Today

- CAD Flow “Full Circle”
- ChipScope
- Administrative Info
- Lab #5: ChipScope & UART <-> CPU Adaptor
 - UART <-> CPU Adaptor
 - CPU Emulator
 - Echo.s
 - Using ChipScope
 - PreLab & Design Reviews

ChipScope & the UART <-> CPU Adaptor

EECS150 Spring 2009 - Lab Lecture #5

Chris Fletcher

Slides designed by Chris Fletcher
"Lab #5: Using ChipScope (2)" designed by Greg Gibeling
Pictures of the XUPv5 board sourced from Xilinx
ChipScope (1)
- Software based logic analyzer
 - Show results on the computer
 - Wave window!
- Put a logic analyzer right into the FPGA
 - ICON – Connects FPGA to software
 - ILA – Does the actual analysis
- Shows only changes at clock edge

ChipScope (2)

ChipScope (3)
- ChipScope vs. ModelSim
 - ModelSim
 - Software simulator
 - Testbench => Buggy \(\rightarrow\) ModelSim Results != Accurate
 - Easy to fix bugs and rerun simulation
 - Easy to look at every signal in your design
 - ChipScope
 - Reports what it sees happening on Hardware (no lies!)
 - Takes time to fix bug and rerun
 - Forces you to select signals to look at

The "It works in ModelSim but not on the FPGA..." slide
Administrative Info

- Lab 5 is a 2-person partner lab
- iSVN full steam ahead
 - Group access for project
- Lab lecture conflicts
 - No makeup quizzes (except 1:45pm)
- Check-off procedure
- Questions?

Lab #5: UART ↔ CPU Adaptor (1)

- Build a part of your project
- Learn to use ChipScope
- Learn to use an interface (UART)
 - Ready/Valid
- Build an interface + handshake
 - UART ↔ CPU Adaptor
- Build a CPU Emulator
 - ... to verify the UART ↔ CPU Adaptor

Lab #5: UART ↔ CPU Adaptor (2)
Lab #5: UART↔CPU Adaptor (3)

- What you are given
 - FPGA_TOP_ML505
 - Use for the rest of the semester
 - Keep clean and organized!
 - UART
 - Simple module
 - Understand how it works!
 - PUTTY / Serial Cables
 - Interface specifications
 - Functional requirements

Lab #5: UART↔CPU Adaptor (4)

- What you can use
 - Behavioral Verilog
 - Synplify RTL/Technology Schematics
 - FPGA Editor
 - ModelSim
 - ChipScope
 - Your ingenuity and creativity

Lab#5: ChipScope (1)

- Learning to use ChipScope
 - This is a very important part of the lab
- Lab check-off requires ChipScope analysis
- Objectives
 - Generating ICON/ILA cores (COREGen)
 - Learn to trigger on a signal
 - Learn to probe signal(s)
Lab#5: ChipScope (2)

- Steps to use ChipScope
 - Generate an ICON
 - Generate an ILA
 - Connect the ILA to the ICON
 - Synthesize, and implement your design
 - With the ILA and ICON
 - Program the XUPv5 board
 - Run the ChipScope Pro Analyzer

Lab#5: ChipScope (3)

- You will NEED ChipScope
 - Your last line of defense
 - You cannot debug a large design without it

Lab#5: PreLab (1)

- Project PreLabs
 - You get a specification
 - Your job will be to design a circuit to satisfy implementation requirements
 - Take your design extremely seriously
- Design Reviews
 - Starting next week
 - "Non-blocking" approach
Lab#5: PreLab (2)

- Project Partners and Design Reviews
 - Both partners must be present
 - Design reviews happen only during lab
- Design Review Guidelines
 - Come ready with your design
 - Be ready to answer your TA's questions
 - Each partner must be able to explain whole design
 - Design reviews will be graded

Lab#5: PreLab (3)

- Acceptable Designs
 - MUST be printed and neat
 - Microsoft Visio is highly recommended
 - (its what we use)
 - Electronic mediums are preferred over scans
- NOT Acceptable Designs
 - "On a napkin" (or XORs on toilet paper)
 - Crumpled pieces of paper
 - Crooked, messy or otherwise unreadable wiring

If we can’t follow it, we can’t grade it