B EECS 150 Spring 2003

Lab Lecture 4
Verilog Design Synthesis
2/13/2003

Greg Gibeling
(Original By Sandro Pintz,
Adaptions from John Wawryznek)

i Today

= “Think Hardware”
= Tips for making EECS150 an easy class
= Simulation
= Blocking vs Non-Blocking
= The Combo Lock
= FSMs in Verilog
= Kramnik!

i MOTIVATION

= Finite State Machine Design

= Design Partitioning

= Design Entry

= Synthesis

= Mapping, Placing and Routing

i “Think Hardware” (1)

B A (]
always @ (/**/)
if () Z = A+B; 9‘0
Else Z = A+C; \__A—a

z

always @ (/**/) begin
if (@) aux = B; A a
else aux = C; aux
Z = A + aux;

end z

i “Think Hardware” (2)

A B
assign B = 3;
assignZ = A * B;
z
A
assignZ = A + (2 * A);
Or
assignZ = A + (A << 1); ()
Or n+1 bit adder

assign Z = A + {A, 1'b0}; b4

i “Think Hardware” (3)

assign aux = {1'b0, A[n-1:1]} + A;
assign Z = {aux, A[0]};

Aln-1:1] A

n bit adder A[C]
aux




i Simulation (1)

= Event Driven Simulation

= Order of execution in time tick is not
fixed

= Simulator dependent (ouch!)

= Deadlocks can happen in perfectly good
design

= Simulation and Synthesis can differ
functionally

i Simulation (2)

= When an event happens put in queue
= When bored get next event
= Figure out the consequences

= This means non-blocking assignments
really are executed in any old order, but
the results are as-if they were executed
in parallel

i Administrativia

= Midterm!
= Thursday 2/19/2004 in class
= ALL LECTURE MATERIAL COVERED
= Emphasis on material 2/12 and before
= TA Review Session
= Monday is a holiday
= Come to any other lab/discussion

i Blocking vs Non-Blocking (1)

always @ (b) begin

a=b; = Result
C=a .C:a:b
end

always @ (posedge Clock) begin , Result:
a<=b;
c<=a =a = (old?) b

end sCc=olda

i Blocking vs Non-Blocking (2)

=Use Non-Blocking for FlipFlop Inference:
= posedge/negedge require nonblocking

= Otherwise synthesis and simulation will
not match

sUse “#1"” to visual causality!

always @ (posedge Clock) begin
b <=#1 a; /* b and c will be flip flops */
c<=#1b;

end

i Blocking vs Non-Blocking (3)

= If you use Blocking for FlipFlops:
You will not get what you want

always @ (posedge Clock) begin

b = a; /* Only ¢ will be a flip flop, */

¢ = b; /* b will go away after synthesis. */
end
/*'b’ is not needed at all */

always @ (posedge Clock) begin
¢ =b;/* ¢ and b will be flip flops */
b=a;

end




i Blocking vs Non-Blocking (4)

Race Conditions

file xyz.v: file abc.v:
module XYZ(A, B, Clock); module ABC(B, C, Clock);
input B, Clock; input  C, Clock;
output A; output B;
reg A; reg B;
always @ (posedge Clock) always @ (posedge Clock)
A=B; B=C;
endmodule endmodule

THIS IS WRONG!!

i Blocking vs Non-Blocking (5)

Race Conditions

file xyz.v: file abc.v:
module XYZ(A, B, Clock); module ABC(B, C, Clock);

input B, Clock; input  C, Clock;

output A; output B;

reg A; reg B;

always @ (posedge Clock) always @ (posedge Clock)

A <=B; B<=C;

endmodule endmodule

THIS IS CORRECT!!

i Combination Lock (1)
buttons switches logic

i o

(reseT]  (EnTeR]

i II\ B

N ——
FSM

(=]
-

[—= ERROR

= Used to allow entry to a locked room:
2-bit serial combination. Example 01,11:
1. Set switches to 01, press ENTER
2. Set switches to 11, press ENTER
3. OPEN is asserted (OPEN=1).
If wrong code, ERROR is asserted (after second combo word entry).
Press Reset at anytime to try again.

i Combination Lock (2)

i Combination Lock (3)
S

ENTER &
ENTER N

Input Description
Signal
Reset Clear any entered numbers.
Open
Enter Read the switches (enter a number in the Reset ——»| Comb >
combination) Enter » ~om E
Code]1:0] Two binary switches Code > Lock rror,
Output Description 2
signal
Open Lock opens
Error Incorrect combination
Oper
com”’
Code Compare -
Z comz |
Errot

Enter Edge
Reset Detect locktop v




i FSM Implementation Notes

inputs —— [~ outputs
CL
present state next state

= General FSM form:

= All examples so far generate
output based only on the
present state:

= Commonly hame Moore
Machine
(If output functions include  present state
both present state and input
then called a Mealy Machine)

i FSMs in Verilog (1)

= Two always blocks
= One is CurrentState register (clocked)
= Other is combinational
= Generates NextState
= Generates Outputs

= USE MOORE MACHINES
= Avoid combinational loops

i FSMs in Verilog (2)

module MyFSM(In, Out, Clock, Reset);

input In, Clock, Reset;
output Out;
parameter IDLE = 1'b0,
RUNNING = 1'b1;
reg CurrentState, NextState, Out;
always @ (posedge Clock) begin
if (Reset) CurrentState <= IDLE;
else CurrentState <=  NextState;

end

i FSMs in Verilog (3)

;Iways @ (CurrentState or In) begin

NextState = CurrentState;
Out = 1'b0;
// A case block goes here
end
endmodule

i FSMs in Verilog (4)

case (CurrentState)
IDLE: begin
if (In) NextState = RUNNING;
Out = 1'b0;
end
RUNNING: begin
if (In) NextState = IDLE;
Out = 1'b1;
end
default: begin
NextState = 1'bX;
Out = 1'bX;
end
endcase

i Kramnik

= Windows Terminal Server
= You can log in from home
= Transfer Files
= Run Simulations
= Don't bother with synthesis obviously
= Instructions will be posted
= Server will be available shortly
= We're still upgrading software




