[image: image3..pict]University of California at Berkeley

College of Engineering

Department of Electrical Engineering and Computer Science

EECS 150
R. H. Katz

Spring 2007


Problem Set #4: Combinational and Sequential Logic

Assigned 6 February 2007, Due 16 February at 2 PM
1. Given the following sequential logic circuit diagram:

[image: image4..pict]
(a) Is this a MEALY MACHINE or a MOORE MACHINE? Why?

Mealy Machine because the output is dependent on the input and the current state???

(b) Write Boolean equations for the circuit nodes Z, Dx, and Dy.

Z = not(A xor Qy)

Dx = A

Dy = B nor Qx
(c) Write down the encoded state transition table.

	Qx
	Qy
	A
	B
	Dx
	Dy
	Z

	0
	0
	0
	0
	0
	1
	1

	0
	0
	0
	1
	0
	0
	1

	0
	0
	1
	0
	1
	1
	0

	0
	0
	1
	1
	1
	0
	0

	0
	1
	0
	0
	0
	1
	0

	0
	1
	0
	1
	0
	0
	0

	0
	1
	1
	0
	1
	1
	1

	0
	1
	1
	1
	1
	0
	1

	1
	0
	0
	0
	0
	0
	1

	1
	0
	0
	1
	0
	0
	1

	1
	0
	1
	0
	1
	0
	0

	1
	0
	1
	1
	1
	0
	0

	1
	1
	0
	0
	0
	0
	0

	1
	1
	0
	1
	0
	0
	0

	1
	1
	1
	0
	1
	0
	1

	1
	1
	1
	1
	1
	0
	1


(d) Write down the state transition diagram.

[image: image1.jpg]otn

1000,

i 100,01y

©001)0

1

011yt

{10,11)0




2. Write Verilog for a four-bit shifter subsystem to the following specification. 

[image: image5..pict]



(a) The subsystem has four load inputs L[3:0], four register outputs R[3:0], a clock CLK, and a 3-bit operation input OP[2:0]. Here is a high-level block diagram:

OP[2:0] is defined as:

000: Hold current value

001: Arithmetic shift right (shift right plus highest bit retains its value)

010: Arithmetic shift left (shift left plus lowest bit is filled with zero)

011: Circular shift right (shift right plus lowest bit wraps around to the highest bit)

100: Circular shift left (shift left plus highest bit wraps around to the lowest bit)

101: Logical shift right (shift right plus highest bit is filled with zero)

110: Reset register contents

111: Load register from inputs L[3:0]

Write the system’s description in high-level behavioral Verilog using a CASE statement and bit vector concatentions.

module Shifter(R, L, OP, Clk);

input [3:0] L;

input [2:0] OP;

input Clk;

output [3:0] R;

always @ (posedge Clk) begin


case (OP)



3'b000: R <= R;



3'b001: R <= {R[3],R[3:1]};



3'b010: R <= {R[2:0],1’b0};



3'b011: R <= {R[0],R[3:1]};



3'b100: R <= {R[2:0],R[3]};



3'b101: R <= {1’b0,R[3:1]};



3'b110: R <= 4'b0000;



3'b111: R <= L;


endcase

end

endmodule

[image: image6..pict]



(b) Assume that the bit slice looks internally like this:

First write Verilog that describes the behavior of a single bit slice. Then write structural Verilog to describe how the multiplexer inputs should be wired for each of the four instances of the bit slice for i = 0, 1, 2, 3. 

module ShifterSlice(R, L, OP, leftR, rightR, Clk);

output R;

input L, leftR, rightR, Clk;

input [2:0] OP;

wire D;

always @ (posedge Clk) begin


R <= D;

end

always @ (*) begin


case (OP)



3'b000: D = R;



3'b001: D = leftR;



3'b010: D = rightR;



3'b011: R <= leftR;



3'b100: R <= rightR;



3'b101: R <= leftR;



3'b110: D = 0;



3'b111: R <= L;


endcase

end

endmodule

module Shifter(R, L, OP, Clk);


output [3:0] R;


input [3:0] L;


input [2:0] OP;


input Clk;


ShifterSlice slice0(.R(R[0]),


.L(L[0]),


.OP(OP),


.leftR(R[1]),


.rightR((OP == 3'b001) ? 1’b0 : R[3]),


.Clk(Clk));


ShifterSlice slice1(.R(R[1]),


.L(L[1]),


.OP(OP),


.leftR(R[2]),


.rightR(R[0]),


.Clk(Clk));


ShifterSlice slice2(.R(R[2]),


.L(L[2]),


.OP(OP),


.leftR(R[3]),


.rightR(R[1]),


.Clk(Clk));


ShifterSlice slice3(.R(R[3]),


.L(L[3]),


.OP(OP),


.leftR((OP == 3’b101) ? 1’b0 : (OP == 3’b011) ? R[0] : R[3]),


.rightR(R[2]),


.Clk(Clk));

endmodule

3. 
Device A is a clock-level sensitive R-S latch (i.e., it reacts to its inputs only when the clock is high). Device B is an R-S “Flip-Flop” that is positive edge triggered. Device C is an R-S “Flip-flop” that is negative edge triggered. 


Assume 0 set-up and hold times, and 0 propagation delays. The devices B and C treat R and S as active low signals (i.e., Reset when R is zero and Set when S is zero). All are implemented using NAND gates. Initially they have 0 stored in them.

Complete the timing diagram below for the signals QA, QB, and QC, showing the behavior of the three different devices to the same R and S input changes (you can cut and past the following timing diagram into your homework):

[image: image2.jpg]











































































































































































































































































































































Page 1 


