Integrated Circuits

- Primarily Crystalline Silicon
- 1mm - 25mm on a side
- 200 - 400M effective transistors
- (50 - 75M "logic gates")
- 3 - 10 conductive layers
- 2007 feature size = 65nm = 0.065 x 10^-6 m
- 45nm coming on line
- "CMOS" most common -
 complementary metal oxide semiconductor

- Package provides:
 - Spreading of chip-level signal paths to board-level
 - Heat dissipation.
 - Ceramic or plastic with gold wires

Fiberglass or ceramic
1 - 20in on a side
IC packages are soldered down

Multichip Modules (MCMs)
- Multiple chips directly connected to a substrate
 (silicon, ceramic, plastic, fiberglass) without chip packages

Moore's Law has fueled innovation for the last 3 decades

"Number of transistors on a die doubles every 18 months."

What are the consequences of Moore’s law?
CMOS Devices

- **MOSFET (Metal Oxide Semiconductor Field Effect Transistor)**

Cross Section

The gate acts like a capacitor. A high voltage on the gate attracts charge into the channel. If a voltage exists between the source and drain a current will flow. In its simplest approximation, the device acts like a switch.

Top View

Transistor-level Logic Circuits

- **Inverter (NOT gate):**

\[\text{out} = \overline{\text{in}} \]

Note: This rule is sometimes violated by expert designers under special conditions.

How about AND gate?

In general, both transistor types are needed. Transmission gates are the way to build “switches” in CMOS.

- The transmission gate is bi-directional (unlike logic gates).

Does not directly connect to Vdd and GND, but can be combined with logic gates or buffers to simplify many logic structures.

Logic and Layout: NAND Gate
Pass-Transistor Multiplexer

- 2-to-1 multiplexer:
 \[c = s_0 + s'_1 \]

- Switches simplify the implementation:
 \[\begin{array}{c}
 a \quad s_1 \\
 b \quad s'_0 \\
 c \\
 \end{array} \]

Alternative 4-to-1 Multiplexer

- This version has less delay from in to out.
- Care must be taken to avoid turning on multiple paths simultaneously (shorting together the inputs).

 36 Transistors

4-to-1 Pass-transistor Mux

- The series connection of pass-transistors in each branch effectively forms the AND of \(s_1 \) and \(s_0 \) (or their complement)

- 20 transistors

Example: Tally Circuit

- \(N \) inputs: How many of these are asserted?
 - E.g., 1 input, 2 outputs: One, Zero
 - E.g., 2 inputs, 3 outputs: Two, One, Zero
 - \(N \) inputs, \(N+1 \) outputs: \(N, \ldots, One, Zero \)

Example: Tally Circuit

- Example: Tally Circuit
 - Straight through
 - Diagonal
 - One
 - Zero

Example: Tally Circuit

- Example: Tally Circuit
Example: Tally Circuit

2 inputs, 3 outputs:
Two, One, Zero

Diagram representation:

(a) \(I_1 = 0, I_2 = 0 \)

(b) \(I_1 = 0, I_2 = 1 \)

(c) \(I_1 = 1, I_2 = 0 \)
Example: Tally Circuit
2 inputs, 3 outputs:
Two, One, Zero

Example: Crossbar Switch
N inputs, N outputs, N x N control signals

Example: Barrel Shifter
N inputs, N outputs, N control signals

Note: circuit like this used inside Xilinx switching matrix

Example: Barrel Shifter
N inputs, N outputs, N control signals

Rotating Shift
Tri-state Buffers

Tri-state Buffer:

Transistor circuit for inverting tri-state buffer:

Variations

Tri-state Buffer:

"transmission gate"

Inverting buffer

Iverted enable

“high impedance”
(output disconnected)

D-type Edge-triggered Flip-flop

The edge of the clock is used to sample the "D" input & send it to "Q" (positive edge triggering)

At all other times the output Q is independent of the input D (just stores previously sampled value)

The input must be stable for a short time before the clock edge.

Transistor-level Logic Circuits

Positive Level-sensitive latch:

Latch Transistor Level:

Positive Edge-triggered flip-flop built from two level-sensitive latches:

State Machines in CMOS

Two Phase Non-Overlapping Clocking

In

1/2 Register

Combinational Logic

1/2 Register

State

P1

P2

CLCK

P1

P2
Digital Design and Implementation Summary

- CMOS preferred implementation technology
- Much more than simple logic gates
 - Transmission gate as a building block
 - Used to construct "steering logic"
 - Very efficient compact implementations of interconnection and shifting functions
- Simple storage building blocks
 - D-type flip flop behavior with cross-coupled inverters and two phase clocking
- Heart of Xilinx implementation structures