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Outline

• Biological Perspective
– The Motivation: Learning the structure of cell signaling networks
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– Hardware approach

– FPGA implementation
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Cell Signaling Networks

• Flow Cytometry
– Data in the form of “raw” 

quantitative observations

– Measurement of proteins & other 
components inside cells

• Cell Signaling Networks
– Structures that model 

protein signaling pathways

– Modeling perturbations to a network can 
help uncover the cause of human disease
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This talk

Goal: Given flow cytometry data, learn the structure of cell signaling networks



Problem: Kernel is NP-Hard

• Algorithm Bottlenecks

– Search space grows super-exponentially with the graph’s node count

– Multiple local optima, encoding best-solutions, may exist

• Alternative Approach: “MCMC Sampling”

– Markov Chain Monte Carlo

– Slower than search methods

– More reliable and less prone to get stuck in local optima (higher “QoR”)
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Nodes Graphs

4 453

5 29281

10 4.7x1017

20 2.34x1072

Goal: Determine which network best explains the data



Algorithmic Approach

• Graph vs. Order Space
– The “order space” is much smaller than the “graph space”

– Swapping nodes in the order space results in a larger move

• Computational Strategy
(1) Calculate local scores per parent set

(2) “Order Sampler”: Determine the likely orders (algorithm kernel)

(3) “Graph Sampler”: Extract graphs from probable orders

• Idea: Implement the Order Sampler in Hardware
– Minimize the time it takes to score an order

– Reduce the computational complexity to score an order
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Hardware Approach
• Scoring an order is “embarrassingly” parallel

– Divide computation by node

– Partition parent sets into block RAMs

• Perform (3) – the “Graph Sampler” step – alongside the Order Sampler

• Map computations to log space

– Bulk of computations are on probabilities (small values)

– Multiplications  Additions
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Comparisons, Multiplications, 

and  Subtractions

Score for Order        Local score of node      
iV

Built as separate parallel units in hardware
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FPGA Floorplanner (LX155T)
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Abstract View vs. Actual Implementation
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FPGA Infrastructure
• RCBIOS – Part of GateLib

– Scalable FPGASoftware communication

– Composed of Verilog, Java, and Apache ANT

– NoC (as opposed to bus) based

– XLink: physical link independent (UART/Ethernet/JTAG/VPI)
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Design Scalability
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“MCMC Mesh”
Idea: Split larger problems across multiple FPGAs

* While maintaining base design

• Additional Infrastructure

(1) Inter-chip ring connections

(2) Inter-board Aurora high-speed links

(3) Platform Interconnect Network (PLiN) 

built on (1) and (2)
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Results
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Problem Specification

22 nodes
7547 parent sets per node
100 random restarts
10,000 iterations per restart

GPP: 4-core Intel Xeon 3.00GHz (PowerEdge 1850), 7.71 GB RAM, 10.00 GB swap (Caching algorithm)

GPU: 1.3 GHz NVIDIA Tesla c1060 (Caching algorithm)

FPGA: Xilinx Virtex-5 LX155T (-2)

Times (s): Order Graph

1x GPP*: 62.33 + 12.67

4x GPP*: 343.62 + 12.67

GPU: 98.42 + 12.67

2x FPGA: 8.13 + 0

3x FPGA: 5.11 + 0

4x FPGA: 4.42 + 0 2 FPGAs, 

150 Mhz,

 Single-ported

3 FPGAs, 

150 Mhz,

 Dual-ported

4 FPGAs, 

200 Mhz,

 Dual-ported

Questions

• What’s the deal with the 1x vs. 4x GPP?
• What is the “Caching Algorithm”?



Future Work

• Order caching

Insight: A given order will always produce the same score
– Optimization used by both GPU & GPP implementations

– Can be made at an order or “local order” granularity

• Pre-processing on FPGA
– (1) “Pre-processing” has become new bottleneck

– Map “Local score” generation to each FPGA in network

– Transport “observations” data to FPGA

Insight: Observation files are small, score files are large

• Map Kernel to OpenRCL platform
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Conclusion and Summary

This work coordinates clusters of FPGA accelerators

In order to learn protein network structure

• Reconfigurable Computing gives us the ability to…

– Build each accelerator to best-fit different problems

– Provide arbitrary design scaling with low overhead
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Bayesian Networks

• “Belief Network”
– Directed acyclic graph

– Structure encodes…

• Conditional independence

• Causal relationships 

• Bayesian Score
– A basis for comparing Bayesian Structures

– Based on prior belief and observations
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