
EECS150 Spring 2007 Lab 4

UNIVERSITY OF CALIFORNIA AT BERKELEY

COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

ASSIGNED: Week of 2/11
DUE: Week of 2/18, 10 minutes after start (xx:20) of your assigned lab section.

Lab 4
Debugging & Verification

1.0 Motivation
Many of you will be very familiar with the process of debugging software, and

thanks to the circuits which you have had to build over the last few weeks, you’ve all
become at least minimally familiar with debugging your own circuits. In this lab you will
become acquainted with more formal debugging and verification techniques and tools as
we ask you to debug and verify a series of modules.

2.0 Introduction
No matter how carefully you plan and enter your circuit design, it should always

come as a major surprise if it works the first time you try it. The larger and more
complicated the design, the larger the fraction of the engineering time you should expect
to spend on debugging and verification. In a professional setting, a design would not be
considered finished without a complete testing regimen to prove that it works acceptably
under all circumstances, a process which can easily consume more than 50% of the time
required to implement a design.

In the interest of time, we cut a fair number of corners in this class, for example
rather than expecting your design to be fully verified (or even fully debugged), we will
expect it to appear to work. This is simply because we do not have time to fully examine
your testing regimen. However it is in your best interest to fully verify your modules.
Most students will simply write a piece of Verilog and synthesize it, hopping that it will
work and perhaps wasting hours debugging it inefficiently.

WE HIGHLY RECOMMEND THAT YOU CONSIDER WRITING AN APPROPRIATE AND COMPLETE
TESTBENCH AN INTEGRAL PART OF WRITING A VERILOG MODULE. THIS WILL SAVE YOU MANY
SLEEPLESS NIGHTS.

2.1 Verification Procedure
There are roughly two steps in the verification process:

1. Perform a test
2. If the test fails, debug the module being tested

As such there are two very different parts to the verification process, designing
tests and actual debugging. We will discuss debugging in section 2.2 Debugging
Procedure below.

UCB 1 2007

EECS150 Spring 2007 Lab 4

Because hardware modules are often very much larger and more complex than
pieces of software it is often not possible to fully verify a module. For example a 32bit
adder accepts 264 possible combinations of inputs, so even if it could be run at 10GHz it
would take nearly 60 years to plug in all possible 264 inputs, even assuming that a
matching 32bit adder could be built to test it against. To make matters worse, most
circuits have some kind of memory requiring exponentially more time to test. Because of
this exhaustive testing only suffices for the most basic of modules, where it can be run
easily.

For more complicated modules, hardware engineers rely on bottom up testing and
interface contracts to ensure that the modules which they instantiate work as expected, as
do the modules with which they must interact. Over the course of this lab and the
remainder of the semester you will become intimately familiar with this style of testing,
as it is the only way to produce a fully working design.

2.2 Debugging Procedure
Once you know that something is working properly it is often a relatively trying

ordeal to hunt down and fix the actual bug. Below is a formalized algorithm that you can
use as a starting point for your forays into debugging.

2.2.1 Hypothesis
Before starting to try and debug a design you must have a clear hypothesis of

what the problem might be. Even if your hypothesis is very much wrong you should
always have something specific that you are looking for when you start a debugging
session. “Whatever is wrong” is not a specific enough goal.

2.2.2 Control
With a hypothesis of what is broken in mind, the next step in debugging is to

develop a set of test inputs which will test for the specific bug you expect. Usually
developing the test inputs is one of the most difficult parts of the debugging and
verification process.

The difference between test inputs for general verification and for debugging is
simple: inputs for debugging are meant to aid you in testing your hypothesis, whereas
inputs for verification should be designed to elicit as wide a range of bugs as possible.

2.2.3 Expected Output
Before actually beginning a test, it is necessary to figure out what the expected

result of the test will be. This should be a simple matter of working through the circuit
specification by hand using the test inputs, as developed according to section 2.2.2
Control above.

2.2.4 Observe
With a hypothesis in mind and test outputs and expected outputs in hand it is now

time to actually run the test. Unfortunately this is usually a very complicated process,
made worse by slow simulation times, complex circuits and the difficulty of examining
signals in hardware.

UCB 2 2007

EECS150 Spring 2007 Lab 4

To make this step easier, a testbench or test harness can be developed to look for
the expected output and produce more meaningful reports of the success or failure of the
test. For example if the test succeeded, all we need to know is that it succeeded, not the
how or why of it.

2.2.5 Handling Test Results
Ironically a test which fails is a major success during debugging. If the test

succeeds, all that has been proved is that the original hypothesis is false and that there is
still a bug in the circuit. However if the test fails, that means that the hypothesis has been
proven true and the bug has been found.

When we say that “the bug has been found” we simply mean that it has been
further localized, that is to say, we have a better idea of what module or what signal is
causing the trouble. Fully specifying the bug and identifying the exact fix may require
several iterations of this debugging algorithm and many hours of work beyond the first
test.

ALWAYS BE SURE THAT YOU KNOW EXACTLY WHAT THE BUG IS AND HAVE A WELL DESIGNED FIX
BEFORE MODIFYING YOUR CODE! MAKING RANDOM CHANGES UNTIL THE PROBLEM DISAPPEARS WILL
SIMPLY PROLONG THE PROBLEM AND FRUSTRATE YOU!

2.3 Types of Debugging (Parts of this Lab)
In this lab, we will introduce you to four specific types of debugging, all of which

you will likely be obligated to use during your time in this class.
1. Bottom Up Testing: In this part you will take advantage of the

hierarchical structure of a design, testing the lower level modules first and
moving towards the top step-by-step.

2. Designing Test Hardware: Rather than simulating this circuit you will
perform much faster testing using carefully designed test hardware.

3. Exhaustive FSM Testing: You will feed a stream of inputs to a Finite
State Machine in order to completely map its functionality and draw a
bubble-and-arc diagram.

3.0 Prelab
Please make sure to complete the prelab before you attend your lab section. You

will not be able to finish this lab in 3hrs otherwise!
1. Read this handout thoroughly. Pay particular attention to section 4.0

Lab Procedure as it describes what you will be doing in detail.
2. Examine the Verilog provided for this weeks lab.

a. You should become intimately familiar with the Lab4Part1.v file
as you will need to debug it.

b. Make sure to read the Count.v and Register.v modules in Part2
as you may wish to use them.

3. Write your Verilog ahead of time.
a. You will need three separate testbenches for Part1

i. Lab4PeakDetectorTestbench.v, Lab4Comp4Testbench.v
and Lab4Comp1Testbench.v

UCB 3 2007

EECS150 Spring 2007 Lab 4

ii. Refer to past testbenches as a starting point.
b. Lab4Part2Tester.v

i. You may need time in lab to debug it.
ii. Start with a timing diagram and schematic.

4. Prepare your tests for Part 3
a. Look at the FSM in Figure 4 and try to devise a sequence of

inputs to test it completely.
5. You will need the entire 3hr lab!

a. You will need to test and debug both your verilog and ours.

4.0 Lab Procedure
Remember to manage your Verilog, projects and folders well. Doing a poor

job of managing your files can cost you hours of rewriting code, if you accidentally
delete your files.

4.1 Bottom Up Testing
This part of the lab will be entirely in ModelSim. You may wish to read the

ModelSim Tutorial on the course website before jumping in. http://www-
inst.eecs.berkeley.edu/~cs150/sp06/Documents.php#Tutorials

You will be testing the three modules that are in the Lab4Part1.v file, which
together form an accumulator very similar to the one you built in Lab #2. In order to
fully verify that all three modules work, and to save yourself a number of headaches you
will be testing each module separately as you move up the hierarchy.

Lab4 Peak
Detector OutIn

Lab4PeakDetectorTestbench

Lab4 Peak
Detector
Mixed

Lab4 Comp4
Structural

Lab4 Comp1
Behavioral

Lab 4 Comp4 OutIn

Lab4Comp4Testbench

Lab 4 Comp1 OutIn

Lab4Comp1Testbench

Figure 1: Lab #4 Part1 Module Hierarchy & Testbenches

UCB 4 2007

http://www-inst.eecs.berkeley.edu/~cs150/sp06/Documents.php#Tutorials
http://www-inst.eecs.berkeley.edu/~cs150/sp06/Documents.php#Tutorials

EECS150 Spring 2007 Lab 4

4.1.1 Lab4Comp1
The first module you will be testing is essentially a duplicate of the Comp1

module you were asked to build in Lab #2. The main difference is that we asked you to
use structural verilog and primitive gates in Lab #3, whereas this time we have used
behavioral verilog. Of course this version has a bug which you will need to find and
fix before moving on to test the Lab4Comp4 module.
Signal Width Dir Description
A 1 I The first input
B 1 I The second input
GreaterIn 1 I The GreaterOut from the next higher bit
EqualIn 1 I The EqualOut from the next higher bit
GreaterOut 1 O Should be 1’b1 whenever B > A
EqualOut 1 O Should be 1’b1 whenever B = A

Table 1: Port Specification for Lab4Comp1

Each Lab4Comp1 module is responsible for comparing one bit of A to one bit
of B. In order to generate a useful output however it needs to know the relationship
between the higher order bits of A and B, hence the GreaterIn and EqualIn inputs.

Notice that the GreaterOut and EqualOut outputs from the least significant
bit (bit 0), will yield the correct information for the comparison of all of the bits of A
and B.

For this module you will perform exhaustive testing, meaning that you will try
all 24 = 16 input values in your testbench. This is feasible because there are so few
inputs and no state registers.

In order to make your life easier, you should make use of if statements and the
$display process in Verilog to display text errors any time the actual output of the
Lab4Comp1 module differs from the expected output. For an example of how to use
the $display process, see Figure 3 in section 4.1.3 Lab4PeakDetector below or the IEEE
Verilog Reference:

https://www-inst.eecs.berkeley.edu/~cs150/ProtectedDocs/verilog-ieee.pdf

4.1.2 Lab4Comp4
With a fully debugged Lab4Comp1 module in hand you are now ready to debug

the Lab4Comp4 module, which instantiates four Lab4Comp1 modules. This module is
again very simple, taking two 4 bit inputs and reporting if the second is greater-than or
equal-to the first.
Signal Width Dir Description
A 4 I The first input
B 4 I The second input
GreaterEqual 1 O Should be 1’b1 whenever B ≥ A

Table 2: Port Specification for Lab4Comp4
For this module you will perform exhaustive testing, meaning that you will try

all 28 = 256 input values in your testbench. This is feasible because there are so few
inputs and no state registers.

UCB 5 2007

EECS150 Spring 2007 Lab 4

In order to make your life easier, you should use a for or while loop to
generate the input values and if statements and the $display process in Verilog to
display text errors any time the actual output of the Lab4Comp4 module differs from
the expected output. For an example of how to use the $display process or for or
while loops, see Figure 3 in section 4.1.3 Lab4PeakDetector below or the IEEE
Verilog Reference:

https://www-inst.eecs.berkeley.edu/~cs150/ProtectedDocs/verilog-ieee.pdf

4.1.3 Lab4PeakDetector
The Lab4PeakDetector module should present no challenges to you at this

point. It is a simple module that accepts a new input on ever cycle and outputs the largest
input it has been given since the last Reset.

Register

Lab5PeakDetector

In

Clock

Out

Reset

≥4

4

4

4

Figure 2: Lab4 Part1 Peak Detector Block Diagram

Since the Lab4PeakDetector has 5 inputs and a 4 bit register, testing all of
the possible combinational logic paths would take a mere 29 = 512 inputs, however
nearly all of the Verilog modules written have significantly more inputs and state
information, making it impossible to perform exhaustive testing on these modules.

Therefore in testing the Lab4PeakDetector you will use a more advanced
testing technique: you will build a testbench that reads a series of data values from a
text file and plugs them into the Lab4PeakDetector. This will let you develop
more complicated sequences of inputs to perform more careful, directed testing.

Figure 3 below is an well commented example of a testbench using the
$readmemh process to read hexadecimal test values from a file. Please make sure you
understand it. For more information on the $readmemh process, please refer to the
IEEE Verilog Reference:

https://www-inst.eecs.berkeley.edu/~cs150/ProtectedDocs/verilog-ieee.pdf

UCB 6 2007

EECS150 Spring 2007 Lab 4

Figure 3: $readmemh Example Testbench & Data File

4.2 Designing Test Hardware
Because it proves beyond all doubt that a circuit works as desired, we really

would like to exhaustively test every single Verilog module that we build or use.
However simulation runs at about 1 millionth of the speed of actual hardware.
Coupled with circuits like a 16bit adder, which has 32bits of input requiring 232 = 4
billion test vectors, this seriously hinders our efforts to exhaustively simulate our
modules. Therefore we test circuits like the Lab4Part2Adder module, a 16bit adder
in hardware, where at 27MHz, 4 billion tests take a mere 2 minutes, 40 seconds.

In this part of the lab you will be designing and building specialized piece of
test hardware, Lab4Part2Tester, designed to test the Lab4Part2Adder module.
In order to make this assignment realistic we have given you an EDIF black box for the
Lab4Part2Adder, namely Lab4Part2Adder.edf. This file can be easily synthesized,
but it cannot be simulated and it is nearly impossible to read.

UCB 7 2007

Testbench.v:
// integers can be used to index an array they may not
// be used in synthesis
integer i;

// below is an array of 4-bit values. It contains 16
// elements indexed from 1 to 16. Note that it
// is declared as ‘reg’, since we assign to it inside of
// initial.
reg[3:0] TestValues[1:16];

initial begin
// read the file specified and put the values in
// ‘TestValues’
$readmemh("TestValues.txt", TestValues);

for(i = 1; i <= 16; i = i + 1) begin
// Remember to advance the time forward
#(`Cycle);
In = TestValues[i];
$display("In = %d, Peak = %d", In, Peak);

end
end

TestValues.txt:
0
A
B
6

EECS150 Spring 2007 Lab 4

To help you design your Lab4Part2Tester, the Lab4Part2Adder has
four different Fail Modes. The adder will fail in different ways depending on which
Fail Mode you select on SW9[2:1]. If the Fail Mode is 2’b00 (0), the adder will work
perfectly, and in 2’b10 (2) it will fail on the inputs 0001, 0001, reporting that their sum
is 0003, rather than 0002. This information should help you debug your test harness.

In order to help you we have included the Register.v and Counter.v files which
you may wish to use.
Signal Width Dir Description
A 16 I The first input to the adder (Shown on DD1-DD4)
B 16 I The second input (Shown on DD5-DD8)
Sum 16 O The sum from the adder (possibly incorrect)

(Shown on DD5-DD8 when SW10[1] is on)
FailMode 2 I Used to set the fail mode (From SW9[2:1])

Table 3: Port Specification for Lab4Part2Adder

In order to make this a realistic test, the adder may fail anywhere from 0 to 4
times in each fail mode (except 0), and you will need to know how the adder has
failed. Thus your tester must be designed to pause when it encounters an error and
then continue after you have recorded the error.

SW1 should Reset your Lab4Part2Tester to prepare it for testing a
specific fail mode. Go (SW2) should then start the test process, allowing it to free run
until the tester discovers an error. When an error is encountered, the tester should
pause and assert the Error output. You may then use SW10[1] to switch between
seeing A and B and seeing the Sum as reported by the Lab4Part2Adder. When you
have recorded the error on the Checkoff Sheet, you should press Go again to resume
testing.
Signal Width Dir Description
A 16 O The first input to the adder (Shown on DD1-DD4)
B 16 O The second input (Shown on DD5-DD8)
Sum 16 O The sum from the adder (possibly incorrect)

(Shown on DD5-DD8 when SW10[1] is on)
FailMode 2 I Used to set the fail mode (From SW9[2:1])
Go 1 I Signal to start or continue testing (SW2)
Clock 1 I System Clock
Reset 1 I System Reset (SW1)
Running 1 O Indicates that a test has been started and that not all

possible inputs have been tested yet
(Shown on D1-D4)

Error 1 O Indicates that the tester is paused with an error
(Shown on D5-D8)

Table 4: Port Specification for Lab4Part2Tester

IN ORDER TO PROPERLY SYNTHESIZE A BLACK BOX, SUCH AS THE LAB4PART2ADDER.EDF FILE
WE HAVE GIVEN YOU, YOU MUST TAKE A FEW EXTRA STEPS DURING THE XILINX PROJECT NAVIGATOR
PROJECT SETUP.

UCB 8 2007

EECS150 Spring 2007 Lab 4

1. Make sure to add the shell Verilog file (Lab4Part2Adder.v) to your
project.

2. Set the Macro Search Path
a. Make sure FPGA_TOP2.v is highlighted in the Sources in

Project Box.
b. Right-Click on Implement Design in the Processes for Source

Box.
c. Go to the Translate Properties tab
d. Set the Macro Search Path to the directory where your copy of

Lab4Part2Adder.edf resides.
3. Your project should now be able to Synthesize and implement properly.

4.3 Exhaustive FSM Testing
Download the Lab4Part3.bit file to the CaLinx2 board. This will program the

board with a very simple circuit, namely the FSM shown in Figure 4 below. You can do
this by running the iMPACT directly from the Start Menu (Start > Programs > Xilinx
ISE 6 > Accessories > iMPACT). In the dialog boxes that appear, select Configure
Devices, then Slave Serial Mode and then open the bitfile file provided.

S0

S1 S4

S2 S5

1 1 0

S3
[Output 1'b1]

S6

0 1

1

0

0

0 1

0 1

X

Figure 4: Sequence Detector FSM
This simple FSM is a sequence detector, which has the state diagram shown in

Figure 4. The circuit receives a 1bit input on every clock cycle and asserts the output
when it detects the sequence 010, as long as the sequence 100 has never been received.
If a 100 sequence is received, the circuit halts and the only way to resume normal
operation is by resetting it.

UCB 9 2007

EECS150 Spring 2007 Lab 4

The bitfile contains some error, which you should find by performing an
exhaustive test on the state machine. The idea is to exercise every arc and make sure
that the state transition as well as the output is correct.

In order to do this efficiently you should prepare a sequence of inputs that
exercises all the arcs and go through it during the test. Preparing this test sequence is not
a trivial task and gets exponentially more difficult with the size of the FSM.

To perform the test on the board:
1. The Input can be set on SW9[1]

a. The Input will appear on DD7
2. The Output will appear on DD8
3. The State will appear on DD1
4. SW1 will Reset the FSM
5. SW2 will Enable the FSM

a. The FSM will stay in its current state until you press SW2
As you test this FSM, draw a corrected bubble-and-arc diagram on the back of

your Checkoff Sheet. You will not need to correct the errors in this FSM as we will not
be distributing the source code to it.

UCB 10 2007

EECS150 Spring 2007 Lab 4

5.0 LAB 4 CHECK-OFF
ASSIGNED: Week of 2/11

DUE: Week of 2/18, 10 minutes after start (xx:20) of your assigned lab section.
Man Hours Spent Total Points TA Initial Date Time

 / 100 02/ / 07

NAME SID SECTION

I Bottom Up Testing
1 Lab4Comp1 (Testbench & Errors) __________ (10%)
2 Lab4Comp4 (Testbench & Errors) __________ (10%)
3 Lab4PeakDetector (Testbench & Errors) __________ (10%)

II Designing Test Hardware __________ (40%)
1 Fail Mode 1

A B Bad Sum

2 Fail Mode 2
0001 0001 0003

3 Fail Mode 3

III Exhaustive FSM Testing __________ (30%)

1 Draw the corrected FSM Bubble-and-Arc on back of this sheet

RevC – 1/30/2005 Greg
Gibeling

Updated to Lab4
Removed Part4 to Lab6

RevB – 7/13/2004 Greg
Gibeling

Complete Rewrite of Lab4
Based on the old Lab4

RevA Multiple Original Lab4 from Fa02-Fa03
Spring 2004: Greg Gibeling
Fall 2003: Greg Gibeling
Spring 2003: Sandro Pintz
Fall 2002: John Wawrzynek & L.T. Pang

UCB 11 2007

