
EECS 150 Spring 2007 Lab 2

UNIVERSITY OF CALIFORNIA AT BERKELEY
COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

ASSIGNED: Week of 1/28
DUE: Week of 2/4, 10 minutes after start of your assigned lab section.

Lab 2
Designing with Verilog

1.0 Motivation

In this lab you will learn how to express a circuit design in a Hardware
Description Language (HDL), namely Verilog. By creating two similar designs in
behavioral and structural verilog, you will get a chance to not only familiarize yourself
with different styles of Verilog, but also with the ModelSim simulator.

2.0 Introduction

To support the creation of very efficient circuits, and as an effort to ease entry of
old designs, and importing designs from other environments, Verilog supports the use of
universally accessible primitive gates like and, or and not. In addition, it supports
dataflow and behavioral modeling, which allow the design of more efficient control.

In this lab, you will investigate the use of the two primary kinds of Verilog:
structural and behavioral. You will create two similar, simple modules. One module will
be specified in behavioral Verilog, where you will describe the function of the circuit
succinctly and rely on the modeling and synthesis CAD tools to determine the exact
circuit. The other circuit will be written in structural Verilog, were you will describe the
circuit down to the gate level. The final piece of Verilog in this lab will be the testbench,
which, though also written in behavioral Verilog, is a little different in that it cannot be
synthesized. This is because it describes an artificial set of test stimulus rather than an
actual circuit.

3.0 Prelab

Please make sure to complete the prelab before you attend your lab section. You
will not be able to finish this lab in 3 hrs otherwise!

1. Read this handout thoroughly. Pay particular attention to Section 4.0
Lab Procedure as it describes in detail the circuits you must create.

2. Examine the Verilog provided for this week’s lab.
a. Make sure you understand exactly how the Lab2Testbench

works.
3. Write all of your Verilog ahead of time.

a. You should add more test cases to Lab2Testbench.v. You will
not get checked off for this lab without a more thorough testing of
your modules.

4. You will need the entire 3 hr lab to test and debug your Verilog!

UCB 1 2007

EECS 150 Spring 2007 Lab 2

4.0 Lab Procedure

Since we expect you to write your Verilog ahead of time, and Verilog is nothing
more than a bunch of standard text in a file with a *.v extension, you can do this part of
the lab entirely from home in your favorite text editor (we recommend notepad). Or
you can come into the lab and use the tools there. For those of you who like maintaining
a single Xilinx Project Navigator project for each lab, you can even create the project
ahead of time and write your Verilog from within Project Navigator.

Whatever editor you use to create your Verilog files, at some point you will need
to add all of the Verilog files (including Lab2Top and Lab2Testbench) to a new Xilinx
Project Navigator project, or to a new ModelSim project, to test your code and get it
checked off.

Remember to manage your Verilog, projects and folders well. Doing a poor
job of managing your files can cost you hours of rewriting code, if you accidentally
delete your files.

4.1 Lab2Top

In this lab you will be building the two sub-modules of Lab2Top. Lab2Top
takes a string of 8-bit inputs and maintains both a running sum of the inputs using an
Accumulator and the largest of the inputs using a PeakDetector. The
PeakSelect input to Lab2Top can be used to select which of these values appears at
the output Out.

Below are: a high-level block diagram of Lab2Top, a table specifying its ports
and their purposes and a hierarchy of the modules that you will need to build to complete
this lab.

Lab2Top

Figure 1: Lab2Top High Level Block Diagram

Signal Width Dir Description
In 8 I The input value
Out 8 O The output value from either the PeakDetector or

Accumulator

UCB 2 2007

EECS 150 Spring 2007 Lab 2

Enable 1 I Notify Lab2Top to accept the current input at In
PeakSelect 1 I Selects the output form the PeakDetector when

1’b1
Clock 1 I The Clock signal
Reset 1 I Reset both the Accumulator and the

PeakDetector
Table 1: Port Specification for Lab2Top

Lab2Top

Figure 2: Hierarchy of Modules

4.2 Behavioral Accumulator

Figure 3: The Accumulator

UCB 3 2007

EECS 150 Spring 2007 Lab 2

1. In the text editor of your choice (we recommend notepad) create a file

called Accumulator.v in which you will define a single module called
Accumulator.

a. This module should have the ports listed in Table 2.
b. Be sure to use good Verilog style. You’ll be graded on this!

Signal Width Dir Description
In 8 I The input value to be added to the total output
Out 8 O The sum of all previous input values
Enable 1 I Notify the accumulator to add In to Out
Clock 1 I The Clock signal, the output changes only on rising edges
Reset 1 I Reset the output to 8’h00.

Table 2: Port Specification for Accumulator
2. Specify your module entirely in behavioral Verilog.

a. Our solution takes 4 lines of behavioral Verilog (not counting
declarations).

b. You may not instantiate any other module within your
accumulator.

c. You may wish to refer to the lab lecture slides for examples of
behavioral Verilog.

3. Types of Assignment
a. A blocking assignment is written as “=” and should be used in

combinational logic.
b. A non-blocking assignment is written as“<=” and should be used

for sequential logic, namely anywhere you have an always @
(posedge Clock)

c. Note that these kinds of assignments refer only to always blocks.
The assign keyword always requires a simple “=”.

4. Reg vs. Register
a. The keyword reg in Verilog names a location into which an

always block can place a value. It does not create any kind of
register, it is merely a poorly named artifact of days past.

b. always @ (posedge Clock) implies a register.
i. Any reg assigned using Non-blocking assignment (<=) in

an always @ (posedge Clock) block will become a
register during synthesis.

5. Test this module individually
a. You should be able to modify the testbench that we have given

you to test Accumulator instead of Lab2Top.
b. The Lab1Circuit you dealt with last week was also an accumulator.

UCB 4 2007

EECS 150 Spring 2007 Lab 2

4.3 Structural Peak Detector

Figure 4: The Peak Detector

This will most certainly be the more time consuming part of the lab to write.

Please note that in the future we will not expect you to use purely structural Verilog, as it
is generally less efficient (in your time as well as in implementation quality).

For this part of the lab you must follow these rules:
1. You may not use the assign keyword at all.
2. You may not use the always keyword at all.
3. You may only use the primitives that we specify in the following sections.

4.3.1 Structural Register

1. In the text editor of your choice (we recommend notepad) create a file
called Register.v in which you will define a single module called Reg8.

a. This module should have the ports listed in Table 3.
Signal Width Dir Description
D 8 I The input value to be loaded into the register
Q 8 O The output value from the register
Enable 1 I When high at a rising clock edge, load D into the register
Clock 1 I The Clock signal, the output changes only on rising edges
Reset 1 I Reset Q to 8’h00

Table 3: Port Specification for Reg8
2. In this module you may only instantiate the FDCE primitive.

a. You may instantiate as many of these as you need.
b. The FDCE primitive is a 1 bit D type Flip-Flop with the ports listed

in Table 4 below.
Signal Width Dir Description
Q 1 O The output value from this Flip-Flop
C 1 I The Clock signal, the output changes only on rising edges
CE 1 I Clock Enable, when 1’b1, D will be copied to Q
CLR 1 I When 1’b1, will force Q back to 1’b0

UCB 5 2007

EECS 150 Spring 2007 Lab 2

D 1 I The data input, copied to Q when CE is 1’b1
Table 4: Port Specification for FDCE

3. You may wish to test this module individually.
4. Simulating with FDCE

a. This primitive is part of the Xilinx unisims_ver library. See the
ModelSim tutorial on the EECS150 course website at http://www-
inst.eecs.berkeley.edu/~cs150/fa06/Documents.php for more
information.

b. The FDCE primitive will only exist on Xilinx parts. Other
manufacturers might call it something else.

c. During simulation: the FDCE primitive will not function during
the first 100ns of simulation time. This is because it is a realistic
model of the Flip-Flops in a Xilinx chip, which are held in reset for
the first 100ns.

d. The reset on the FDCE primitives is asynchronous.

4.3.2 Structural Comparator
1. In the text editor of your choice (we recommend notepad) create a file

called Comparator.v in which you will define two modules called
Comp8 and Comp1.

2. The Comp8 module should have ports as listed in Table 5.
Signal Width Dir Description
In0 8 I The first input
In1 8 I The second input
Out 1 O Should be 1’b1 whenever In1 ≥ In0

Table 5: Port Specification for Comp8
a. The Comp8 module should be built from gate level primitives as

described below and Comp1 modules.
b. You should be sure to make good use of bit vectors (busses) in

this module rather than declaring a lot of unrelated one bit wires.
3. The Comp1 module should have ports as listed in table 6.

Signal Width Dir Description
In0 1 I The first input
In1 1 I The second input
GreaterIn 1 I The GreaterOut from the next higher bit
EqualIn 1 I The EqualOut from the next higher bit
GreaterOut 1 O Should be 1’b1 whenever In1 > In0 and EqualIn

 is 1’b1, or if GreaterIn is 1’b1
EqualOut 1 O Should be 1’b1 whenever In1 = In0 and EqualIn

is 1’b1, but GreaterIn is 1’b0.
Table 6: Port Specification for Comp1

a. The Comp1 module should be built from the and, or, not and
xor gate level primitives.

i. These primitive gates can have any number of inputs.
ii. They all have one output

UCB 6 2007

http://www-inst.eecs.berkeley.edu/%7Ecs150/fa06/Documents.php
http://www-inst.eecs.berkeley.edu/%7Ecs150/fa06/Documents.php

EECS 150 Spring 2007 Lab 2

iii. They do not have pin names (Like In0 or Clock)
iv. Here is an example of xor-ing three signals together:

xor xor1(OutputWire, Signal1, Signal2,
Signal3); Notice the name of the primitive is xor and
the name of this instance is xor1.

v. For more examples of using primitive gates see
Lab1Circuit.v from last week’s lab.

b. Notice that each Comp1 module is responsible for comparing one
bit of In0 to one bit of In1.

i. To generate a useful output however it needs to know the
relationship between the higher order bits of In1 and
In0, hence the GreaterIn and EqualIn inputs.

ii. The GreaterOut and EqualOut outputs from the least
significant bit (bit 0), will yield the correct information for
the comparison of all of the bits of In0 and In1.

iii. GreaterOut and EqualOut of the highest bit, will feed
to GreaterIn and EqualIn of the second highest bit
and so on.

iv. You should use the GreaterOut and EqualOut of the
least significant bit to form your Comp8 output.

4. You may wish to test this module individually
a. If you decide to write a testbench for this module, you do not need

a clock. However to see waveforms, you will need to let some
time pass. The amount of time is immaterial.

4.3.3 Structural Peak Detector

5. In the text editor of your choice (we recommend notepad) create a file
called PeakDetector.v in which you will define a single modules called
PeakDetector. Refer to Figure 4 for more information.

a. This module should have the ports listed in Table 7.
Signal Width Dir Description
In 8 I The input value
Out 8 O The output value, the largest input since the last reset
Enable 1 I When high at a rising clock edge, accept a new input
Clock 1 I The Clock signal, the output changes only on rising edges
Reset 1 I Reset Out to 8’h00

Table 7: Port Specification for PeakDetector
b. You may wish to refer to Figure 3 for assistance.

UCB 7 2007

EECS 150 Spring 2007 Lab 2

5.0 Lab 2 Checkoff

ASSIGNED: Week of 1/28
DUE: Week of 2/4, 10 minutes after start of your assigned lab section.

Name: ____________________________ SID: ____________________________
Section: ___________________________

I Behavioral Accumulator _______ (15%)
II Structural Peak Detector

1 Register _______ (15%)
2 Comparator _______ (20%)

III Quality of Verilog _______ (25%)
IV Complete Simulation _______ (25%)

V Hours Spent: __________

VI Total: __________
VII TA: __________

RevD – 1/27/06 Brian Gawalt Fixed Comparator description (Table 6)

RevC – 8/14/2005 Randy Katz Various minor edits and grammatical fixes

RevB – 1/17/2005 Greg Gibeling Updated to become Lab3, Working to incorporate the errata
RevA – 7/7/2004 Greg Gibeling New Lab

Designed to replace old Lab3 covering Verilog and Simulation

UCB 8 2007

	1.0 Motivation
	2.0 Introduction
	3.0 Prelab
	4.0 Lab Procedure
	4.1 Lab2Top
	4.2 Behavioral Accumulator
	4.3 Structural Peak Detector
	4.3.1 Structural Register
	4.3.2 Structural Comparator
	4.3.3 Structural Peak Detector
	 5.0 Lab 2 Checkoff

