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Lab 4
Debugging & Verification

1.0 Motivation
Many of you will be very familiar with the process of debugging software, and 

thanks to the circuits which you have had to build over the last few weeks, you’ve all 
become at least minimally familiar with debugging your own circuits.  In this lab you will 
become acquainted with more formal debugging and verification techniques and tools as 
we ask you to debug and verify a series of modules.

2.0 Introduction
No matter how carefully you plan and enter your circuit design, it should always 

come as a  major surprise  if  it  works the first  time you try it.   The larger  and more 
complicated the design, the larger the fraction of the engineering time you should expect 
to spend on debugging and verification.  In a professional setting, a design would not be 
considered finished without a complete testing regimen to prove that it works acceptably 
under all circumstances, a process which can easily consume more than 50% of the time 
required to implement a design.

In the interest of time, we cut a fair number of corners in this class, for example 
rather than expecting your design to be fully verified (or even fully debugged), we will 
expect it to appear to work.  This is simply because we do not have time to fully examine 
your testing regimen.  However it is in your best interest to fully verify your modules. 
Most students will simply write a piece of Verilog and synthesize it, hopping that it will 
work and perhaps wasting hours debugging it inefficiently.

WE HIGHLY RECOMMEND THAT YOU CONSIDER WRITING AN APPROPRIATE AND COMPLETE  
TESTBENCH AN INTEGRAL PART OF WRITING A VERILOG MODULE.   THIS WILL SAVE YOU MANY  
SLEEPLESS NIGHTS.

2.1 Verification Procedure
There are roughly two steps in the verification process:

1. Perform a test
2. If the test fails, debug the module being tested

As such there are two very different parts to the verification process, designing 
tests  and  actual  debugging.   We  will  discuss  debugging  in  section  2.2  Debugging
Procedure below.
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Because hardware modules are often very much larger and more complex than 
pieces of software it is often not possible to fully verify a module.  For example a 32bit 
adder accepts 264 possible combinations of inputs, so even if it could be run at 10GHz it 
would  take  nearly  60  years  to  plug  in  all  possible  264 inputs,  even  assuming  that  a 
matching 32bit  adder could be built  to test  it  against.   To make matters worse,  most 
circuits have some kind of memory requiring exponentially more time to test.  Because of 
this exhaustive testing only suffices for the most basic of modules, where it can be run 
easily.

For more complicated modules, hardware engineers rely on bottom up testing and 
interface contracts to ensure that the modules which they instantiate work as expected, as 
do the modules with which they must  interact.   Over  the course of  this  lab and the 
remainder of the semester you will become intimately familiar with this style of testing, 
as it is the only way to produce a fully working design.

2.2 Debugging Procedure
Once you know that something is working properly it is often a relatively trying 

ordeal to hunt down and fix the actual bug.  Below is a formalized algorithm that you can 
use as a starting point for your forays into debugging.

2.2.1 Hypothesis
Before starting to try and debug a design you must have a clear hypothesis of 

what the problem might be.  Even if your hypothesis is very much wrong you should 
always have something specific that you are looking for when you start  a debugging 
session.  “Whatever is wrong” is not a specific enough goal.

2.2.2 Control
With a hypothesis of what is broken in mind, the next step in debugging is to 

develop a set  of test inputs which will test for the specific bug you expect.  Usually 
developing  the  test  inputs  is  one  of  the  most  difficult  parts  of  the  debugging  and 
verification process.

The difference between test inputs for general verification and for debugging is 
simple: inputs for debugging are meant to aid you in testing your hypothesis, whereas 
inputs for verification should be designed to elicit as wide a range of bugs as possible.

2.2.3 Expected Output
Before actually beginning a test, it is necessary to figure out what the expected 

result of the test will be.  This should be a simple matter of working through the circuit 
specification  by  hand  using  the  test  inputs,  as  developed  according  to  section  2.2.2
Control above.

2.2.4 Observe
With a hypothesis in mind and test outputs and expected outputs in hand it is now 

time to actually run the test.  Unfortunately this is usually a very complicated process, 
made worse by slow simulation times, complex circuits and the difficulty of examining 
signals in hardware.
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To make this step easier, a testbench or test harness can be developed to look for 
the expected output and produce more meaningful reports of the success or failure of the 
test.  For example if the test succeeded, all we need to know is that it succeeded, not the 
how or why of it.

2.2.5 Handling Test Results
Ironically  a  test  which fails  is  a  major  success during debugging.   If  the test 

succeeds, all that has been proved is that the original hypothesis is false and that there is 
still a bug in the circuit.  However if the test fails, that means that the hypothesis has been 
proven true and the bug has been found.

When we say that “the bug has been found” we simply mean that it  has been 
further localized, that is to say, we have a better idea of what module or what signal is 
causing the trouble.  Fully specifying the bug and identifying the exact fix may require 
several iterations of this debugging algorithm and many hours of work beyond the first 
test.

ALWAYS BE SURE THAT YOU KNOW EXACTLY WHAT THE BUG IS AND HAVE A WELL DESIGNED FIX  
BEFORE MODIFYING YOUR CODE!  MAKING RANDOM CHANGES UNTIL THE PROBLEM DISAPPEARS WILL  
SIMPLY PROLONG THE PROBLEM AND FRUSTRATE YOU!

2.3 Types of Debugging (Parts of this Lab)
In this lab, we will introduce you to four specific types of debugging, all of which 

you will likely be obligated to use during your time in this class.
1. Bottom  Up  Testing:  In  this  part  you  will  take  advantage  of  the 

hierarchical structure of a design, testing the lower level modules first and 
moving towards the top step-by-step.

2. Designing Test Hardware:  Rather than simulating this circuit you will 
perform much faster testing using carefully designed test hardware.

3. Exhaustive FSM Testing:  You will feed a stream of inputs to a Finite 
State Machine in order to completely map its functionality and draw a 
bubble-and-arc diagram.

3.0 Prelab
Please make sure to complete the prelab before you attend your lab section.  You 

will not be able to finish this lab in 3hrs otherwise!
1. Read this handout thoroughly.  Pay particular attention to section  4.0

Lab Procedure as it describes what you will be doing in detail.
2. Examine the Verilog provided for this weeks lab.

a. You should become intimately familiar with the Lab4Part1.v file 
as you will need to debug it.

b. Make sure to read the Count.v and Register.v modules in Part2 
as you may wish to use them.

3. Write your Verilog ahead of time.
a. You will need three separate testbenches for Part1

i. Lab4PeakDetectorTestbench.v,  Lab4Comp4Testbench.v 
and Lab4Comp1Testbench.v
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ii. Refer to past testbenches as a starting point.
b. Lab4Part2Tester.v

i. You may need time in lab to debug it.
ii. Start with a timing diagram and schematic.

4. Prepare your tests for Part 3
a. Look at  the FSM in  Figure  4 and  try  to  devise  a  sequence  of 

inputs to test it completely.
5. You will need the entire 3hr lab!

a. You will need to test and debug both your verilog and ours.

4.0 Lab Procedure
Remember to  manage your Verilog, projects and folders well.  Doing a poor 

job of managing your files can cost you  hours of rewriting code, if you accidentally 
delete your files.

4.1 Bottom Up Testing
This part of the lab will be entirely in  ModelSim.  You may wish to read the 

ModelSim  Tutorial on  the  course  website  before  jumping  in.   http://www-
inst.eecs.berkeley.edu/~cs150/sp06/Documents.php#Tutorials

You will be testing the three modules that are in the  Lab4Part1.v file,  which 
together form an accumulator very similar to the one you built in Lab #2.  In order to 
fully verify that all three modules work, and to save yourself a number of headaches you 
will be testing each module separately as you move up the hierarchy.

Lab4 Peak 
Detector OutIn

Lab4PeakDetectorTestbench

Lab4 Peak 
Detector
Mixed

Lab4 Comp4
Structural

Lab4 Comp1
Behavioral

Lab 4 Comp4 OutIn

Lab4Comp4Testbench

Lab 4 Comp1 OutIn

Lab4Comp1Testbench

Figure 1: Lab #4 Part1 Module Hierarchy & Testbenches
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4.1.1 Lab4Comp1
The first  module  you will  be  testing  is  essentially  a  duplicate  of  the  Comp1 

module you were asked to build in Lab #2.  The main difference is that we asked you to 
use structural verilog and primitive gates in Lab #3, whereas this time we have used 
behavioral verilog.  Of course this version has a bug which you will need to find and 
fix before moving on to test the Lab4Comp4 module.
Signal Width Dir Description
A 1 I The first input
B 1 I The second input
GreaterIn 1 I The GreaterOut from the next higher bit
EqualIn 1 I The EqualOut from the next higher bit
GreaterOut 1 O Should be 1’b1 whenever B > A
EqualOut 1 O Should be 1’b1 whenever B = A

Table 1: Port Specification for Lab4Comp1

Each Lab4Comp1 module is responsible for comparing one bit of A to one bit 
of  B.   In order to generate a useful output however it  needs to know the relationship 
between the higher order bits of A and B, hence the GreaterIn and EqualIn inputs.

Notice that the GreaterOut and EqualOut outputs from the least significant 
bit (bit 0), will yield the correct information for the comparison of  all of the bits of  A 
and B.

For this module you will perform exhaustive testing, meaning that you will try 
all 24 = 16 input values in your testbench.  This is feasible because there are  so few 
inputs and no state registers.

In order to make your life easier, you should make use of if statements and the 
$display process in Verilog to display text errors any time the actual output of the 
Lab4Comp1 module differs from the expected output.  For an example of how to use 
the $display process, see Figure 3 in section 4.1.3 Lab4PeakDetector below or the IEEE 
Verilog Reference:

https://www-inst.eecs.berkeley.edu/~cs150/ProtectedDocs/verilog-ieee.pdf

4.1.2 Lab4Comp4
With a fully debugged Lab4Comp1 module in hand you are now ready to debug 

the Lab4Comp4 module, which instantiates four Lab4Comp1 modules.  This module is 
again very simple, taking two 4 bit inputs and reporting if the second is greater-than or 
equal-to the first.
Signal Width Dir Description
A 4 I The first input
B 4 I The second input
GreaterEqual 1 O Should be 1’b1 whenever B ≥ A

Table 2: Port Specification for Lab4Comp4
For this module you will perform exhaustive testing, meaning that you will try 

all 28 = 256 input values in your testbench.  This is feasible because there are  so few 
inputs and no state registers.

UCB 5 2007



EECS150 Spring 2007 Lab 4

In  order  to  make  your  life  easier,  you should  use  a  for or while loop to 
generate the input values and if statements and the $display process in Verilog to 
display text errors any time the actual output of the Lab4Comp4 module differs from 
the expected output.  For an example of how to use the $display process or for or 
while loops,  see  Figure  3  in  section  4.1.3  Lab4PeakDetector below  or  the  IEEE 
Verilog Reference:

https://www-inst.eecs.berkeley.edu/~cs150/ProtectedDocs/verilog-ieee.pdf

4.1.3 Lab4PeakDetector
The Lab4PeakDetector module should present no challenges to you at this 

point.  It is a simple module that accepts a new input on ever cycle and outputs the largest 
input it has been given since the last Reset.

Register

Lab5PeakDetector

In

Clock

Out

Reset

≥4

4

4

4

Figure 2: Lab4 Part1 Peak Detector Block Diagram

Since the Lab4PeakDetector has 5 inputs and a 4 bit register, testing all of 
the possible combinational  logic paths would take a  mere 29 = 512 inputs,  however 
nearly all of the Verilog modules written have significantly more inputs and state 
information, making it impossible to perform exhaustive testing on these modules.

Therefore in testing the  Lab4PeakDetector you will use a more advanced 
testing technique: you will build a testbench that reads a series of data values from a 
text file and  plugs them into the Lab4PeakDetector.   This will let you develop 
more complicated sequences of inputs to perform more careful, directed testing.

Figure  3  below  is  an  well  commented  example  of  a  testbench  using  the 
$readmemh process to read hexadecimal test values from a file.  Please make sure you 
understand it.  For more information on the  $readmemh process, please refer to the 
IEEE Verilog Reference:

https://www-inst.eecs.berkeley.edu/~cs150/ProtectedDocs/verilog-ieee.pdf
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Figure 3: $readmemh Example Testbench & Data File

4.2 Designing Test Hardware
Because it  proves  beyond all  doubt  that  a  circuit  works  as  desired,  we really 

would  like  to  exhaustively  test  every  single  Verilog  module  that  we  build  or  use. 
However  simulation  runs  at  about  1  millionth  of  the  speed  of  actual  hardware. 
Coupled with circuits like a  16bit  adder,  which has 32bits of input requiring 232 =  4 
billion  test  vectors,  this  seriously  hinders  our  efforts  to  exhaustively  simulate  our 
modules.  Therefore we test circuits like the Lab4Part2Adder module, a 16bit adder 
in hardware, where at 27MHz, 4 billion tests take a mere 2 minutes, 40 seconds.

In this part of the lab you will be designing and building specialized piece of 
test hardware, Lab4Part2Tester, designed to test the Lab4Part2Adder module. 
In order to make this assignment realistic we have given you an EDIF black box for the 
Lab4Part2Adder, namely Lab4Part2Adder.edf.  This file can be easily synthesized, 
but it cannot be simulated and it is nearly impossible to read.
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Testbench.v:
// integers can be used to index an array they may not
// be used in synthesis
integer i;

// below is an array of 4-bit values. It contains 16
// elements indexed from 1 to 16. Note that it
// is declared as ‘reg’, since we assign to it inside of
// initial.
reg[3:0] TestValues[1:16]; 

initial begin
// read the file specified and put the values in
// ‘TestValues’
$readmemh("TestValues.txt", TestValues);

for(i = 1; i <= 16; i = i + 1) begin
// Remember to advance the time forward
#(`Cycle);
In = TestValues[i]; 
$display("In = %d, Peak = %d", In, Peak);

end
end

TestValues.txt:
0
A
B
6
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To  help  you  design  your  Lab4Part2Tester,  the  Lab4Part2Adder has 
four different Fail Modes.  The adder will fail in different ways depending on which 
Fail Mode you select on SW9[2:1].  If the Fail Mode is 2’b00 (0), the adder will work 
perfectly, and in 2’b10 (2) it will fail on the inputs 0001, 0001, reporting that their sum 
is 0003, rather than 0002.  This information should help you debug your test harness.

In order to help you we have included the Register.v and Counter.v files which 
you may wish to use.
Signal Width Dir Description
A 16 I The first input to the adder (Shown on DD1-DD4)
B 16 I The second input (Shown on DD5-DD8)
Sum 16 O The sum from the adder (possibly incorrect)

(Shown on DD5-DD8 when SW10[1] is on)
FailMode 2 I Used to set the fail mode (From SW9[2:1])

Table 3: Port Specification for Lab4Part2Adder

In order to make this a realistic test, the adder may fail anywhere from 0 to 4 
times in each fail mode (except 0), and you will  need to know  how the adder has 
failed.  Thus your tester must be designed to  pause when it encounters an error and 
then continue after you have recorded the error.

SW1 should  Reset your  Lab4Part2Tester to  prepare  it  for  testing  a 
specific fail mode.  Go (SW2) should then start the test process, allowing it to free run 
until the tester discovers an error.  When an error is encountered,  the tester should 
pause and assert the  Error output.  You may then use  SW10[1] to switch between 
seeing A and B and seeing the Sum as reported by the Lab4Part2Adder.  When you 
have recorded the error on the Checkoff Sheet, you should press Go again to resume 
testing.
Signal Width Dir Description
A 16 O The first input to the adder (Shown on DD1-DD4)
B 16 O The second input (Shown on DD5-DD8)
Sum 16 O The sum from the adder (possibly incorrect)

(Shown on DD5-DD8 when SW10[1] is on)
FailMode 2 I Used to set the fail mode (From SW9[2:1])
Go 1 I Signal to start or continue testing (SW2)
Clock 1 I System Clock
Reset 1 I System Reset (SW1)
Running 1 O Indicates that a test has been started and that not all 

possible inputs have been tested yet
(Shown on D1-D4)

Error 1 O Indicates  that  the  tester  is  paused  with  an  error 
(Shown on D5-D8)

Table 4: Port Specification for Lab4Part2Tester

IN ORDER TO PROPERLY SYNTHESIZE A BLACK BOX, SUCH AS THE LAB4PART2ADDER.EDF FILE  
WE HAVE GIVEN YOU, YOU MUST TAKE A FEW EXTRA STEPS DURING THE XILINX PROJECT NAVIGATOR  
PROJECT SETUP.
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1. Make  sure  to  add  the  shell  Verilog  file  (Lab4Part2Adder.v)  to  your 
project.

2. Set the Macro Search Path
a. Make  sure  FPGA_TOP2.v is  highlighted  in  the  Sources  in 

Project Box.
b. Right-Click on  Implement Design in the  Processes for Source 

Box.
c. Go to the Translate Properties tab
d. Set the Macro Search Path to the directory where your copy of 

Lab4Part2Adder.edf resides.
3. Your project should now be able to Synthesize and implement properly.

4.3 Exhaustive FSM Testing
Download the Lab4Part3.bit file to the CaLinx2 board.  This will program the 

board with a very simple circuit, namely the FSM shown in Figure 4 below.  You can do 
this by running the iMPACT directly from the Start Menu (Start > Programs > Xilinx 
ISE 6 > Accessories > iMPACT).  In the dialog boxes that appear, select  Configure 
Devices, then Slave Serial Mode and then open the bitfile file provided.

S0

S1 S4

S2 S5

1 1 0

S3
[Output 1'b1]

S6

0 1

1

0

0

0 1

0 1

X

Figure 4: Sequence Detector FSM
This simple FSM is a sequence detector, which has the state diagram shown in 

Figure 4.  The circuit receives a 1bit input on every clock cycle and asserts the output 
when it detects the sequence 010, as long as the sequence 100 has never been received. 
If  a  100 sequence  is  received,  the  circuit  halts  and  the  only  way  to  resume normal 
operation is by resetting it.
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The  bitfile  contains  some  error,  which  you  should  find  by  performing  an 
exhaustive test on the state machine.  The idea is to exercise every arc and make sure 
that the state transition as well as the output is correct.

In  order  to  do  this  efficiently  you  should  prepare  a  sequence  of  inputs  that 
exercises all the arcs and go through it during the test.  Preparing this test sequence is not 
a trivial task and gets exponentially more difficult with the size of the FSM.

To perform the test on the board:
1. The Input can be set on SW9[1]

a. The Input will appear on DD7
2. The Output will appear on DD8
3. The State will appear on DD1
4. SW1 will Reset the FSM
5. SW2 will Enable the FSM

a. The FSM will stay in its current state until you press SW2
As you test this FSM, draw a corrected bubble-and-arc diagram on the back of 

your Checkoff Sheet.  You will not need to correct the errors in this FSM as we will not 
be distributing the source code to it.
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5.0 LAB 4 CHECK-OFF
ASSIGNED: Week of 2/11

DUE: Week of 2/18, 10 minutes after start (xx:20) of your assigned lab section.
Man Hours Spent Total Points TA Initial Date Time

        / 100  02/    / 07

NAME SID SECTION

I Bottom Up Testing
1   Lab4Comp1 (Testbench & Errors) __________ (10%)
2   Lab4Comp4 (Testbench & Errors) __________ (10%)
3   Lab4PeakDetector (Testbench & Errors) __________ (10%)

II Designing Test Hardware __________ (40%)
1   Fail Mode 1

A B Bad Sum

2    Fail Mode 2
0001 0001 0003

3    Fail Mode 3

            
III        Exhaustive FSM Testing __________ (30%)

1    Draw the corrected FSM Bubble-and-Arc on back of this sheet

RevC – 1/30/2005 Greg 
Gibeling

Updated to Lab4
Removed Part4 to Lab6

RevB – 7/13/2004 Greg 
Gibeling

Complete Rewrite of Lab4
Based on the old Lab4

RevA Multiple Original Lab4 from Fa02-Fa03
Spring 2004: Greg Gibeling
Fall 2003: Greg Gibeling
Spring 2003: Sandro Pintz
Fall 2002: John Wawrzynek & L.T. Pang
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