EECS150 Spring 2002

Lab 6 Debugging

University of California at Berkeley

College of Engineering

Department of Electrical Engineering and Computer Science
Lab 6

Debugging
Objective

You will explore several techniques for debugging a digital design. You will be provided with four different designs, which for some reason don’t work as they should, and you will fix the problems by using the techniques described below.

Introduction

No matter how careful your digital design could be, it is usually very surprising if it works well the first time you try it. The more complex the design, the more likely you would need to spend a big part of the design time in the debugging process. This is also true in industry, even among the most experienced designers. In fact, the design of a system is incomplete without the design of a testing protocol, which is applied to the system at different stages of development in order to detect bugs and correct them. We could roughly describe the debugging process as having two stages: first, a test is performed, and second, if an error is found, the cause of the error is identified and corrected. Therefore, there are two different concepts involved here, one is how to design an effective test that could detect the errors, and another one is how to trace the error back to its cause so it can be corrected.

In this Lab, we will explore some useful techniques for detecting errors and tracing them back to its cause. We will use tests at different levels of abstraction, i.e., simulations and hardware debugging.

The techniques covered in this Lab are the following:

1) Bottom-up testing: take advantage of the hierarchical structure of a design by testing first the lower level, simpler components, and moving to the top one level at a time.

2) Exhaustive testing of finite state machines: feed a sequence of inputs to the FSM that guarantees that every arc in the state diagram is exercised at least once, checking that the output and the next state are correct.

3) Timing issues: analyze the limitations imposed by propagation delays in the physical implementation of the circuit and modify the design to improve the performance.

4) Observing internal signals: connect internal signals, usually buried inside the chip, to an output pin so that you can watch it in the logic analyzer and gain more understanding of the problem than watching only the outputs.

Prelab

1. As usual, you should read and understand this handout before coming to the lab.

2. Look at the Verilog files provided and understand what they do.

3. Prepare your testing methodology for each part.

Procedure

The purpose of this lab is to identify errors by applying certain testing and debugging techniques, and eventually correct them. The main goal is not to locate the errors but to learn these techniques, which will be very useful during the project development and beyond. Due to the nature of this lab, please do not discuss it with other students (except your partner) during or after your lab session. TA’s will not tell you where the bugs are, but will help you with the procedure.

Part I (Bottom-up testing)

Create a project and add the file lab6_p1.v. This file contains the Verilog model of a peak detector. This circuit has a 4-bit input, a 4-bit output, and the usual clock and reset inputs. The output is equal to the largest value of the input since the last reset, that’s why it is called peak detector. The values are coded in binary (unsigned).

The design has three levels of abstraction (Fig. 1). At the lower level, there is the module one_bit_comp. This module compares two bits a and b, and asserts the outputs go or eo if a>b or a=b respectively. In order to connect several of these modules in cascade, two additional inputs gi and ei are used to indicate whether the most significant bits of a are greater than or equal to b, respectively.

At the second level, the module four_bits_comp instantiates four one bit comparators to create a four bits comparator. The inputs of this module are two 4-bit buses a and b, and the output ge is asserted when a>=b.

At the top of the hierarchy, the module l6p1 instantiates the four bit comparator and connects it output to the clock enable signal of a register. The inputs of the comparator are the global input in and the output of the register, which is also the output peak of the circuit. This interconnection makes the register load the input data if it is greater than or equal to the register contents.

[image: image1.wmf]

gi

ei

a

b

go

eo

one_bit_comp

a

b

ge

four_bits_comp

l6p1

in

peak

clk

rst

register

Figure 1: Hierarchic design for Part I.

There are some errors buried in the design. Your task is to detect and correct them. The strategy to follow in this case, is to perform a bottom-up testing, i.e., test first the modules at the bottom of the hierarchy, when you are convinced that they work properly, move to the next level in the hierarchy and test those modules, continuing in this way until you reach the top of the hierarchy. In this part, you can perform the tests with simulations only, i.e., you don’t need to implement and download the design to the board. Think about a good sequence of inputs for the tests and create a script file to simplify the process.

Once the design is working properly, you have to show the TA which errors you found, how you corrected them, and the simulation of the corrected version.

Part II (Testing finite state machines)

Download the bitfile lab6_p2.bit to the Xilinx board. You can do this by running the Hardware Debugger directly from the Start Menu (Start > Programs > Xilinx Foundation > Accessories > Hardware Debugger), and opening the bitfile (File > New > Project). This file contains the design of a sequence detector, which has the state diagram shown in Fig.2. The circuit receives a 1-bit input synchronized with the clock and asserts the output when it detects the sequence "010", as long as the sequence "100" has never been received. If a "100" sequence is received, the circuits halts and the only way to resume normal operation is by sending a reset signal.

[image: image2.wmf]

S0

[0]

S1

[0]

S2

[0]

S3

[1]

S4

[0]

S5

[0]

S6

[0]

Reset

0

0

0

0

0

0

1

1

1

1

1

1

X

Figure 2: State diagram for Part II.

The bitfile contains a couple of errors, which you should find by performing an exhaustive test on the state machine. The main idea is that you have to exercise every arc and make sure that the state transition as well as the output is correct. Therefore, you should prepare a sequence of inputs that exercises all the arcs and go through it during the test. As you will see, this is not a trivial task; you could deduce that the complexity of the test would grow exponentially with the size of the finite state machine.

To actually perform the test on the board, you will use the dipswitch SW5-1 as the input and the LED most to the right (CR1-0) as the output. The button Reset will perform the asynchronous reset of the state machine, and the button Spare will enable the clock to perform one transition (in fact, sometimes the debouncer won’t work properly and you may have two transitions). Additionally, we have wired the state value to the three LEDs CR1-3 to CR1-1, so that you can track the current state (notice that in general the state value is an internal signal that you can't access from outside of the chip, so in real-world applications you may need to modify the code to show those signals and perform the test).

Once you find the errors, you should show them to the TA, together with the sequence of inputs used for the test. You are not required to correct the error, since you won't have access to the source code.

Part III (Timing issues)

Create a new project and add the file lab6_p3.v. This file contains the description of multiplier-accumulator unit, which is a unit widely used for signal processing. In Fig.3 we show the structure of the design: at every clock cycle, it performs the transfer A*B+MAC→MAC. The registers at the inputs and at the output are used to synchronize the signals. Our design uses seven adders to perform the multiplication, in the same way we do it by hand (shift & add). The two inputs are 8 bits wide and the output has 16 bits.

[image: image3.wmf]

 EMBED Word.Picture.8 [image: image4.wmf]

X

+

A

B

MAC

CK

Figure 3: Multiplier-accumulator

The multiplier-accumulator is inside the module mac_mod, and uses the modules adder16, adder8 and full_adder. In order to test this circuit, we have included an FSM in the module test_fsm, which will create a sequence of inputs and expected outputs. The top level module is called l6p3 and it instantiates the MAC and the test FSM. A second FSM is monitoring the output of the MAC and comparing it with the expected output provided by the test FSM. If all outputs agree, the output ok is turned on (active low) and the circuit halts; otherwise the output ok will not turn on.

Therefore you would be able to download the circuit to the board and read the result of the test: if the LED turns on, the test was successful, if not the test failed. When you press the reset button, the LED will turn off but as soon as you release the button it has to turn on again.

The tasks to be performed in this part are:

1. Create a sequence of inputs and outputs to test the MAC and insert them in the test FSM. The code is already there for you, but all signals are set to zero; you should overwrite them with your sequence. The signals agen and bgen will be the inputs of the MAC, and the signal macgen is the expected output. Notice that the output of the MAC is delayed one clock cycle from the inputs, so take this into account when designing the test sequence. You will be required to create at least 10 clock cycles, and they should cover different values of the inputs and the outputs, exciting at least once every output bit.

2. Simulate the design and make sure that the test sequence is correct, i.e., the signal ok should go from high to low at the end of the test.

3. Implement the design and download it to the board. You have to use the constraint file lab6_p3.exc to assign the correct pins to the signals.

4. Test the circuit on the board. You will notice that the LED doesn’t turn on always when you press the reset button, you may see that it turns on sometimes and sometimes not. This means that your circuit is not working properly (it has to turn on always).

5. Figure out where the error is and correct it by modifying the design of the module mac_mod. You will have to think about some concepts covered in class.

When you correct the problem, show the TA the correction and your circuit working properly on the board, i.e., the LED has to turn on every time you push the button.

Part IV (Observing internal signals)

Create a new project and add the file lab6_p4.v. This file contains the design of an accumulator, similar to the one we’ve seen in past labs. We’ve added an edge detector that controls the clock enable signal of the accumulator. Therefore, we can test the circuit manually in the board, one input at a time.

This design needs a specific library for the adders. To add that library to your design, open the Library Manager (File > Project Libraries > Lib. Manager), and attach the library found in the directory lab6_p4_lib (Library > Attach). Then you have to go back to the Project Libraries dialog and add the library lab6_p4 to your project (use the button Add >>).

When synthesizing, add the binary constraint file lab6_p4.exc. This will assign the clock and reset pins as usual, the 7-bit input to the dipswitches SW5-2 to SW5-8, the step input (which enables the load of the accumulator when it goes from zero to one) to the dipswitch SW5-1, and the 8-bit output to the LEDs CR2 and CR1.

You should simulate the circuit and make sure it works properly. Then you should download it to the board and test it manually. You will find that the circuit doesn’t work properly. Think about the design and the probable cause of the error. Modify the original source code so that you can look at internal signals in the logic analyzer. Find the signal that’s not behaving properly and add a piece of code that corrects the problem.

You have to show the TA the signal on the logic analyzer before the correction. When the problem is solved, you have to show your code and the new design working properly on the board.

Acknowledgements

Original Lab by John Wawrzynek and Gabriel Eirea.

Name:

Name:

Lab Section (Check one):

M:
AM
PM
T:
AM
PM
W:
AM
PM
Th:
PM

Checkoffs: Lab 6

1. Part I.

Show the errors in the code and the corrections.

Show the simulation of the corrected design.

TA: ____________(25%)

2. Part II.

Show the sequence of inputs used for testing.

Show the errors you located in the circuit.

TA: ____________(25%)

3. Part III.

Show the test sequence.

Show the simulation.

Show the correction.

Show the circuit working on the board.

TA: ____________(25%)

4. Part IV.

Show your simulation.

Show the misbehaved signal on the logic analyzer.

Show the code that corrects the design.

Show the corrected version on the board.

TA: ____________(25%)

 Total Score

Lab turned in on time

TA: ___________(100%)

Lab turned in one week late

TA: ____________(50%)

UCB
1
2002

_1076165281.doc

S0

[0]

S1

[0]

S2

[0]

S3

[1]

S6

[0]

S5

[0]

S4

[0]

Reset

0

0

0

0

0

0

1

1

1

1

1

1

X

_1076433596.doc

_1076433607.doc

X

+

A

B

MAC

CK

_1076157954.doc

gi

ei

a

b

go

eo

one_bit_comp

peak

ge

b

a

four_bits_comp

l6p1

in

rst

clk

register

