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Cell Signaling Networks

Goal: Given flow cytometry data, learn the structure of cell signaling networks

* Flow Cytometry e Cell Signaling Networks

— Datain the form of “raw” — Structures that model

quantitative observations protein signaling pathways

— Measurement of proteins & other

— Modeling perturbations to a network can
components inside cells

help uncover the cause of human disease

This talk
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Problem: Kernel is NP-Hard

Goal: Determine which network best explains the data

e Algorithm Bottlenecks

— Search space grows super-exponentially with the graph’s node count
— Multiple local optima, encoding best-solutions, may exist
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* Alternative Approach: “MCMC Sampling”
— Markov Chain Monte Carlo
— Slower than search methods

— More reliable and less prone to get stuck in local optima (higher “QoR”)
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Algorithmic Approach

 Graph vs. Order Space
— The “order space” is much smaller than the “graph space”
— Swapping nodes in the order space results in a larger move
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e Computational Strategy
(1) Calculate local scores per parent set
(2) “Order Sampler”: Determine the likely orders (algorithm kernel)
(3) “Graph Sampler”: Extract graphs from probable orders

* |dea: Implement the Order Sampler in Hardware
— Minimize the time it takes to score an order
— Reduce the computational complexity to score an order



Hardware Approach

e Scoring an order is “embarrassingly” parallel
— Divide computation by node

S for Ord L | f nod : inli i
core for Order '< ocal score ot ng eVI Comparisons, Multiplications,

score (< score (V ) and Subtractions
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= score (V,) +score(V,) +...+ score(Vy)
\ //

Built as separate parallel units in hardware

— Partition parent sets into block RAMs
* Perform (3) —the “Graph Sampler” step — alongside the Order Sampler
* Map computations to 1og space

— Bulk of computations are on probabilities (small values)
— Multiplications = Additions
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FPGA Implementation

29 node system
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FPGA Floorplanner (LX155T)

Abstract View vs. Actual Implementation
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FPGA Infrastructure

e RCBIOS — Part of GatelLib

— Scalable FPGA €<= Software communication

— Composed of Verilog, Java, and Apache ANT

Hardware | Software
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Signaling Networks RCBIOS XLink RCBIOS SignalingNetworks
I

— NoC (as opposed to bus) based | \

— XLink: physical link independent (UART/Ethernet/JITAG/VPI) %S"/fs
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Design Scalability

“MCMC Mesh”
Idea: Split larger problems across multiple FPGAs
BEE3 BEE3
* While maintaining base design
Scores
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Results

Problem Specification

Questions
22 nodes
7547 parent sets per node * What’s the deal with the 1x vs. 4x GPP?
100 random restarts * What is the “Caching Algorithm”?
10,000 iterations per restart
Times (s): Order Graph
1x GPP*: 62.33 + 12.67
4x GPP*; 34362 + 12.67 :
GPU: 98.42  + 1267 .
2x FPGA:  8.13 + 0 = Block RAM
3x FPGA: 511 + 0
AXFPGA:  4.42 t+ 0 S
GPP: 4-core Intel Xeon 3.00GHz (PowerEdge 1850), 7.71 GB RAM, 10.00 GB swap (Caching algorithm)
GPU: 1.3 GHz NVIDIA Tesla c1060 (Caching algorithm)
FPGA: Xilinx Virtex-5 LX155T (-2)
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Future Work

e Order caching

Insight: A given order will always produce the same score

— Optimization used by both GPU & GPP implementations
— Can be made at an order or “local order” granularity

* Pre-processing on FPGA
— (1) “Pre-processing” has become new bottleneck
— Map “Local score” generation to each FPGA in network
— Transport “observations” data to FPGA

Insight: Observation files are small, score files are large
 Map Kernel to OpenRCL platform



Conclusion and Summary

This work coordinates clusters of FPGA accelerators
In order to learn protein network structure

* Reconfigurable Computing gives us the ability to...
— Build each accelerator to best-fit different problems
— Provide arbitrary design scaling with low overhead
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Bayesian Networks
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* Conditional independence
e Causal relationships
Parent Set for node V
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— A basis for comparing Bayesian Structures Courtesy of Tom Griffiths (U.C. Berkeley)

— Based on prior belief and observations

Experimental data

P@:P\(G/)P(D|G)

Graph . .
Prior probability
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