B EECS 150 Spring 2004

Lab Lecture 12
The Final Project
4/16/2004

Greg Gibeling
Professor R. Katz

i Today

= Design Evolution

= Static Routing

= Announcements

= SRAM

= Dynamic Routing (Briefly)

i Checkpoint4 (1)

= Minimal Network Switch
= Checkpoint3
= Ethernet Pass-through
= Receive Audio from the White Network
= But move the data through SDRAM
= Connect Green -> Yellow Network
= Store and Forward through SDRAM

i Checkpoint4 (2)

= Checkpoint4 Tester is Posted

White Network

wo Checkpoint4 Tester

H
ald
Checkpoint4 3 N we

ﬁ‘ E
B
AN AN

i The Project

= Multimedia Network Switch

= Receive and Transmit PCM Audio

= Perform basic routing/switching
= Details

= 4 Ethernet Ports

= 1 AC97 Audio Port

= Static Routing Table

= SDRAM Based FIFO Buffers

i Design Evolution

= Checkpoint4 is almost everything

= Add more SDRAM access ports

= Add routing capability
= SDRAM Ports

= Just a matter of changing SDRAM_TOP
= Routing

= A whole new routing module

i Static Routing (1)

= Routing
= Get a packet
= Look at who its meant for
= Lookup a route to the destination
= Send the packet along its way
= Static vs. Dynamic
= Static: We know where everyone is
= Dynamic: Route discovery is the hard part

i Static Routing (2)

WO

Station ID..-OQutput Port Station Station
[
A 0x10 Toh
B 0x04 81 Switcl
¢ 0x01
@\
Forwarding table for Station 1
Note Port 4 (Audio) is local (I.e., local loopback)
Station Station
B D
Switch Switch

i Static Routing (3)

. wo .
Forwarding table for Station A Station B1 Station
Station ID Output Port A 4
A 0x10 62
B 0x01
c 0x01 y3
D 0x01 Station| Y3 wo Station
Forwarding table for Station C & b
Station ID Output Port
A 0x02 Station ID Output Port
B | oxod frgraewe | A | 0x08
c | ox10 B | 0x01
D 0x04 c 0x08
D 0x10

i Static Routing (4)

= Router
= Takes in destination address
= Returns port that the packet goes to
= Uses a routing table
= Routing Table
= Implemented in SRAM
= Set using constants before synthesis

i Announcements (1)

= Project Submission
= There’s a link on your U:\ drive
= More later...
= Just one more lab lecture
= Project Submission
= The Report
= Don't Miss it
= Detailed Project Block Diagram online

i Announcements (2)

= You must implement record select
= Must be able to select Mic/Line In
= We will test with both

= Your volume controls must be reliable
= Up/Down shouldn’t un-mute

i Announcements (3)

= Critical Update to FPGA_TOP(2)
= Green Network Port TX was broken
= There was a typo in FPGA_TOP(2)
= (Not my fault)
= Bad xc_loc on PHY_TXD2
= Correction:

output [3:0] PHY_TXD2; /*synthesis xc_loc = "B27,C27,D27,A26"*/

i BlockSelectRAM+ (1)

= Full Datasheet on the Documents Page!
= 4096bits each
= Two complete read/write ports

= These are totally independent

= You can read/write on two different clocks
= Data/Address Width is Variable

= Data Width * 2Address Width = 4096bits

i BlockSelectRAM+ (2)

RAMB4_S#_S#
—— WEA
——ENA
—RSTA DOA[#:0] m—
— D CLKA
— ADDRA[#:0]
— DIA[#:0]
a C
—— WEB
— 1 ENB
—— RSTB DOB[#:0] mm—
——> CLKB
e ADDRB[#:0]
— D |B[#:0]

i BlockSelectRAM+ (3)

= Use the UNISIM_VER Library
= RAMB4_S2_S2 most likely
= BUFGs are included

= Contains all the components built into the
VirtexE parts

= We need to implement glbl.GSR
= Simply add these lines to your testbench

glbl glbl();
assign glbl.GSR = Reset;
assign glbl.GTS = Reset;

i BlockSelectRAM+ (4)

= What kinds of blockRAMs are there?
= RAMB4_S1, RAMB4_S2, ... RAMB4_S16
= RAMB4_S1_S1, ... RAMB4_S16_S16

= RAMB4_S<WidthA>_S<WidthB>
= Width: 1, 2, 4, 8, 16
= WidthA <= WidthB

= If WidthA and WidthB are not the same
you need to figure out what bits you get at
what address (check the datasheet)

i BlockSelectRAM+ (5)

= Two separate ports
= Read one, write to the other

= Or you can use them together,
RAMB4_S16_S16 can be used to fake
RAMB4_S32 (which doesn't exist)

= Remember they can be clocked differently!

i BlockSelectRAM+ (6)

RAMB4_S8_S8 RouteTable (.DOA(), .ADDRA(), .CLKA(), .DIA(), .ENA()
_RSTA(), .WEA(),
.DOB(), .ADDRB(), .CLKB(), .DIB(), .ENB(),
_RSTB(), .WEB());

defparam RouteTable.INIT 00 = 256'h0000 ... 0000; // O1F-000

defparam RouteTable.INIT 01 = 256'h0000 ... 0000; // 03F-020

*

*

*

defparam RouteTable.INIT OE = 256'h0000 ... 0000; // 1DF-1CO

defparam RouteTable.INIT OF = 256'h0000 ... 0000; // 1FF-1EQ

i Dynamic Routing (1)

= What causes a routing change?
= Created a new link
= Destroyed an old link

= What do we need to do?
= Rebuild the routing table

Dynamic Routing (2)
Station ID _Output Port Station wo Station

0x10 A c
0x02 Switch
0x01 B1

0x02

0x10
0x00
0x01 Station) Station
0x00 B | D
0x10 Switch Switch

0x01
0x01
0x01

DowP|ooaw | w

Forwarding table for Station A

i Dynamic Routing (3)

= Link Created/Died
= The LXT975 will tell us when a link exists
= Look at the LEDs!
= Just use an edge detector
= Keep Alive
= Just rebuild the routing table periodically...

i Dynamic Routing (4)

= Rebuilding the Table
= Mark the routing table as outdated
= Send location advertisement packets

= Wait for advertisements from others
» Forward advertisements
= Don't forward useless advertisements

= Update routing table entries

i Extra Credit

= Most efficient design (5%)

= The group with the most efficient project
= Efficient Design (2%)

= We'll take the average number of LUTs

= ~1.8 std dev below mean qualifies

= Without extra features!

