Architecture Notes
Xilinx/Synopsys Interface Guide A-17

Xilinx/Synopsys Interface Guide
IOBUFDN O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output
slew rate
;Input, output,
or both can be
inverted and an
inverted open
drain output is
generated

IOBUFDN_24 O IO I 4XV Slow output
slew rate

IOBUFD_F O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Fast output
slew rate

IOBUFD_F_24 O IO I 4XV Fast output
slew rate

IOBUFD_S O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output
slew rate

IOBUFD_S_24 O IO I 4XV Slow output
slew rate

IOBUFDN_F O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Fast output
slew rate

IOBUFDN_F_24 O IO I 4XV Fast output
slew rate

IOBUFDN_S O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output
slew rate

IOBUFDN_S_24 O IO I 4XV Slow output
slew rate

IOBUFN O IO I, T 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output
slew rate

IOBUFN_24 O IO I, T 4XV Slow output
slew rate
;Inverts the
input (first N)

IOBUFN_F O IO I, T 3, 4E/L/XLA/EX/
XL/XV, 5,S

Fast output
slew rate

Table A-11 “I”

Name Output In-out Input Architecture Notes
A-18 Xilinx Development System

XSI Library Primitives
IOBUFN_F_24 O IO I, T 4XV Fast output
slew rate

IOBUFN_S O IO I, T 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output
slew rate

IOBUFN_S_24 O IO I, T 4XV Slow output
slew rate

IOBUFND O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output
slew rate
;Inverts the
input (first N)
and generates
an open drain
output

IOBUFND_24 O IO I 4XV Slow output
slew rate

IOBUFND_F O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Fast output
slew rate

IOBUFND_F_24 O IO I 4XV Fast output
slew rate

IOBUFND_S O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output
slew rate

IOBUFND_S_24 O IO I 4XV Slow output
slew rate

IOBUFNDN O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output
slew rate
;Inverts the
input (first N)
and generates
an inverted
open
draing output

IOBUFNDN_24 O IO I 4XV Slow output
slew rate

IOBUFNDN_F O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Fast output
slew rate

Table A-11 “I”

Name Output In-out Input Architecture Notes
Xilinx/Synopsys Interface Guide A-19

Xilinx/Synopsys Interface Guide
IOBUFNDN_F_24 O IO I 4XV Fast output
slew rate

IOBUFNDN_S O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output
slew rate

IOBUFNDN_S_24 O IO I 4XV Slow output
slew rate

IOBUFNN O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output
slew rate
;Inverts the
input (first N)
and inverts the
output

IOBUFNN_24 O IO I 4XV Slow output
slew rate

IOBUFNN_F O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Fast output
slew rate

IOBUFNN_F_24 O IO I 4XV Fast output
slew rate

IOBUFNS O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output
slew rate

IOBUFNS_F O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Fast output
slew rate

IOBUFNS_F_24 O IO I 4XV Fast output
slew rate

IOBUFNS_S O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output
slew rate

IOBUFNS_S_24 O IO I 4XV Slow output
slew rate

IOBUFNS_24 O IO I 4XV Slow output
slew rate

IOBUFNSN O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output
slew rate

IOBUFNSN_24 O IO I 4XV Slow output
slew rate

Table A-11 “I”

Name Output In-out Input Architecture Notes
A-20 Xilinx Development System

XSI Library Primitives
IOBUFNSN_F O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Fast output
slew rate

IOBUFNSN_F_24 O IO I 4XV Fast output
slew rate

IOBUFNSN_S O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output
slew rate

IOBUFNSN_S_24 O IO I 4XV Slow output
slew rate

IOBUFS O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output
slew rate
;Input, output
or both can be
inverted and an
open source
output
is generated

IOBUFS_24 O IO I 4XV Slow output
slew rate

IOBUFS_F O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Fast output
slew rate

IOBUFS_F_24 O IO I 4XV Fast output
slew rate

IOBUFS_S O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output
slew rate

IOBUFS_S_24 O IO I 4XV Slow output
slew rate

IOBUFSN O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output
slew rate
;Generates an
inverted open
source output

IOBUFSN_24 O IO I 4XV Slow output
slew rate

Table A-11 “I”

Name Output In-out Input Architecture Notes
Xilinx/Synopsys Interface Guide A-21

Xilinx/Synopsys Interface Guide
IOBUFSN_F O IO I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Fast output
slew rate

IOBUFSN_F_24 O IO I 4XV Fast output
slew rate

IOBUFSN_S O IO 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output
slew rate

IOBUFSN_S_24 O IO I 4XV Slow output
slew rate

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-12 “L”

Name Output Input Architecture Notes

L_FLAG* I 3 Rout signal along a
longline.

LD Q D, G V
(4X, 5, 9, SpartanXL
are macros only)

3: built from gates; not
recommended; use D flip-
flops.
4EX/XLXV, 5: built into
CLB; programmable as D
flip-flop or latch.

LD_1 Q D, G V
(4X, 5, SpartanXL are
macros only)

4E/L: built from gates;
not recommended; use D
flip-flops.
4EX/XL/XV ,5: built into
CLB; programmable as D
flip-flop or latch.

LDC Q D, G, CLR V
(4X, 5, SpartanXL are
macros only)

With Clear Direct.3: built
from gates; not
recommended; use D flip-
flops. 5: built into CLB;
programmable as D flip-
flop or latch.

Table A-11 “I”

Name Output In-out Input Architecture Notes
A-22 Xilinx Development System

XSI Library Primitives
LDC_1 Q D, G, CLR V
(4X, 5, SpartanXL are
macros only)

With Clear Direct. 4E/L:
built from gates; not
recommended; use D flip-
flops.
4EX/XL/XV, 5: built into
CLB; programmable as D
flip-flop or latch.

LDCE Q D, G, GE,
CLR

5, V
4X, SpartanXL are
macros only

LDCE_1 Q D, G, GE,
CLR

4X, SpartanXL, V
5 is macro only

LDP Q D, G, PRE V With Preset Direct. Built
from gates; not recom-
mended. Use D flip-flops.

LDP_1 Q D, G, PRE V With Preset Direct. 4E/L:
built from gates; not
recommended. Use D flip-
flops.
4EX/XL/XV, ,5: built into
CLB; programmable as D
flip-flop or latch.

LDPE Q D, G, GE,
PRE

V
(4X, SpartanXL is
macro only)

LDPE_1 Q D, G, GE,
PRE

4X, SpartanXL, V

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-13 “M”

Name Output Input Architecture Notes

MD0* I 4E, 4X, 5 Input pad for BSCAN.
5: This pin is in-out.

MD1* O 4E, 4X, 5 Output pad for BSCAN.
5: This pin is in-out.

Table A-12 “L”

Name Output Input Architecture Notes
Xilinx/Synopsys Interface Guide A-23

Xilinx/Synopsys Interface Guide
MD2* I 4E, 4X, 5 Input pad for BSCAN.
5: This pin is in-out.

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-14 “N”

Name Output Input Architecture Notes

N_FLAG* I 3, 4E/L/EX/XL/
XLA/XV, 5, S

Signal timing is not
critical.

NAND2 O I1, I0 3, 4E, 4X, 5, 9, S, V

NAND3 O I2, I1, I0 3, 4E, 4X, 5, 9, S, V

NAND4 O I3, I2, I1, I0 3, 4E, 4X, 5, 9, S, V

NAND5 O I4, I3, I2, I1, I0 3, 4E, 4X, 5, 9, S,

NAND12 O I11, I10, I9, I8, I7,
I6, I5, I4, I3, I2,
I1, I0

no primitives
5, are macros

NAND16 O I15, I14, I13, I12,
I11, I10, I9, I8, I7,
I6, I5, I4, I3, I2,
I1, I0

no primitives
5, are macros

NOR2 O I1, I0 3, 4E, 4X, 5, S, V, 9

NOR3 O I2, I1, I0 3, 4E, 4X, 5, S, V, 9

NOR4 O I3, I2, I1, I0 3, 4E, 4X, 5, S, V, 9

NOR5 O I4, I3, I2, I1, I0 3, 4E, 4X, 5, S, 9

NOR12 O I11, I10, I9, I8, I7,
I6, I5, I4, I3, I2,
I1, I0

no primitives
5, are macros

NOR16 O I15, I14, I13, I12,
I11, I10, I9, I8, I7,
I6, I5, I4, I3, I2,
I1, I0

no primitives
5, are macros

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-13 “M”

Name Output Input Architecture Notes
A-24 Xilinx Development System

XSI Library Primitives
Table A-15 “O”

Name Output Input Architecture Notes

OAND2* O F, I0 4X, SpartanXL

OBUF O I 3, 4E, 4X, 5, S, 9, V
(refer to Table A-2.

OBUF_24 O I 4XV

OBUF_F O I 3, 4E, 4X, 5, S, 9,V Fast slew rate

OBUF_F_24 O I 4XV Fast slew rate

OBUF_S O I 3, 4E, 4X, 5, S, 9, V Slow slew rate

OBUF_S_24 O I 4XV Slow slew rate

OBUF_U* O I 3, 4E, 4X, 5, S, 9, Unbonded pad

OBUFD O I 3, 4E, 5, S Slow output slew
rate; Open Drain
output buffer

OBUFD_24 O I 4XV Slow output slew
rate

OBUFD_F O I 3, 4E, 5, S Fast output slew
rate

OBUFD_F_24 O I 4XV Fast output slew
rate

OBUFD_S O I 3, 4E, 5, S Slow output slew
rate

OBUFD_S_24 O I 4XV Slow output slew
rate

OBUFDN O I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output slew
rate; Open Drain
inverting output
buffer

OBUFDN_24 O I 4XV Slow output slew
rate

OBUFDN_F O I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Fast output slew
rate

OBUFDN_F_24 O I 4XV Fast output slew
rate
Xilinx/Synopsys Interface Guide A-25

Xilinx/Synopsys Interface Guide
OBUFDN_S O I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output slew
rate

OBUFDN_S_24 O I 4XV Slow output slew
rate

OBUFE_24 O I, E 4XV

OBUFE_F_24 O I, E 4XV

OBUFE_S_24 O I, E 4XV

OBUFEN O I, E 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output slew
rate; inverts the
first input (first E)
and inverts the
output

OBUFEN_24 O I, E 4XV Slow output slew
rate

OBUFEN_F O I, E 3, 4E/L/XLA/EX/
XL/XV, 5,S

Fast output slew
rate

OBUFEN_F_24 O I, E 4XV Fast output slew
rate

OBUFEN_S O I, E 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output slew
rate

OBUFEN_S_24 O I, E 4XV Slow output slew
rate

OBUFN O I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output slew
rate; Inverting
output buffer

OBUFN_24 O I 4XV Slow output slew
rate

OBUFN_F O I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Fast output slew
rate

OBUFN_F_24 O I 4XV Fast output slew
rate

OBUFN_S O I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output slew
rate

Table A-15 “O”

Name Output Input Architecture Notes
A-26 Xilinx Development System

XSI Library Primitives
OBUFN_S_24 O I 4XV Slow output slew
rate

OBUFNSN_S O I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output slew
rate

OBUFNSN_S_24 O I 4XV Slow output slew
rate

OBUFS O I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output slew
rate

OBUFS_24 O I 4XV Slow output slew
rate

OBUFS_F O I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Fast output slew
rate

OBUFS_F_24 O I 4XV Fast output slew
rate

OBUFS_S O I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output slew
rate

OBUF_S_24 O I 4XV Slow output slew
rate

OBUFSN O I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output slew
rate

OBUFSN_F O I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Fast output slew
rate

OBUFSN_F_24 O I 4XV Fast output slew
rate

OBUFSN_S O I 3, 4E/L/XLA/EX/
XL/XV, 5,S

Slow output slew
rate

OBUFSN_S_24 O I 4XV Slow output slew
rate

OBUFT O I, T 3, 4E, 4X, 9, 5, S, V
(refer to Table A-2)

OBUFT_24 O I, T 4XV

OBUFT_F O I, T 3, 4E, 4X, 9, 5, S, V Fast slew rate

OBUFT_F_24 O I, T 4XV

Table A-15 “O”

Name Output Input Architecture Notes
Xilinx/Synopsys Interface Guide A-27

Xilinx/Synopsys Interface Guide
OBUFT_S O I, T 3, 4E, 4X, 9, 5, S, V Slow slew rate

OBUFT_S_24 O I, T 4XV

OBUFT_U* O I, T 3, 4E, 4X, 9, 5, S, Unbonded pad

OBUFTN O I, T 3, 4E, 4X, 5, S, Slow output slew
rate

OBUFTN_24 O I, T 4XV Slow output slew
rate

OBUFTN_F O I, T 3, 4E, 4X, 5, S, Fast output slew
rate

OBUFTN_S O I, T 3, 4E, 4X, 5, S, Slow output slew
rate

OFD Q D, C 3

OFD_24 Q D, C 4XV

OFD_F Q D, C 3 Fast slew rate

OFD_F_24 Q D, C 4XV

OFD_FU* Q D, C 3 Fast slew rate;
unbonded pad

OFD_S Q D, C 4E/L/EX/XL/XLA/
XV, S

Slow slew rate

OFD_S_24 Q D, C 4XV

OFD_U* Q D, C 3 Unbonded pad

OFDI* Q D, C 4E, 4X, S,
All macros

OFDI_24 Q D, C 4XV

OFDI_F* Q D, C 4E, 4X, S,
All macros

Fast slew rate

OFDI_F_24 Q D, C 4XV

OFDI_S* Q D, C 4E, 4X, S,
All macros

Slow slew rate

OFDI_S_24 Q D, C 4XV

Table A-15 “O”

Name Output Input Architecture Notes
A-28 Xilinx Development System

XSI Library Primitives
OFDI_U* Q D, C 4E, 4X, S,
All macros

Unbonded pad

OFDT O D, C, T 3
The following are
macros: 4E, 4X, S,

OFDT_24 O D, C, T 4XV

OFDT_F O D, C, T 3
The following are
macros: 4E, 4X, S,

Fast slew rate

OFDT_F_24 O D, C, T 4XV

OFDT_S O D, C, T 3
The following are
macros: 4E, 4X, S,

Slow slew rate

OFDT_S_24 O D, C, T 4XV

OFDT_U* O D, C, T 3
The following are
macros: 4E, 4X, S,

Unbonded pad

OFDTI* O D, C, T No primitives
4E, 4X, and S are
macros.

OFDTI_24 O D, C, T 4XV

OFDTI_F* O D, C, T No primitives
4E, 4X, and S are
macros.

Fast slew rate

OFDTI_F_24 O D, C, T 4XV

OFDTI_S* O D, C, T No primitives
4E, 4X, and S are
macros.

Slow slew rate

OFDTI_S_24 O D, C, T 4XV

OFDTI_U* O D, C, T No primitives
4E, 4X, and S are
macros.

Unbonded pad

Table A-15 “O”

Name Output Input Architecture Notes
Xilinx/Synopsys Interface Guide A-29

Xilinx/Synopsys Interface Guide
OFDX* Q D, C, CE 4E, 4X, S
is macro

OFDX_24 Q D, C, CE 4XV

OFDX_F* Q D, C, CE 4E, 4X, S
is macro

Fast slew rate

OFDX_F_24 Q D, C, CE 4XV

OFDX_FU* Q D, C, CE 4E, 4X, S
is macro

Fast slew rate;
unbonded pad

OFDX_S* Q D, C, CE 4E, 4X, S
is macro

Slow slew rate

OFDX_S_24 Q D, C, CE 4XV

OFDX_U* Q D, C, CE 4E, 4X, S
is macro

Unbonded pad

OFDXI* Q D, C, CE 4E, 4X, S
is macro

OFDXI_24 Q D, C, CE 4XV

OFDXI_F* Q D, C, CE 4E, 4X, S
is macro

Fast slew rate

OFDXI_F_24 Q D, C, CE 4XV

OFDXI_S* Q D, C, CE 4E, 4X, S
is macro

Slow slew rate

OFDXI_S_24 Q D, C, CE 4XV

OFDXI_U* Q D, C, CE 4E, 4X, S
is macro

Unbonded pad

OFDTX* O D, C, CE, T 4E, 4X, S

OFDTX_24 O D, C, CE, T 4XV

OFDTX_F* O D, C, CE, T 4E, 4X, S Fast slew rate

OFDTX_F_24 O D, C, CE, T 4XV

OFDTX_S* O D, C, CE, T 4E, 4X, S Slow slew rate

OFDTX_S_24 O D, C, CE, T 4XV

OFDTX_U* O D, C, CE, T 4E, 4X, S Unbonded pad

Table A-15 “O”

Name Output Input Architecture Notes
A-30 Xilinx Development System

XSI Library Primitives
OFDTXI* O D, C, CE, T 4E, 4X, S

OFDTXI_24 O D, C, CE, T 4XV

OFDTXI_F* O D, C, CE, T 4E, 4X, S Fast slew rate

OFDTXI_F_24 O D, C, CE, T 4XV

OFDTXI_S* O D, C, CE, T 4E, 4X, S Slow slew rate

OFDTXI_S_24 O D, C, CE, T 4XV

OFDTXI_U* O D, C, CE, T 4E, 4X, S Unbonded pad

OMUX2 O D0, D1, S0 SpartanXL and 4X

ONAND2 O F, I0 SpartanXL and 4X

ONOR2 O F, I0 SpartanXL and 4X

OOR2 O F, I0 SpartanXL and 4X

OR2 O I1, I0 3, 4E, 4X, 5, 9, S, V

OR3 O I2, I1, I0 3, 4E, 4X, 5, 9, S, V

OR4 O I3, I2, I1, I0 3, 4E, 4X, 5, 9, S, V

OR5 O I4, I3, I2, I1,
I0

3, 4E, 4X, S,
5 is macro

OR12 O I11, I10, I9,
I8, I7, I6, I5,
I4, I3, I2, I1,
I0

5
Macros only

OR16 O I15, I14,
I13, I12, I11,
I10, I9, I8,
I7, I6, I5, I4,
I3, I2, I1, I0

5 and V
Macros only

OSC* O 3 No delay

OSC4* F8M,
F500K,
F16K,
F490, F15

 4E, 4X, S

OSC5* OSC1,
OSC2

 5 No delay

Table A-15 “O”

Name Output Input Architecture Notes
Xilinx/Synopsys Interface Guide A-31

Xilinx/Synopsys Interface Guide
OSC52* OSC1,
OSC2

C 5 No delay

OXNOR2* O F, I0 4X and SpartanXL

OXOR2* O F, I0 4X and SpartanXL

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-16 “P”

Name Output Input Architecture Notes

PULLDOWN* O 4E, 4X, 5, S, V No delay; used for
IOBs or BUFTs

PULLUP* O 3, 4E, 4X, 5, S, V No delay; used for
IOBs or BUFTs

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-17 “R”

Name Output Input Architecture Notes

RAM16X1 O D, A3, A2, A1, A0,
WE

4E, 4X

RAM32X1 O D, A4, A3, A2, A1,
A0, WE

4E, 4X

RAM16X1S O D, A3, A2, A1, A0,
WE, WCLK

4E, 4X, S, V

RAM32X1S O D, A4, A3, A2, A1,
A0, WE, WCLK

4E, 4X, S, V

RAM16X1D SPO, DPO D, A3, A2, A1, A0,
DPRA3, DPRA2,
DPRA1, DPRA0,
WE, WCLK

4E, 4X, S, V

READ-
BACK*

DATA, RIP CLK, TRIG No primitives
4E, 4X, 5, S are macros
only

No delay

ROC* O 3, 4E/L/EX/XL/
XLA/XV, 5, S

Table A-15 “O”

Name Output Input Architecture Notes
A-32 Xilinx Development System

XSI Library Primitives
ROCBUF* O I 3, 4E/L/EX/XL/
XLA/XV, 5, S

ROM16X1 O A3, A2, A1, A0 4E, 4X, S, V Must add ROM
value

ROM32X1 O A4, A3, A2, A1,
A0

4E, 4X, S, V Must add ROM
value

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-18 “S”

Name Output Input Architecture Notes

S_FLAG* I 3, 4E/L/EX/XL/
XLA/XV, 5, S

Save signal;
treat it as
external
connection.

STARTUP* Q2, Q3, Q1Q4,
DONEIN

GSR, GTS,
CLK

4E, 4X, 5, S

STARTBUF* GSROUT,
GTSOUT,
Q2OUT, Q3OUT,
Q1Q4OUT,
DONEINOUT

GSRIN,
GTSIN,
CLKIN

4E/L/EX/XL/XLA/
XV, 5, S

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-19 “T”

Name Output Input Architecture Notes

TCK* I 4E, 4X, 5, S Input pad for BSCAN

TDI* I 4E, 4X, 5, S Input pad for BSCAN

TDO* O 4E, 4X, 5, S Output pad for BSCAN

TMS* I 4E, 4X, 5, S Input pad for BSCAN

TOC* O 4E/L/EX/XL/XLA/
XV, 5, S

Table A-17 “R”

Name Output Input Architecture Notes
Xilinx/Synopsys Interface Guide A-33

Xilinx/Synopsys Interface Guide
TOCBUF* O I 4E/L/EX/XL/XLA/
XV, 5, S

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-20 “V”

Name Output Input Architecture Notes

VCC VCC 3, 4E, 4X, 5, 9, S, V

Table A-21 “W”

Name Output Input Architecture Notes

WAND1* O I 4E, 4X No pull-up resistor

WOR2AND* O I1, I0 4E, 4X No pull-up resistor

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-22 “X”

Name Output Input Architecture Notes

X_FLAG* I 3, 4E/L/EX/XL/
XLA/XV, 5, S

Signal is an explicit
LCA net.

XOR2 O I1, I0 3, 4E, 4X, 5, 9, S, V

XOR3 O I2, I1, I0 3, 4E, 4X, 5, 9, S, V

XOR4 O I3, I2, I1, I0 3, 4E, 4X, 5, 9, S, V

XOR5 O I4, I3, I2, I1, I0 3, 4E, 4X, S,
5 and 9 are macros

XNOR2 O I1, I0 3, 4E, 4X, 5, 9, S, V

XNOR3 O I2, I1, I0 3, 4E, 4X, 5, 9, S, V

XNOR4 O I3, I2, I1, I0 3, 4E, 4X, 5, 9, S, V

XNOR5 O I4, I3, I2, I1, I0 3, 4E, 4X, S,
5 and 9 are macros
only

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-19 “T”

Name Output Input Architecture Notes
A-34 Xilinx Development System

XSI Library Primitives
Understanding Virtex-Specific Cell Names
The following sections list Virtex-specific suffixes, primitives, and
RAM cell names.

Virtex-Specific Primitives Table
The following table describes the Virtex-specific XSI primitives.

Table A-23 Virtex-Specific Primitives

Name Output Input Notes

BSCAN_VIRTEX TDI, DRCK1,
DRCK2, SEL1, SEL2,
RESET, UPDATE,
SHIFT

TDO1, TDO2

BUFE O I, E Tri-state buffer;
active-low tri-state

BUFCF O I Fast-connect buffer

BUFGP O I Clock buffer using
dedicated pad

BUFGDLL* O I CLKDLL with
dedicated clock pad

CAPTURE_VIRTEX CAP, CLK

CLKDLL* CLK0, CLK90,
CLK180, CLK270,
CLK2X, CLKDV,
LOCKED

CLKIN, CLKFB,
RST

Clock delay-lock
loop

CLKDLLHF* CLK0, CLK180,
CLKDV, LOCKED

CLKIN, CLKFB,
LOCKED

High-frequency
version of CLKDLL

FD Q D, C

FD_1 Q D, C

FDCP Q D, C, CLR, PRE

FDCP_1 Q D, C, CLR, PRE
Xilinx/Synopsys Interface Guide A-35

Xilinx/Synopsys Interface Guide
FDCPE Q D, C, CLR, PRE,
CE

D flip-flop with
clock enable and
asynchronous clear
and preset; clear
overrides preset.

FDCPE_1 Q D, C, CLR, PRE,
CE

D flip-flop with
clock enable and
asynchronous clear
and preset; clear
overrides preset.

FDE Q D, C, CE

FDE_1 Q D, C, CE

FDP_1 Q D, C, PRE

FDR Q D, C, R

FDR_1 Q D, C, R

FDRE Q D, C, R, CE

FDRE_1 Q D, C, R, CE

FDRS Q D, C, R, S

FDRS_1 Q D, C, R, S

FDRSE Q D, C, R, S, CE D flip-flop with
clock enable and
synchronous clear
and set; clear
overrides set.

FDRSE_1 Q D, C, R, S, CE D flip-flop with
clock enable and
synchronous clear
and set; clear
overrides set.

FDS Q D, C, S

FDS_1 Q D, C, S

FDSE Q D, C, S, CE

FDSE_1 Q D, C, S, CE

Table A-23 Virtex-Specific Primitives

Name Output Input Notes
A-36 Xilinx Development System

XSI Library Primitives
IBUFG O I Refer to Table A-2
for the meaning of
suffixes appended to
this cell name.

KEEPER* O (bidirectional pin) Weak keeper.

LDCP Q D, G, CLR, PRE D latch with gate
enable and
asynchronous clear
and preset; clear
overrides preset.

LDCP_1 Q D, G, CLR, PRE D latch with gate
enable and
asynchronous clear
and preset; clear
overrides preset.

LDCPE Q D, G, GE, CLR,
PRE

D latch with gate
enable and
asynchronous clear
and preset; clear
overrides preset.

LDCPE_1 Q D, G, GE, CLR,
PRE

D latch with gate
enable and
asynchronous clear
and preset; clear
overrides preset.

LDE Q D, G, GE

LDE_1 Q D, G, GE

SLR16* Q A0, A1, A2, A3,
CLK

Variable length 16-
bit (max) shift
register with clock
enable.

SLR16_1* Q D, A0, A1, A2, A3,
CLK

Variable length 16-
bit (max) shift
register with clock
enable.

Table A-23 Virtex-Specific Primitives

Name Output Input Notes
Xilinx/Synopsys Interface Guide A-37

Xilinx/Synopsys Interface Guide
Virtex RAM Primitive Name Suffixes
The following table lists the Virtex RAM primitive names and their
corresponding descriptions.

SLR16E* Q CE, D, A0, A1, A2,
A3, CLK

Variable length 16-
bit (max) shift
register with clock
enable.

SLR16E_1* Q CE, D, A0, A1, A2,
A3, CLK

Variable length 16-
bit (max) shift
register with clock
enable.

STARTBUF_VIRTEX GTSOUT GSRIN, GTSIN,
CLKIN

STARTUP_VIRTEX GSR, GTS, CLK

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-24 Virtex-Specific RAM

Name Output Input Notes

RAM16X1D_1* SPO, DPO WE, D, WCLK, A0, A1,
A2, A3, DPRA0, DPRA1,
DPRA2, DPRA3

Negative clock edge
triggered dual ported 16
bit RAM.

RAM16X1S_1* O WE, D, WCLK, A0, A1,
A2, A3

Negative clock edge
triggered 16 bit RAM.

RAM32X1S_1* O WE, D, WCLK, A0, A1,
A2, A3, A4

Negative clock edge
triggered 32 bit RAM.

RAMB4_S1* DO WE, RST, EN, EN, CLK,
ADDR

Single port 4096 bit
block RAM.

RAMB4_S1_S1* DOA, DOB WE, RSTA, ENA, DIA,
CLKA, ADDRA, WEB,
RSTB, ENB, DIB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

Table A-23 Virtex-Specific Primitives

Name Output Input Notes
A-38 Xilinx Development System

XSI Library Primitives
RAMB4_S1_S2* DOA, DOB WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

RAMB4_S1_S4* DOA, DOB WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

RAMB4_S1_S8* DOA, DOB WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

RAMB4_S1_S16* DOA, DOB WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

RAMB4_S2* DO WE, RST, EN, EN, CLK,
ADDR

Single port 4096 bit
block RAM.

RAMB4_S4* DO WE, RST, EN, EN, CLK,
ADDR

Single port 4096 bit
block RAM.

RAMB4_S8* DO WE, RST, EN, EN, CLK,
ADDR

Single port 4096 bit
block RAM.

RAMB4_S16* DO WE, RST, EN, EN, CLK,
ADDR

Single port 4096 bit
block RAM.

RAMB4_S2_S2* DOA, DOB WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

Table A-24 Virtex-Specific RAM

Name Output Input Notes
Xilinx/Synopsys Interface Guide A-39

Xilinx/Synopsys Interface Guide
RAMB4_S2_S4* DOA, DOB WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

RAMB4_S2_S8* DOA, DOB WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

RAMB4_S2_S16* DOA, DOB WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

RAMB4_S4_S4* DOA, DOB WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

RAMB4_S4_S8* DOA, DOB WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

RAMB4_S4_S16* DOA, DOB WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

RAMB4_S8_S8* DOA, DOB WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

Table A-24 Virtex-Specific RAM

Name Output Input Notes
A-40 Xilinx Development System

XSI Library Primitives
Xilinx DesignWare Modules
The following figure illustrates the Xilinx DesignWare (XDW)
module naming conventions. The example shows a comparator
module and contains the four possible components used in naming
the modules. Other module names do not necessarily contain all four
components.

Figure A-1 XDW Module Naming Conventions

RAMB4_S8_S16* DOA, DOB WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

RAMB4_S16_S16* DOA, DOB WEA, RSTA, ENA,
ENA, ENA, CLKA,
ADDRA, WEB, RSTB,
ENB, ENB, ENB, CLKB,
ADDRB

Dual port 4096 bit block
RAM.

An asterisk (*) next to a primitive name indicates that you must instantiate it.

Table A-24 Virtex-Specific RAM

Name Output Input Notes

COMP_LE_UBIN_#

Module Type

Magnitude and Equality

Data Type
Bus Width

X7752
Xilinx/Synopsys Interface Guide A-41

Xilinx/Synopsys Interface Guide
The following table gives the XDW naming conventions.

The following table maps XDW modules to X-BLOX Modules and
provides inputs and outputs

Table A-25 XDW Naming Conventions

Module Type
Magnitude and
Equality

Data Type Bus Width

ADD_SUB:
Adder/Subtracter
COMP: Compar-
ator
INC_DEC:
Incrementer/
Decrementer

GE: Greater than or
equal to
GT: Greater than
LE: Less than or
equal to
LT: Less than

TWO_COMP: Twos
complement
UBIN: Unsigned
binary

#: Bus width can be 6, 8,
10, 12, 14, 16, 20, 24, 28,
32, or 48 (and 64 for
COMP only).
Use <(#–1):0> to
translate bus width to
bus notation. For
example, if Bus A has a
bus width of 6, then the
correct bus notation is
A<(6–1):0> or A<5:0>.

Table A-26 XDW Modules

DesignWare Module
X-BLOX
Module

Inputs Outputs

ADD_SUB_TWO_COMP_# ADD_SUB C_IN, ADD_SUB,
B<(#–1):0>, A<(#–1):0>

FUNC<(#–1):0>

ADD_SUB_UBIN_# C_IN, ADD_SUB,
B<(#–1):0>, A<(#–1):0>

FUNC<(#–1):0>

COMP_GE_TWO_COMP_# COMPARE B<(#–1):0>, A<(#–1):0> Z

COMP_GE_UBIN_# B<(#–1):0>, A<(#–1):0> Z

COMP_GT_TWO_COMP_# B<(#–1):0>, A<(#–1):0> Z

COMP_GT_UBIN_# B<(#–1):0>, A<(#–1):0> Z

COMP_LE_TWO_COMP_# B<(#–1):0>, A<(#–1):0> Z

COMP_LE_UBIN_# B<(#–1):0>, A<(#–1):0> Z

COMP_LT_TWO_COMP_# B<(#–1):0>, A<(#–1):0> Z

COMP_LT_UBIN_# B<(#–1):0>, A<(#–1):0> Z

INC_DEC_TWO_COMP_# INC_DEC INC_DEC, A<(#–1):0> FUNC<(#–1):0>

INC_DEC_UBIN_# INC_DEC, A<(#–1):0> FUNC<(#–1):0>
A-42 Xilinx Development System

XSI Library Primitives
Post-Configuration Initialization States
The following tables show the initialization states after configuration
for the XC4000 and XC5200 families.

Table A-27 Initialization State After Configuration (XC4000
Family)

Initializes to 0* Initializes to 1

FDC ILFFX_M* OFDTX_U FDP ILFFXI_M* OFDTXI_F

FDCE ILFLX_F* OFDT_F FDPE ILFLXI_1F* OFDTXI_S

IFD ILFLX_M* OFDT_S IFDI ILFLXI_1M* OFDTXI_U

IFDX ILFLX_1F* OFDT_U IFDI_F LDPE* OFDXI

IFDX_F ILFLX_1M* OFDX IFDI_U LDPE_1* OFDXI_F

IFDX_U LD* OFDX_F IFDXI LDP_1 OFDXI_S

IFD_F LDCE* OFDX_FU IFDXI_F OFDI OFDXI_U

IFD_U LDCE_1* OFDX_S IFDXI_U OFDI_F

ILDX_1 LDC_1 OFDX_U ILDI_1 OFDI_S

ILDX_1F LD_1 OFD_F ILDI_1F OFDI_U

ILDX_1U OFD OFD_FU ILDI_1U OFDTI

ILD_1 OFDT OFD_S ILDXI_1 OFDTI_F

ILD_1F OFDTX OFD_U ILDXI_1F OFDTI_S

ILD_1U OFDTX_F ILDXI_1U OFDTI_U

ILFFX_F* OFDTX_S ILFFXI_F* OFDTXI

An asterisk (*) indicates 4000XE/XL/XV only.

Table A-28 Initialization State After Configuration (XC5200
Family)

Initializes to 0 Initializes to 1

FDC FDPI

FDCE FDPEI

FDC_1 FDPI_1

FDCE_1 FDPEI_1

LD
Xilinx/Synopsys Interface Guide A-43

Xilinx/Synopsys Interface Guide
LD_1

LDC

LDCE

LDC_1

LDCE_1

Table A-28 Initialization State After Configuration (XC5200
Family)

Initializes to 0 Initializes to 1
A-44 Xilinx Development System

Appendix B

Targeting Virtex Devices

Generally, you target a Virtex device no differently than the way you
target a non-Virtex device. However, you use Virtex-specific settings,
such as .synopsys_dc.setup options, that only apply to Virtex. This
appendix outlines only the major differences you encounter when
targeting a Virtex device. For topics not covered here, equivalent
instructions for a non-Virtex device apply and those instructions exist
earlier in this manual.

Unless otherwise specified, all references to FPGA Compiler also
apply to Design Compiler.

This appendix contains the following topics.

• “Following General Guidelines.”

• “Setting FPGA Compiler to Synthesize a Virtex Design”

• “Synthesizing a Virtex Design into FPGA Compiler”

• “Setting VSS Simulation for Virtex”

• “Setting FPGA Compiler II for Virtex”

• “Synthesizing a Virtex Design in FPGA Compiler II”

• “Using Clock Delay Locked Loops with Synopsys”

Following General Guidelines
Use these following general guidelines when targeting Virtex
devices.

Virtex XSI uses an EDIF-based synthesis flow with FPGA Compiler
and FPGA Compiler II.
Xilinx/Synopsys Interface Guide B-1

Xilinx/Synopsys Interface Guide
For I/O cells with a specific type of input delay and current drive in
the FPGA Compiler flow, instantiate the desired IBUF, OBUF, IFD,
and other primitives. Refer to the “XSI Library Primitives” appendix
for the exact I/O library cell name and pin names. For I/O cells in
FPGA Compiler II, you can infer the desired type of input delay, pull-
up or pull-down, and current drive using the FPGA Compiler II
implementation GUI.

Do not use the Ungroup –all –flatten command when
synthesizing a Virtex design with FPGA Compiler.

A software bug exists in the DesignWare Compiler that causes the
uniquify command to remove attributes from library cells. The result
is a LUT primitive with no attributes defining how the LUT works.
The resulting netlist will error out during the NGDBuild process.
Compile all lower level modules. Place a dont_touch attribute on the
complied modules, then compile the top level module. Do not set the
Synopsys variable hdlin_replace_synthetic=true to expand the
operators while reading in the HDL design code. Doing so can result
in less-than-optimal designs, because the compiler cannot make
appropriate trade-offs. Do not use the replace_fpga command for
virtex flows. The replace_fpga command will replace the LUTs in
the netlist with primitive gates.

Use the following commands for the set_dont_touch attribute.

current_design alu compile -map_effort \

[low|medium|high] \

set_dont_touch alu \

current_design top compile -map_effort \

[low|medium|high]

You can use two types of simulation when simulating a Virtex design
with either Verilog or VHDL; RTL simulation and post-NGDbuild
simulation.

Setting FPGA Compiler to Synthesize a Virtex
Design

Use the following procedure to set FPGA Compiler for Virtex design
simulation.

1. Set your Xilinx and Synopsys software environments.
B-2 Xilinx Development System

Targeting Virtex Devices
For instructions about setting up this current release of Xilinx
software, please refer to the ISE 4 Release Notes. For instructions
about setting up Synopsys products, refer to the Synopsys
installation guide.

2. Copy the file $XILINX/synopsys/examples/
template.synopsys_dc.setup_fc into a directory.

3. Run synlibs to get the correct synthesis libraries into the
.synopsys_dc.setup file. Execute the following command in the
same directory that contains the .synopsys_dc.setup file for
Virtex.

 synlibs xfpga_virtex-3>>.synopsys_dc.setup

4. Check that your system administrator compiled the XDW ISE 4
XSI libraries.

By default, these DesignWare libraries are compiled for Synopsys
v1999.05. If using a version of Synopsys newer than v1999.05,
compile these libraries for the version of Synopsys you use.
Check with your system administrator to determine the version
of Synopsys installed and in use.

5. Determine if you need to compile the ISE 4 XDW libraries for
Virtex and have privileges to write to $XILINX.

If you do not have privileges to write in $XILINX, copy the
contents of $XILINX/synopsys/libraries to a local directory and
then follow steps 2–4, except use the following procedures in the
local copy of $XILINX/synopsys/libraries.

♦ Change directories to the $XILINX/synopsys/libraries/dw/
src/virtex area.

♦ Inside the previous directory, type the following and press
Enter.

dc_shell –f install_dw.dc

To synthesize the Virtex ISE 4 XSI XDW Virtex libraries you
must have a license to compile VHDL with Synopsys. If you
do not have a VHDL license, check the Xilinx WWW site
(www.xilinx.com) for a compiled version of the XSI XDW
Virtex ISE 4 XDW libraries.
Xilinx/Synopsys Interface Guide B-3

Xilinx/Synopsys Interface Guide
♦ Compile the XSI XDW ISE 4 libraries only once. You need to
recompile only when upgrading to a new version of
Synopsys.

Synthesizing a Virtex Design into FPGA Compiler
Use the following procedure to synthesize a Virtex design into FPGA
Compiler.

1. Set up the .synopsys_dc.setup file.

2. Synthesize the ISE 4 XDW libraries.

3. Create a WORK directory in the same directory that contains the
.synopsys_dc.setup file.

4. Create the run script, as shown in the following example.

/*Basic Virtex FPGA Compiler Compile script */
read –f verilog file1.v
read –f verilog file2.v
read –f verilog file3.v
. . .
read –f verilog top.v
/* Set design constraints */
/* Use the following commands if you want */
/* Synopsys to infer I/O. It is recommended */
/* for the Virtex flow that I/O be */
/* instantiated. */
/* set_port_is_pad “*” */
/* set_pad_type -no_clock all_inputs() */
/* set_pad_type -exact BUFGP -clock \ */
/* find(port,”CLK”) */
/* insert_pads */
compile
/* Use analysis reports to evaluate quality */
/* of results. */
/* report_area */
/* report_timing */
write_script > design.dc
sh dc2ncf -w design.dc
write –hierarchy -format db –o “top.db”
write –hierarchy -format edif –o “top.edif”
B-4 Xilinx Development System

Targeting Virtex Devices
Setting VSS Simulation for Virtex
Use the following procedure to set VSS simulation for Virtex devices.

Note To compile the simulation libraries, you must have root access
because you modify files in the $XILINX tree. As with the XDW
libraries, you must compile these libraries if using a version of
Synopsys newer than v1999.05. If you need to compile these libraries,
you must have write privileges to the $XILINX area. If you do not,
copy the $XILINX/synopsys/libraries/sim to a local directory.

1. Change to the $XILINX/synopsys/libraries/sim/src/unisims
directory.

2. In the previous directory, run the C-shell script analyze.csh.

3. Change to the $XILINX/synopsys/libraries/sim./src/simprims
directory.

4. In the previous directory, run the C-shell script analyze.csh.

You need do the previous three steps only once. However, if you
upgrade to a new version of Synopsys, you must recompile these
libraries again.

If simulating in Verilog, ignore the previous three steps.

5. Copy the file $XILINX/synopsys/examples/
template.synopsys_vss.setup file into a directory where you
perform VSS simulation.

6. Rename the file template.synopsys_vss.setup to
.synopsys_vss.setup.

7. Create a WORK directory.

You can now start simulating with VSS.

Setting FPGA Compiler II for Virtex
You can use FPGA Compiler II to synthesize a Virtex design. When
creating an implementation in FPGA Compiler II, select Virtex as a
family/die-pkg-spd grade. For more information on FPGA Compiler
II, refer to the documentation which comes with your FPGA
Compiler II software from Synopsys.
Xilinx/Synopsys Interface Guide B-5

Xilinx/Synopsys Interface Guide
Synthesizing a Virtex Design in FPGA Compiler II
The design procedure you use to target a Virtex device with FPGA
Compiler II mimics the procedure for targeting a XC3000A/
XC4000X/Spartan device with FPGA Compiler II. For more
information about FPGA Compiler II, refer to the documentation
which comes with your FPGA Compiler II software from Synopsys.

Using Clock Delay Locked Loops with Synopsys
You can simulate and implement the clock delay loops DLLs
CLKDLL and CLKDLLHF in HDL code. To use these DLLs for
synthesis, change the following two types of attributes.

• DUTY_CYCLE_CORRECTION (default is true)

• CLKDV_DIVDE— (default is 2)

To changes these default values in FPGA Compiler, use the Set
Attribute command. To change the value of
DUTY_CYCLE_CORRECTION and CLKDV_DIVIDE, you must
know the instance name of the instantiated CLKDLL/CLKDLLHF.
For example, if you have instantiated the CLKDLL in your top-level
VHDL file, the VHDL code can appear as the following.

MYDLL: CLKDLL port map(CLKIN=>REFCLK,CLKFB=>signal1,.);

In Verilog, the code can appear as follows.

CLKDLL MYDLL (.CLKIN(REFCLK), .CLKFB(signal1),.);

In both cases, the instance name is CLKDLL. To change the values of
DUTY_CYCLE_CORRECTION and CLKDV_DIVIDE, use the Set
Attribute command in the run script. Use the Set Attribute
command before writing out the EDIF file from FPGA Compiler, as
shown in the following example.

set_attribute “MYDLL” “DUTY_CYCLE_CORRECTION”\

–type string “FALSE” \

set_attribute “MYDLL” \

“CLKDV_DIVIDE “ –type string “3.0”

To change the defaults of CLKDLL and CLKDLLHF in FPGA
Express, use the constraints GUI in FPGA Express.
B-6 Xilinx Development System

Targeting Virtex Devices
To simulate CLKDLL and CLKDLLHF with Verilog, use the
functional simulation model that exists in the UNISIM libraries
included in the ISE 4 software. If you changed the default values of
DUTY_CYCLE_CORRECTION and CLKDV_DIVIDE, specify these
changes in the functional simulation by using a ‘define macro to
override the DUTY_CYCLE_CORRECTION and CLKDV_DIVIDE
parameters.

To simulate CLKDLL and CLKDLLHF with VHDL, use the
functional simulation model that exists in the UNISIM libraries
included in the ISE 4 XSI software. If you changed the default values
of DUTY_CYCLE_CORRECTIO and CLKDV_DIVIDE, specify these
changes in the functional simulation by using generics when
instantiating the CLKDLL/CLKDLLHF.

Note Generics for DUTY_CYCLE_CORRECTIOIN and CLKDLLHF
do not allow you to change the default values for synthesis. Use the
Set Attribute command to do this, or the GUI of FPGA Express.

The following example shows how to use generics to change the
default values of the CLKDLL for functional VHDL simulation.

MYDLL: CLKDLL generic \

map(DUTY_CYCLE_CORRECTION=>FALSE, \

CLKDV_DIVIDE=>3.0) port map(CLKIN=>..);

 For more information about CLKDLL and CLKDLLHF, please refer
to the Databook or the Libraries Guide.
Xilinx/Synopsys Interface Guide B-7

Xilinx/Synopsys Interface Guide
B-8 Xilinx Development System

	Software Manuals Online
	Xilinx/ Synopsys Interface Guide
	About This Manual
	Manual Contents
	Additional Resources

	Conventions
	Typographical
	Online Document

	Table of Contents
	Introduction to the Xilinx/Synopsys Interface
	What Is XSI?
	XSI Design Flow Using FPGA Compiler II
	XSI Design Flow Using FPGA Compiler
	Comparing Design Compiler to FPGA Compiler and FPGA Compiler II
	Using FPGA Compiler II
	Xilinx Documentation Set

	Getting Started
	Setting Up the Synopsys Interface
	Setting up the XDW and Simulation Libraries
	Compiling XDW Libraries

	Modifying the Default Synopsys Startup File
	Checking the FPGA Compiler Setup File
	Checking the Design Compiler Setup File

	Examples of Synopsys Setup Files
	XC4000 Devices
	Example .synopsys_dc.setup File
	Example .synopsys_dc.setup File
	Example Script File for Virtex Devices

	Verifying Software Installation

	Synthesizing Your Design with FPGA Compiler II
	Before You Begin
	Naming Conventions
	Porting Code from FPGA Compiler to FPGA Compiler II
	Converting Script Files from FPGA Compiler and Design Compiler
	Synthesizing the Design
	Entering Design Constraints and Controls
	Specifying Timing Constraints
	Specifying Clock Constraints
	Specifying Path Group Constraints
	Specifying I/O Constraints
	Timing Subpaths
	Defining Multicycle Timing Constraints
	Adding Pull-Up and Pull-Down Resistors

	Optimizing a Design Implementation
	Optimizing Logic Across Hierarchical Boundaries
	Using a Flattening Optimization Strategy

	Setting Port Attributes and Constraints

	Evaluating Timing Delays
	Using the FPGA Compiler II Time Tracker
	Viewing the Results of Optimization
	Generating Reports for Debugging
	Viewing the Schematics

	Exporting the Netlist
	Using the Xilinx Development System
	HDL Coding Techniques
	Configuring IOBs
	All Architectures
	Optimizing Inputs
	Understanding and Using Slew Rate

	Using IOBs
	Using Input Blocks
	Using Output Blocks
	Using Bidirectional Mode

	Inserting Bidirectional I/Os
	Assigning Pad Locations
	Instantiating a Registered Bidirectional I/O

	Implementing 3-State Registered Output
	Example of Not Directly Driving the 3-State Signal
	Example of Directly Driving the 3-State Signal

	Attribute Passing
	Implementing Clock Buffers
	Using Memory
	Implementing Virtex/E/-II RAM
	Implementing XC4000 RAM

	Performing Boundary Scan
	Using the Global Set/Reset Net
	Implementing GSR Buffers
	Accessing Global Set/Reset Using STARTBUF
	Synthesizing/Simulating for VHDL Global Set/Reset Emulation
	Instantiating a STARTUP Block in VHDL

	Increasing Performance with the GSR Net

	Synthesizing Your Design with FPGA Compiler and Design Compiler
	Before You Begin
	Naming Conventions
	Setting the Wire-Load Model
	Setting the Operating Condition Parameters
	Configuring IOBs
	All Architectures
	Optimizing Inputs
	Understanding and Using Slew Rate

	XC3000A/L and XC3100A/L IOBs
	Using Input Blocks
	Using Output Blocks
	Using Bidirectional Mode
	Using Input Blocks
	Using Output Blocks
	Using Bidirectional Mode

	Using XC5200 IOBs
	Using Input Blocks
	Using Output Blocks

	Assigning Pad Locations
	Example of Not Directly Driving the 3-State Signal
	Example of Directly Driving the 3-State Signal

	Inserting Bidirectional I/Os
	Instantiating a Registered Bidirectional I/O
	Compiling Bidirectional I/O

	Using Unbonded IOBs
	Adding Pull-Up and Pull-Down Resistors
	Removing the Default Input Delay
	Initializing the IOB Flip-Flop to Preset

	Inserting Clock Buffers
	Controlling Clock Buffer Insertion
	Determining the Number of Clock Buffers
	Preventing the Insertion of Clock Buffers

	Using Memory
	Implementing XC4000 RAMs
	Implementing RAM In Virtex Devices

	Performing Boundary Scan
	Using the Global Set/Reset Net
	Accessing Global Set/Reset Using STARTBUF
	Synthesizing/Simulating for VHDL Global Set/Reset Emulation
	Using STARTBUF in VHDL
	Instantiating a STARTUP Block in VHDL

	Setting Direct Preset or Direct Clear
	Increasing Performance with the GSR Net

	Using the Xilinx DesignWare Library
	Improving Design Area and Speed

	Creating Timing Specifications
	Following the DC2NCF Design Flow
	Creating the Netlist and Script File (Design Compiler)
	Creating the Netlist and Script File (FPGA Compiler)

	Understanding DC2NCF Translation Limitations
	Limitations of Create Clock
	Limitations of Set Input Delay and Set Output Delay
	Limitations of Set Max Delay and Set False Path
	Set Multicycle Path

	Compiling Your Design
	Optimizing Logic Across Hierarchical Boundaries
	Using a Flattening Optimization Strategy
	Compiling the Design with Hierarchy
	Compiling the Design without Hierarchy

	Compiling a Design with Instantiated I/O Cells
	Compiling XC4000, Spartan, and Virtex Designs

	Creating the Area Report
	Evaluating Timing Delays
	Generating Reports for Debugging
	Generating a Configuration Report
	Generating a Hierarchical Schematic
	Creating a Level for Each CLB and IOB
	Generating a Level for Each Function Generator

	Writing and Saving Your Design
	Saving the DB File
	Replacing CLBs and IOBs with Gates
	Invoking the Replace FPGA Command
	Replacing CLBs and IOBs in Designs with Hierarchy

	Controlling the Synopsys Mapping
	Restoring BLKNM Attributes

	Setting the Design Part Type
	Saving the Design Netlist File
	Saving your Netlist in EDIF Format (Design Compiler)
	Saving your Netlist in XNF Format (FPGA Compiler)

	Using the Xilinx Development System

	Using CORE Generator and LogiBLOX
	Using CORE Generator
	Specifying Inputs and Outputs in LogiBLOX
	Using LogiBLOX in the HDL Design Flow
	Instantiating RAM
	Instantiating RAM or ROM with FPGA Compiler
	Instantiating RAM or ROM with FPGA Compiler II

	Simulating Your Design
	Simulation Design Flow Overview
	Using Simulation Libraries
	UniSim Library
	UniSim Library Structure
	UniSim Library Files
	UniSim Library Component Instantiation

	SimPrim Library
	LogiBLOX Library
	LogiBLOX Library Compilation
	LogiBLOX Library Component Instantiation

	Working with the VITAL Standard
	VHDL and Verilog Simulation Flow
	Simulating at Register Transfer Level (RTL)
	Conducting a Post-Synthesis (pre-NGDBuild) Gate- Level Functional Simulation
	Conducting a Post-NGDBuild (Pre-Map) Gate-Level Functional Simulation
	Conducting a Post-Route Full Timing (Block and Net Delays) Simulation

	Synthesizing/Simulating for VHDL Global Set/Reset Emulation
	Instantiating a STARTUP Block in VHDL
	Using ROCBUF in VHDL
	Generating a 3-State-On-Configuration in VHDL
	Using TOCBUF in VHDL
	Using Oscillators in VHDL
	Using Global Set/Reset Emulation in Verilog
	Using Global 3-State Emulation in Verilog
	Using Oscillators in Verilog

	NGDBuild Support of Multiple Device Architectures
	Recommended VSS Simulation Strategy
	VSS Simulation Flow
	Editing the VSS Setup File
	Creating a Testbench File
	Using RTL Simulation
	Implementing Your Design

	Using Files, Programs, and Libraries
	Understanding the XSI Directory Structure
	Using File Descriptions
	Using Program Descriptions
	Using Supplied Libraries Descriptions
	Finding Supported Part Types and Speed Grades
	Finding Unsupported Part Types and Speed Grades

	XSI Library Primitives
	Generating a List of XSI Library Primitives
	Obtaining XSI Library Primitive Pin Order
	Alphabetical List of Primitives for All Architectures
	Using the Dont Touch Attribute
	Setting the INIT Attribute
	Primitive Name Suffixes
	Virtex-Specific Primitive Name Suffixes
	Architecture Abbreviations
	Primitive Tables

	Understanding Virtex-Specific Cell Names
	Virtex-Specific Primitives Table
	Virtex RAM Primitive Name Suffixes

	Xilinx DesignWare Modules
	Post-Configuration Initialization States

	Targeting Virtex Devices
	Following General Guidelines
	Setting FPGA Compiler to Synthesize a Virtex Design
	Synthesizing a Virtex Design into FPGA Compiler
	Setting VSS Simulation for Virtex
	Setting FPGA Compiler II for Virtex
	Synthesizing a Virtex Design in FPGA Compiler II
	Using Clock Delay Locked Loops with Synopsys

