Linear Feedback Shift Registers (LFSRs)

- These are n-bit counters exhibiting pseudo-random behavior.
- Built from simple shift-registers with a small number of xor gates.
- Used for:
 - pseudo-random number generation
 - counters
 - error checking and correction
- Advantages:
 - very little hardware
 - high speed operation
- Example 4-bit LFSR:

Applications of LFSRs

- Performance:
 - In general, xors are only ever 2-input and never connect in series.
 - Therefore the minimum clock period for these circuits is:
 \[T > \frac{T}{2} \text{ input-xor} + \text{clock overhead} \]
 - Very little latency, and independent of n!
 - This can be used as a fast counter if the particular sequence of count values is not important.
 - Example: micro-code micro-pc
- Can be used as a random number generator.
- Sequence is a pseudo-random sequence:
 - numbers appear in a random sequence
 - repeats every \(2^n-1\) patterns
- Random numbers useful in:
 - computer graphics
 - cryptography
 - automatic testing
- Used for error detection and correction:
 - CBC (cyclic redundancy codes)
 - ethernet uses them

Outline

- Linear Feedback Shift Registers
 - Theory and practice
- Simple hardware division algorithms
- Famous Pentium Division Bug

Galois Fields - The theory behind LFSRs

- LFSR circuits performs multiplication on a field.
- A field is defined as a set with the following:
 - two operations defined on it: “addition” and “multiplication”
 - closed under these operations
 - associative and distributive laws hold
 - additive and multiplicative identity elements
 - additive inverse for every element
 - multiplicative inverse for every non-zero element
- Example fields:
 - set of rational numbers
 - set of real numbers
 - set of integers is not a field
 - Finite fields are called Galois fields.
- Example:
 - Binary numbers 0,1 with XOR as “addition” and AND as “multiplication”.
 - Called GF(2).
Galois Fields - The theory behind LFSRs

- Consider polynomials whose coefficients come from GF(2).
- Each term of the form \(x^i\) is either present or absent.
- Examples: 0, 1, \(x, x^2\), and \(x + x^2 + 1\).
- With addition and multiplication these form a field:
 - "Add": XOR each element individually with no carry: \(x^i + x^j = x^k\) if \(k = i + j\)
 - "Multiply": multiplying by \(x^i\) is like shifting to the left. \(x \cdot x^i = x^{i+1}\) if \(k = i + 1\)

Building an LFSR from Primitive Polynomial

- For \(n\)-bit LFSR number the flip-flops with FF1 on the right.
- The feedback path comes from the Q output of the leftmost FF.
- Find the primitive polynomial of the form \(x^n + 1\).
- The \(i\)-th term corresponds to connecting the feedback directly to the D input of FF \(i\).
- Each term of the form \(x^i\) corresponds to connecting an XOR between FF \(i\) and \(i+1\).
- 4-bit example, uses \(x^3 + x + 1\):
 - \(x\) FF4's Q output
 - \(x\) XOR between FF1 and FF2
 - FF1's D input
- To build an 8-bit LFSR, use the primitive polynomial \(x^8 + x^4 + x^3 + x + 1\) and connect XORs between FF2 and FF3, FF3 and FF4, and FF4 and FF5.

Error Correction

- For the \(i\)-th bit of the 4-bit encoding, if \(i\) happens to be a 0, XOR the \(i\)-th bit with the \(i\)-th bit of the encoded message; if \(i\) happens to be a 1, leave the \(i\)-th bit alone.
- If the \(i\)-th bit of the encoded message is a 1, then XOR the \(i\)-th bit with the \(i\)-th bit of the encoded message.
- If the \(i\)-th bit of the encoded message is a 0, then leave the \(i\)-th bit alone.
- The \(i\)-th bit of the encoded message is a 1.
- If the \(i\)-th bit of the encoded message is a 0, then XOR the \(i\)-th bit with the \(i\)-th bit of the encoded message.
- If the \(i\)-th bit of the encoded message is a 1, then leave the \(i\)-th bit alone.
- The \(i\)-th bit of the encoded message is a 1.
- If the \(i\)-th bit of the encoded message is a 0, then XOR the \(i\)-th bit with the \(i\)-th bit of the encoded message.
- If the \(i\)-th bit of the encoded message is a 1, then leave the \(i\)-th bit alone.
- The \(i\)-th bit of the encoded message is a 1.

Galois Field Hardware

- Multiplication by \(x\):
 - Shift right
 - Taking the result mod \(p(x)\)
 - XOR-ing with the coefficients of \(p(x)\)
 - When the most significant coefficient is 1.
- Obtaining all \(2^n - 1\) non-zero elements by evaluating \(x^i\) for \(i = 1, \ldots, 2^n - 1\).

- Every Galois field has a primitive element, \(\alpha\), such that all non-zero elements of the field can be expressed as a power of \(\alpha\).
- By raising \(\alpha\) to powers, all non-zero field elements can be formed.
- Certain choices of \(p(x)\) make the simple polynomial a primitive element. These polynomials are called primitive, and one exists for every degree.
- For example, \(x^4 + x + 1\) is primitive. So \(\alpha = 1\) is a primitive element and successive powers of \(\alpha\) will generate all non-zero elements of GF(16).

Primitive Polynomials

- \(x^2 + x + 1\)
- \(x^4 + x^2 + 1\)
- \(x^8 + x^4 + x^3 + x + 1\)
- \(x^n + 1\)
- \(x^3 + x^2 + x + 1\)
- \(x^4 + x^3 + x^2 + x + 1\)
- \(x^8 + x^4 + x^3 + x + 1\)
- \(x^n + 1\)
- \(x^3 + x^2 + x + 1\)
- \(x^4 + x^3 + x^2 + x + 1\)
- \(x^8 + x^4 + x^3 + x + 1\)
- \(x^n + 1\)
Error Correction

- XOR Q4 with incoming bit sequence. Now values of shift register don't follow a fixed pattern. Dependent on input sequence.
- Look at the value of the register after 15 cycles: "1010"
- Note the length of the input sequence is $2^4 - 1 = 15$ (same as the number of different nonzero patterns for the original LFSR)
- If parity bits not all zero, an error occurred in transmission.
- If number of parity bits = log total number of bits, then single bit errors can be corrected.
- Using more parity bits allows more errors to be detected.

Long-hand Division

- 1001 Quotient
- 10000 Dividend
- 1000 Remainder (or Modulo result)

- See how big a number can be subtracted, creating quotient bit on each step
 - Binary \Rightarrow 1 * divisor or 0 * divisor
- Dividend = Quotient x Divisor + Remainder
- 3 versions of divide, successive refinement

DIVIDE HARDWARE Version 1

- 64-bit Divisor register, 64-bit ALU, 64-bit Remainder register, 32-bit Quotient register

Divide Algorithm Version 1

- Takes n+1 steps for n-bit Quotient & Rem.
- 64-bit ALU
- 32 bits

Observations on Divide Version 1

- 1/2 bits in divisor always 0
- ⇒ 1/2 of 64-bit adder is wasted
- ⇒ 1/2 of divisor is wasted
- Instead of shifting divisor to right, shift remainder to left?
- 1st step cannot produce a 1 in quotient bit (otherwise too big)
 ⇒ switch order to shift first and then subtract, can save 1 iteration
DIVIDE HARDWARE Version 2
- 32-bit Divisor register, 32-bit ALU, 64-bit Remainder register, 32-bit Quotient register

Observations on Divide Version 2
- Eliminate Quotient register by combining with Remainder as shifted left
 - Start by shifting the Remainder left as before.
 - Thereafter loop contains only two steps because the shifting of the Remainder register shifts both the remainder in the left half and the quotient in the right half
 - The consequence of combining the two registers together and the new order of the operations in the loop is that the remainder will shifted left one time too many
 - Thus the final correction step must shift back only the remainder in the left half of the register

DIVIDE HARDWARE Version 3
- 32-bit Divisor register, 32-bit ALU, 64-bit Remainder register, (0-bit Quotient reg)

Observations on Divide Version 3
- Same Hardware as Multiply: just need ALU to add or subtract, and 63-bit register to shift left or shift right
- Hi and LO registers in MIPS combine to act as 64-bit register for multiply and divide
- Signed divides: Simplest is to remember signs, make positive, and complement quotient and remainder if necessary
 - Note: Dividend and Remainder must have same sign
 - Note: Quotient negated if Divisor sign & Dividend sign disagree e.g., $-7 \div 2 = -3$, remainder = -1
- Possible for quotient to be too large: if divide 64-bit integer by 1, quotient is 64 bits ("called saturation")

Divide Algorithm Version 2
- Start: Place Dividend in Remainder
 1. Shift the Remainder register left 1 bit
 2. Subtract the Divisor register from the left half of the Remainder register, & place the result in the left half of the Remainder register
 3a. Shift the Quotient register to the left setting the new rightmost bit to 1.
 3b. Restore the original value by adding the Divisor register to the left half of the Remainder register, & place the sum in the left half of the Remainder register. Also shift the Quotient register to the left, setting the new least significant bit to 0.
 4. Test Remainder
 - Remainder ≥ 0: Go to 1.
 - Remainder < 0: No: < n repetitions
 5. Done: Shift left half of Remainder right 1 bit

Divide Algorithm Version 3
- Start: Place Dividend in Remainder
 1. Shift the Remainder register left 1 bit
 2. Subtract the Divisor register from the left half of the Remainder register, & place the result in the left half of the Remainder register
 3a. Shift the Remainder register to the left setting the new rightmost bit to 1.
 3b. Restore the original value by adding the Divisor register to the left half of the Remainder register, & place the sum in the left half of the Remainder register. Also shift the Remainder register to the left, setting the new least significant bit to 0.
 4. Test Remainder
 - Remainder ≥ 0: Go to 1.
 - Remainder < 0: No: < n repetitions
 5. Done: Shift left half of Remainder right 1 bit

Observations on Divide Version 3
- Signed divides: Simplest is to remember signs, make positive, and complement quotient and remainder if necessary
 - Note: Dividend and Remainder must have same sign
 - Note: Quotient negated if Divisor sign & Dividend sign disagree e.g., $-7 \div 2 = -3$, remainder = -1
Pentium Bug

- Pentium FP Divider uses algorithm to generate multiple bits per step
 - FPU uses most significant bits of divisor & dividend/remainder to guess next 2 bits of quotient
 - Guess is taken from lookup table: -2, -1,0,+1,+2 (if previous guess too large a reminder, quotient is adjusted in subsequent pass of -2)
 - Guess is multiplied by divisor and subtracted from remainder to generate a new remainder
 - Called SRT division after 3 people who came up with idea
- Pentium table uses 7 bits of remainder + 4 bits of divisor = 2^11 entries
- 5 entries of divisors omitted: 1.0001, 1.0100, 1.0111, 1.1010, 1.1101 from PLA (fix was to just add 5 entries back into PLA: cost $200,000)
- Self correcting nature of SRT => string of 1s must follow error
 - e.g., 1011 1111 1111 1111 1101 1000 0010 0011 0111 1011 0100 (2.99999892918)
- Since indexed also by divisor/remainder bits, sometimes bug doesn't show even with dangerous divisor value

Pentium Bug appearance

- First 11 bits to right of decimal point always correct: bits 12 to 52 where bug can occur (4th to 15th decimal digits)
 - FP divisors near integers 3, 9, 15, 21, 27 are dangerous ones:
 - 3.0 > d ≥ 3.0 - 36 x 2^-22
 - 9.0 > d ≥ 9.0 - 36 x 2^-20
 - 15.0 > d ≥ 15.0 - 36 x 2^-19
 - 21.0 > d ≥ 21.0 - 36 x 2^-18
 - 0.33333 x 9 could be problem
- In Microsoft Excel, try (4,195,835 / 3,145,727) * 3,145,727
 - = 4,195,835 => not a Pentium with bug
 - = 4,195,579 => Pentium with bug
 (assuming Excel doesn't already have SW bug patch)
- Rarely noticed since error in 5th significant digit
- Success of IEEE standard made discovery possible:
 - all computers should get same answer

Pentium Bug Time line

- June 1994: Intel discovers bug in Pentium: takes months to make change, rectify, put into production: plans good chips in January 1995 4 to 5 million Pentiums produced with bug
- Scientist suspects errors and posts on Internet in September 1994
- Nov. 22 Intel Press release: “Can make errors in 9th digit ... Most engineers and financial analysts need only 4 of 5 digits. Theoretical mathematician should be concerned. ... So far only heard from one.”
- Intel claims happens once in 27,000 years for typical spread sheet user:
 - 1000 divides/day x error rate assuming numbers random
- Dec 12: IBM claims happens once per 24 days: Bans Pentium sales
 - 5000 divides/second x 15 minutes = 4,200,000 divides/day
 - Intel said it regards IBM's decision to halt shipments of its Pentium processor-based systems as unwarranted.

Pentium conclusion: Dec. 21, 1994 $500M write-off

“...To owners of Pentium processor-based computers and the PC community:

We at Intel wish to sincerely apologize for our handling of the recently publicized Pentium processor flaw.

The Intel Inside symbol means that your computer has a microprocessor second to none in quality and performance. Thousands of Intel employees work very hard to ensure that this is true. But no microprocessor is ever perfect.

What Intel continues to believe is technically an extremely minor problem has taken on a life of its own. Although Intel firmly stands behind the quality of the current version of the Pentium processor, we recognize that many users have concerns.

We want to resolve these concerns.

Intel will exchange the current version of the Pentium processor for an updated version, in which this floating-point divide flaw is corrected, for any owner who requests it, free of charge anytime during the life of their computer. Just call 1-800-628-8686.”

Sincerely,

Andrew S. Grove Craig R. Barrett Gordon E. Moore
President/CEO Executive Vice President Chairman of the Board & COO

Summary

- Pentium: Difference between bugs that board designers must know about and bugs that potentially affect all users
 - Why not make public complete description of bugs in later category?
 - $200,000 cost in June to repair design
 - $500,000,000 loss in December in profits to replace bad parts
 - How much to repair Intel's reputation?

What is technologists responsibility in disclosing bugs?