

Scalable Bayesian Network Discovery with Reconfigurable Hardware

Christopher W. Fletcher Greg Gibeling Dan Burke John Wawrzynek Narges B. Asadi Eric Glass Wing Wong Teresa Meng Garry Nolan

UC Berkeley

Stanford

Outline

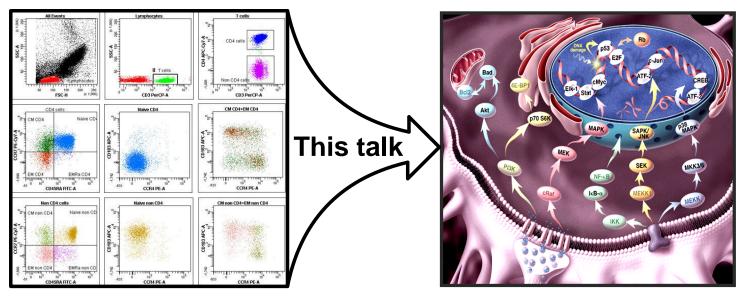
- Biological Perspective
 - The Motivation: Learning the structure of cell signaling networks
 - The Algorithm: Computational complexity & MCMC
 - Algorithmic approach
- Reconfigurable Computing Perspective
 - Hardware approach
 - FPGA implementation
 - Design scalability
- Results
- Future Work
- Conclusion and Summary

Cell Signaling Networks

Goal: Given flow cytometry data, learn the structure of cell signaling networks

- Flow Cytometry
 - Data in the form of "raw" quantitative observations
 - Measurement of proteins & other components inside cells

- Cell Signaling Networks
 - Structures that model protein signaling pathways
 - Modeling perturbations to a network can help uncover the cause of human disease

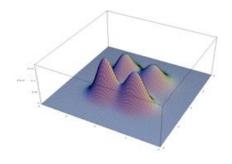


Problem: Kernel is NP-Hard

Goal: Determine which network best explains the data

- Algorithm Bottlenecks
 - Search space grows super-exponentially with the graph's node count
 - Multiple local optima, encoding best-solutions, may exist

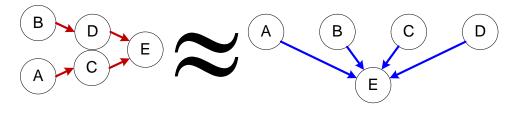
Nodes	Graphs		
4	453		
5	29281		
10	4.7x10 ¹⁷		
20	2.34x10 ⁷²		

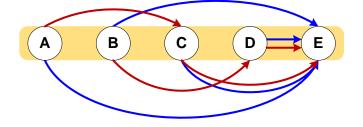


- Alternative Approach: "MCMC Sampling"
 - Markov Chain Monte Carlo
 - Slower than search methods
 - More reliable and less prone to get stuck in local optima (higher "QoR")

Algorithmic Approach

- Graph vs. Order Space
 - The "order space" is much smaller than the "graph space"
 - Swapping nodes in the order space results in a larger move

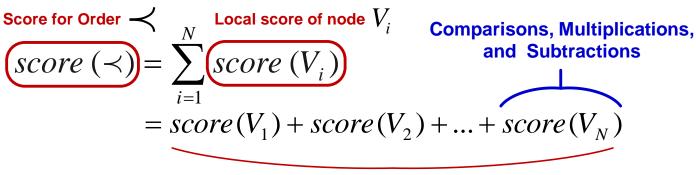




- Computational Strategy
 - (1) Calculate local scores per parent set
 - (2) "Order Sampler": Determine the likely orders (algorithm kernel)
 - (3) "Graph Sampler": Extract graphs from probable orders
- Idea: Implement the Order Sampler in Hardware
 - Minimize the time it takes to score an order
 - Reduce the computational complexity to score an order

Hardware Approach

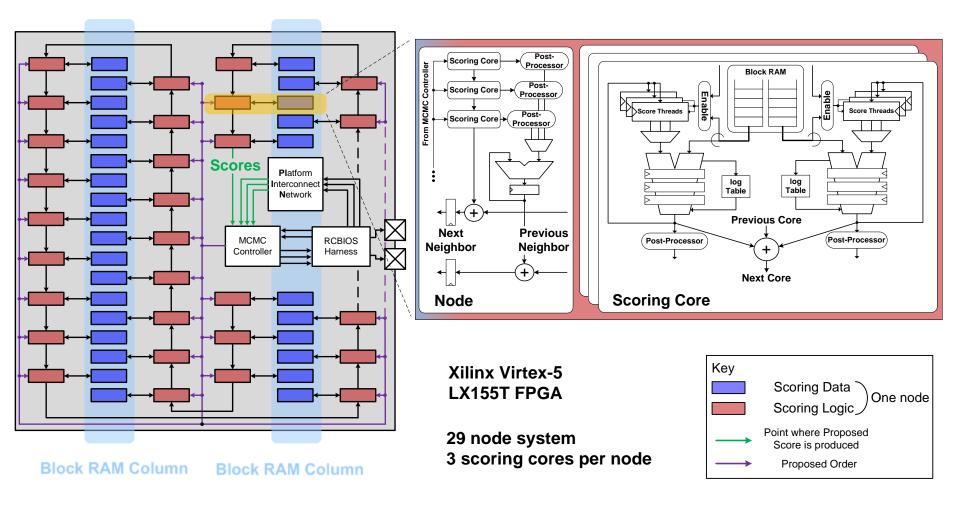
- Scoring an order is "embarrassingly" parallel
 - Divide computation by node



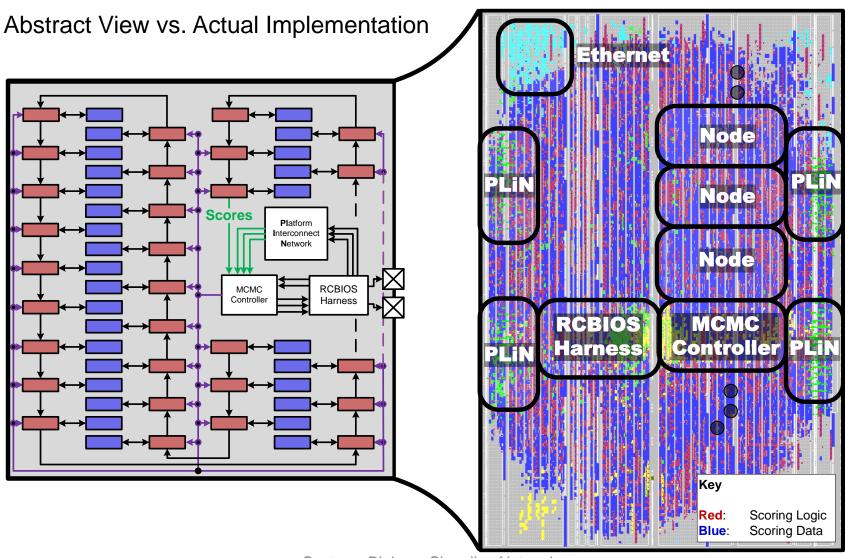
Built as separate parallel units in hardware

- Partition parent sets into block RAMs
- Perform (3) the "Graph Sampler" step alongside the Order Sampler
- Map computations to **log** space
 - Bulk of computations are on probabilities (small values)
 - Multiplications \rightarrow Additions

FPGA Implementation



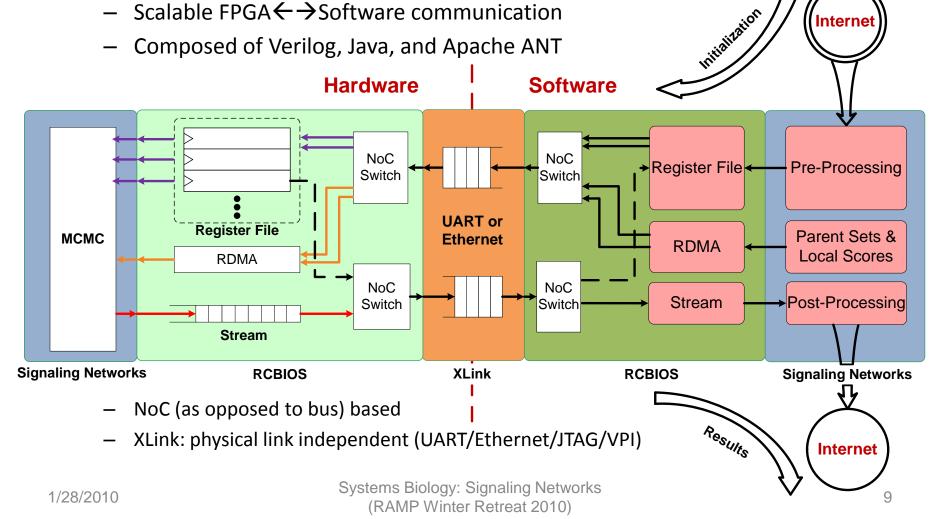
FPGA Floorplanner (LX155T)



FPGA Infrastructure

Internet

- RCBIOS Part of GateLib
 - Scalable FPGA $\leftarrow \rightarrow$ Software communication
 - Composed of Verilog, Java, and Apache ANT

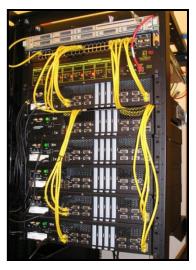


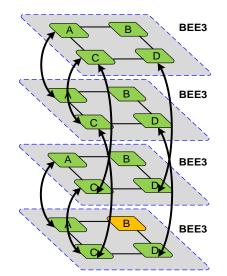
Design Scalability

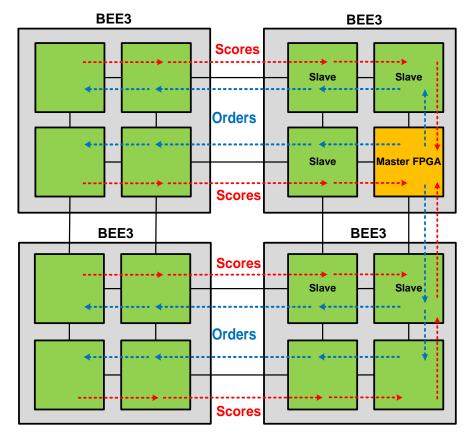
"MCMC Mesh"

Idea: Split larger problems across multiple FPGAs

- * While maintaining base design
- Additional Infrastructure
 - (1) Inter-chip ring connections
 - (2) Inter-board Aurora high-speed links
 - (3) Platform Interconnect Network (PLiN)
 - built on (1) and (2)







1/28/2010

Results

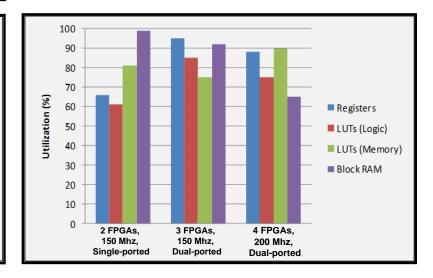
Problem Specification

22 nodes7547 parent sets per node100 random restarts10,000 iterations per restart

Questions

- What's the deal with the 1x vs. 4x GPP?
- What is the "Caching Algorithm"?

Times (s):	Order		Graph
1x GPP*:	62.33	+	12.67
4x GPP*:	343.62	+	12.67
GPU:	98.42	+	12.67
2x FPGA:	8.13	+	0
3x FPGA:	5.11	+	0
4x FPGA:	4.42	+	0
4X FPGA:	4.42	+	0



GPP: 4-core Intel Xeon 3.00GHz (PowerEdge 1850), 7.71 GB RAM, 10.00 GB swap (Caching algorithm)

- GPU: 1.3 GHz NVIDIA Tesla c1060 (Caching algorithm)
- FPGA: Xilinx Virtex-5 LX155T (-2)

Future Work

• Order caching

Insight: A given order will always produce the same score

- Optimization used by both GPU & GPP implementations
- Can be made at an order or "local order" granularity
- Pre-processing on FPGA
 - (1) "Pre-processing" has become new bottleneck
 - Map "Local score" generation to each FPGA in network
 - Transport "observations" data to FPGA

Insight: Observation files are small, score files are large

• Map Kernel to OpenRCL platform

Conclusion and Summary

This work coordinates clusters of FPGA accelerators In order to learn protein network structure

- Reconfigurable Computing gives us the ability to...
 - Build each accelerator to best-fit different problems
 - Provide arbitrary design scaling with low overhead

Acknowledgements

For making this work possible, a special thanks to:

- Ilia Lebedev & Mingjie Lin for the **Pl**atform Interconnect **N**etwork
- Dan Burke & Farzad Fard for developing the BEE3 EmCon
- All GateLib contributors
- NIH Grant #130826-02
- NSF Grants #0403427 & #0551739
- Berkeley Wireless Research Center (BWRC)
- Gigascale Systems Research Center (GSRC)

BACKUP SLIDES

Bayesian Networks

- Sprinkler Rain "Belief Network" F F Rain Sprinkler Rain .6 F .4 Directed acyclic graph .8 .2 .01 .99 Т Structure encodes... _ Conditional independence Grass Causal relationships Wet Parent Set for node V_{i} N Grass Wet $P(V_1,...,V_N) = \prod P(V_i)$ Sprinker Rain F 0 i=1F T T F .8 .9 **Bayesian Score** Т .99 A basis for comparing Bayesian Structures Courtesy of Tom Griffiths (U.C. Berkeley)
 - Based on prior belief and observations

Experimental data

