W EECS 150 Spring 2004

Checkpointl Partl
2/27/2003

Greg Gibeling
(Adapted From Sandro Pintz)

i Motivation

= Learn to configure external SDRAM
= Write and read from external SDRAM
= To use FIFOs as buffers
= Design a memory controller
= You will need this for the project
= Analyze retention time of SDRAMs

i Block Diagram

v \\\//

%

CONTROL |
FIFO_1 FIFO_2 >
64x32bits | 4 64x32bits

LQ, =
\
RAM_D_EN
— RAM_CLK, RAM_CLKE,

RAM_DQ RAM_DQMH, RAM_DQML,
RAM CS, RAM RAS, RAM CAS,
RAM WE, RAM BA, RAM &,

i Methodology (1)

= Initialize and configure SDRAM

= Generate 32-bit pseudo random
numbers into FIFO1

= After first 4 words start reading FIFO1
and writing to SDRAM and start
programmable timer...

= Fill SDRAM and stop write operation

i Methodology (2)

= ... after programmable delay expires,
start reading SDRAM and filling FIFO2

= Use identical pn-generator to compare
data from FIFO2 with written data
= Count the errors and display on LEDs

= Writing and Reading SDRAM may
overlap!!

i Block Diagram

'\/\/f,’ n-generator
\

CONTROL | or
| FIFO_2
\ /7 | e4x32bits
ror ,
5 T \

RAM_DQ

i Theory of SDRAM (1)

= SDRAM: Synchronous Dynamic RAM
= Dynamic RAM is large but slow

= Synchronous interface allows more
bandwidth

= SDRAM Control can be tricky

i Theory of SDRAM (2)

= DRAM is BIG so we time mux address
= Row Address
= Column Address
= Steps to Read/Write
= Send Row Address
= Send Column Address
= Send/Get Data

i Theory of SDRAM (3)

= SDRAM Steps to Read/Write
= Send Row Address
= Send Start Column Address/Send Data
= Send/Get Data
= Send/Get Data
= Send/Get Data
= Get Data

i Theory of SDRAM (4)

= SDRAM is a large FSM
= Send it a command
= Get a response
= SDRAM Controller’s Job
= Send the right command signals

= Ensure command sequences are timed
correctly

= Another large FSM

SDRAM Initialization

oan
ool Do £

e, an 77

sea, 11 7

f—

SDRAM Commands

NAME (FUNCTION) Cs# [RAS#|CAS#|WE# |DQM| ADDR | DQs [NOTES
COMMAND INHIBIT {NOP) Hl X | X[X]|X X X

NO GPERATION (NOP) L HIH]JH[X X X

ACTIVE (Select bank and activate row) Ll L[H[H[X [BankRow| X 3
READ (Select bank and column, and start READ burst) L | H | L | H [UH]eankicol | X 4
"NRITE (Select bank and column, and start WRITEburst) | L | H | L | L | UHE| BankiCol | valid | 4
BURST TERMINATE L H|H L] X X Active
PRECHARGE (Deactivate row in bank or banks) L| L[H | L]x] Code X 3
AUTC REFRESH or SELF REFRESH L L L[H]|X X X 67
(Enter self refresh mode)

[Lo] (IDE REGISTER L{L L L | X |opode| X 2
"Write EnablefOutput Enable - -1-[-1t Adive| 8
"Write Inhibit/Output High-2 -l -1-1-1+H High-Z| @

Read Operation

cas Latency

[ponT care
B UNDEFINED

Write Operation

ax o

L
=
|

SEE ST S ST S T
o e e Ry

|
K74

G| e

3020 211

E
1

m

T 7 ST, TR,

Iy ey

-

Write Timing

SYMBOL™

LCMS

'DH

DS

TRAS

120,000}

44 120.000] 50 120,000

RC

'RCD

TRP

YWR 1 CLK +

Block Diagram
= N

FIFO_1 L
64x32bits

error

Etror counter

CONTROL

FIFO_2
64x32bits

RAM_D_EN

DRAM RAM_CLK, RAM_CLKE,

RAM_DQ RAI MH, RAM_DQM
, REM RAS,
, RAM BA, R

Next Op...

Initialization
Sequence

read or
read & write|

nong

Current Op?

write]

(Auto
Refresh)

Do
READ

write or
read & write

SDRAM Controller (2)

= Design it so that it is good for the
project
= Ping-pong between reads and writes

= Keep track of what the last operation was
and try to do the other one

= The project will have 5R/5W ports
= Tristate data line when reading!!

i SDRAM Controller (3)

= Can make one large FSM
= One state per command perhaps
= Can make two FSMs
= One has states for each sequence
= One has a state for each command
= This is totally free-form...
= ...just make sure it works

i FIFOs

n Buffel' tO matCh tWO DIN[N:0]
data rates by

= Great for data path
clock domain crossings i

(we'll talk about it later e
this semester) i

DOUT[N:0]

FULL
EMPTY

SINIT

Xa168

i LFSR

= Pseudo Random Sequences

= Signature Generation/Checking
= Built in Self Test (BIST)

= Pattern can be exactly repeated

i The Project (1)

= Define your interface clearly
= SDRAM Top contains this checkpoint
= SDRAM Control should be reusable
= Don't rely on special signals

= A good interface is worth a LOT
= Will make this checkpoint easier

= Thinking for 20min now will save a week
later in the semester

i The Project (2)

= A Suggested Interface
= Write Request/Done
= Read Request/Done
= Read (Word Valid)
= Write (Need a word)
= Just one set of ideas
= We're not explaining
= We want you to invent something

i Tips (1)

= Manage your files well

= Have a backup copy on U:\Checkpoint1i\...

= Work with c:\users\cs150-*\Checkpoint1\...

= Save only the verilog and blackboxes

= Create a new Xilinx project every time you
start over, they're bit and pointless to save

= Name your subdirectories well, and use
them consistently!

= Poor file management can cost days of
work

i Tips (2)

= Draw Diagrams
= Bubble and Arc for FSMs
= Block Diagrams for EVERYTHING
= Helps build it faster
= Reuse it more easily

= TAs can help you more with diagram than
a directory full of verilog

i Tips (3)

= Verilog Style!
= Develop a Style (Or use ours)
= STICK TO IT (Both Partners)
= Use reasonable naming schemes
= Indentation is your friend
= Look at our verilog! See how pretty it is?

i Tips (4)

= Build some basic circuit elements

= We've given you a bunch

= What else might you want? (Register, ...)
= Registers

= Don't think of them as memory

= Think of them as a delay of 1 clock cycle

i Tips (5)

= Group similar wires into a single bus
= assign {wirel, wire2} = bus;
= Then you can set all the wires with a single
assignment

= Name your constants
= Use “parameter”
= ALWAYS name your states
= You can also name other constants
= (Hint: SDRAM Commands)
= Don’t name “on” and “off” or integers...

i Tips (6)

= Manage your files and directories

= Draw diagrams (keep them updated)
= Use good verilog style!

= Build up a library of basic circuits

= Think of registers as a delay of 1 clock
= Group similar wires

= Name your constants

i The Checkpoint

= You have two weeks
= First Week: Simulation
= Second Week: Demo circuit on board
= START EARLY (Do the prelab)
= It requires more design work than labs
= Don't get behind on the checkpoints
= We're happier helping you early on
= Partner Problems?
= See Greg after lab lecture
= Post to the newsgroup

