
Spring 2003 EECS150 - Lec29-asynch Page 1

EECS150 - Digital Design
Lecture 29 - Asynchronous Sequential 

Circuits

May 6, 2003
John Wawrzynek



Spring 2003 EECS150 - Lec29-asynch Page 2

Outline
• Synchronizers

Figures from 
“Digital Design”, John F. Wakerly
Prentice Hall, 2000

An excellent treatment of the topic.
• Purely asynchronous circuits

– “self-timed” circuits
– Mano has another class of asynchronous circuits (not covered in 

class)



Spring 2003 EECS150 - Lec29-asynch Page 3

Asynchronous Inputs to Synchronous Systems
• Many synchronous systems need to interface to 

asynchronous input signals:
– Consider a computer system running at some clock frequency, say 

1GHz with:
• Interrupts from I/O devices, keystrokes, etc.
• Data transfers from devices with their own clocks

– Ethernet has its own 100MHz clock
– PCI bus transfers, 66MHz standard clock.

– These signals could have no known timing relationship with the 
system clock of the CPU.



Spring 2003 EECS150 - Lec29-asynch Page 4

“Synchronizer” Circuit
• For a single asynchronous input, we use a simple flip-flop to bring the 

external input signal into the timing domain of the system clock:

• The D flip-flop samples the asynchronous input at each cycle and 
produces a synchronous output that meets the setup time of the next 
stage.



Spring 2003 EECS150 - Lec29-asynch Page 5

“Synchronizer” Circuit
• It is essential for asynchronous inputs to be synchronized at only one 

place.  

• Two flip-flops may not receive the clock and input signals at precisely 
the same time (clock and data skew). 

• When the asynchronous changes near the clock edge, one flip-flop 
may sample input as 1 and the other as 0.



Spring 2003 EECS150 - Lec29-asynch Page 6

“Synchronizer” Circuit
• Single point of synchronization is even more important when input goes 

to a combinational logic block (ex. FSM)
• The CL block can accidentally hide the fact that the signal is 

synchronized at multiple points.
• The CL magnifies the chance of the multiple points of synchronization 

seeing different values.

• Sounds simple, right?



Spring 2003 EECS150 - Lec29-asynch Page 7

Synchronizer Failure & Metastability
• We think of flip-flops having only two stable 

states - but all have a third metastable state 
halfway between 0 and 1.

• When the setup and hold times of a flip-flop 
are not met, the flip-flop could be put into the 
metastable state. 

• Noise will be amplified and push the flip-flop 
one way or other.

• However, in theory, the time to transition to a 
legal state is unbounded.

• Does this really happen?
• The probability is low, but

the number of trials is high!



Spring 2003 EECS150 - Lec29-asynch Page 8

Synchronizer Failure & Metastability
• If the system uses a synchronizer output while the output is still in the 

metastable state ⇒ synchronizer failure.
• Initial versions of several commercial ICs have suffered from 

metastability problems - effectively synchronization failure:
– AMD9513 system timing controller
– AMD9519 interrupt controller
– Zilog Z-80 Serial I/O interface
– Intel 8048 microprocessor
– AMD 29000 microprocessor

• To avoid synchronizer failure wait long enough before using a 
synchronizer’s output.  “Long enough”, according to Wakerly, is so that 
the mean time between synchronizer failures is several orders of
magnitude longer than the designer’s expected length of employment!

• In practice all we can do is reduce the probability of failure to a 
vanishing small value.



Spring 2003 EECS150 - Lec29-asynch Page 9

Reliable Synchronizer Design
• The probability that a flip-flop stays in the metastable state decreases 

exponentially with time.  
• Therefore, any scheme that delays using the signal can be used to 

decrease the probability of failure. 
• In practice, delaying the signal by a cycle is usually sufficient:

• If the clock period is greater than metastability resolution time plus 
FF2 setup time, FF2 gets a synchronized version of ASYNCIN.

• Multi-cycle synchronizers (using counters or more cascaded flip-flops) 
are even better – but often overkill.



Spring 2003 EECS150 - Lec29-asynch Page 10

Purely Asynchronous Circuits
• Many researchers (and a few industrial designers) have proposed a 

variety of circuit design methodologies that eliminate the need for a 
globally distributed clock.  

• They cite a variety of important potential advantages over 
synchronous systems (will list later).

• To date, these attempts have remained mainly in Universities.
• A few commercial asynchronous chips/systems have been build.
• Sometimes, asynchronous blocks sometimes appear inside otherwise

synchronous systems.
• Asynchronous techniques have long been employed in DRAM and 

other memory chips for generation internal control without external 
clocks.  (Precharge/sense-amplifier timing based on address line 
changes.)

• These techniques are generally interesting, and if nothing else help 
put synchronous design in perspective. 



Spring 2003 EECS150 - Lec29-asynch Page 11

Synchronous Data Transfer
• In synchronous systems, the clock signal is used to coordinate the 

movement of data around the system.  
• If we are going to eliminate the clock, we need to substitute some 

technique for managing the flow of data.
• Take for example, transferring data across a bus:

• By design, the clock period is sufficiently long to accommodate wire 
delay and time to get the data into the receiver.

receiversender

clock

data



Spring 2003 EECS150 - Lec29-asynch Page 12

Delay Insensitive (self-timed transfer)

• Request/acknowledge “handshake” signal pair used to coordinate 
data transfer.

4-cycle (“return-to-zero”) signaling
• Note, transfer is insensitive to any delay in sending and receiving.  

sender receiverdata
request

acknowledge

data

request

acknowledge

Hello, here’s some data

Thanks, I got it

You’re welcome

See you later



Spring 2003 EECS150 - Lec29-asynch Page 13

Delay Insensitive (self-timed transfer)

2-cycle (“non-return-to-zero”) signaling

• Only two transitions per transfer.  Maybe higher performance.
• More complex logic.  4-cycle return to zero can usually be overlapped 

with other operations.

sender receiverdata
request

acknowledge

data

request

acknowledge



Spring 2003 EECS150 - Lec29-asynch Page 14

Self-timed Processing
• Of course, a processing elements can be inserted.  Req signal starts 

it, and it generates a “completion” (ack) signal when its output data is 
ready.

• The output ack becomes the request for the receiver or next stage:

• Note, three cascaded CL blocks as a composite preserves the 
signaling convention: 

Sender CL Receiver

req reqack

ackack

req

Sender CL Receiver

req reqack

ackack

req

CL CL

reqack reqack

CL

ackreq

“req” = “go”
“ack” = “done”



Spring 2003 EECS150 - Lec29-asynch Page 15

Completion Signal Generation
• Output ack signal is generated one of several ways:

– derived from handshake signals of sub-blocks,
– fixed delay, arranged to match delay of logic circuit.

1. Fixed delay

– A fixed delay (for instance a chain of gates) greater than the worst case 
circuit delay is used.

– Works best for regular structures (memories, PLAs) where dummy 
circuits can be used to mimic block delay.

2. Derived ack signal offers potential performance advantages, because 
it does not need to be worst case.  Example, adder circuit.

CL

ackreq

CL

ackreq

max delay = T

delay >  T



Spring 2003 EECS150 - Lec29-asynch Page 16

Self-timed Processing Compositions
• Other interesting compositions are possible:
• Fan-in: req is “and” of requests from incoming blocks.  Data is ready 

with all sets of data is ready.  Send ack to all blocks.
• Fan-out: send req to all block receiving output data.  Returning acks 

get “anded”.
• Pipelines:  Need to define self-timed register.

reg

ackINackOUT

reqOUTreqIN
Keeps one bit of state, “empty”

On reqIN if empty {
load data,
clear empty,
assert reqOUT,ackOUT}
else wait for ackIN

On ackIN {
deassert reqout
set empty}



Spring 2003 EECS150 - Lec29-asynch Page 17

Self-timed Pipeline
• Registers pipeline data and handshake signals:

CL

req req

CL CL

ack

reg reg reg

req reqreq req req

ackackack

reg

ackINackOUT

reqOUTreqIN



Spring 2003 EECS150 - Lec29-asynch Page 18

Self-timed Adder Scheme

• Include an req signal at each input and ack on each output.
• Completion signal for each carry out can be generated “early” when 

ever a=b (carry kill or carry generate).  No need to wait for carry in.

carry “kill”  
ki = ai’ bi’

carry “propagate” 
pi = ai ⊕ bi

carry “generate” 
gi = ai bi

0 0 0        0      0
0 0 1        0      1
0 1 0        0      1
0 1 1        1      0
1 0 0        0      1
1 0 1        1      0
1 1 0        1      0
1 1 1        1      1

a b ci ci+1 s

FA

c0
a0b0

s0c1

c2c3c4c5c6c7

s7 s6

• Therefore entire adder completion time 
is a function of the input data.

• On average, number of stages 
propagating carry bounded by log(n).  
Therefore on average delay is 
proportional to log(n) instead of n.

• Demonstrates important principle of 
self-timed circuits.  Often avoid worst-
case behavior.



Spring 2003 EECS150 - Lec29-asynch Page 19

Asynchronous Logic Pluses and Minuses
• Advocates make the following claims (Al Davis):

1. Achieve average case performance
2. Consume power only when needed
3. Provide easy modular composition
4. Do not require clock alignment at interfaces
5. Metastability has time to resolve
6. Avoid clock distribution problems
7. Exploit concurrency more gracefully
8. Provide intellectual challenge
9. Exhibit intrinsic elegance
10. Global synchrony does not exist anyway!

• The above claims are often debated.  Also, known disadvantages:
1. Time/area overhead.
2. Not well supported by CAD tools.
3. Lack of clock complicates debugging and verification.



Spring 2003 EECS150 - Lec29-asynch Page 20

Caltech Asynchronous Microprocessor

• 1998, Alain Martin and students.
• Completely asynchronous implementation of a MIPS R3000.
• 32-bit RISC CPU with memory management unit.
• 2 -KB caches.
• Used 0.6um CMOS process
• Results:

– 180 MIPS and 4W at 3.3V
– 100 MIPS and 850nW at 2.0V
– 60 MIPS and 220mW at 1.5V

• Some layout bugs, but still … 
• Around 2.5X performance of commercial processor of the same type

and in equivalent technology.
• Some of the students formed Fulcrum Microsystems to 

commercialize asynchronous chips (http://www.fulcrummicro.com).


