
Synchronous {Pipelines, dataflow}

Honors Discussion #4

EECS 150 Spring 2010

Chris W. Fletcher

1UCB EECS150 Spring 2010, Honors #4

Today

• SCORE commentary

• Synchronous pipelines

• Throughput case study

2UCB EECS150 Spring 2010, Honors #4

Big Picture

• This week: Synchronous pipelines

& data transactions

• Next week: Asynchronous pipelines

& data transactions

• After that: … putting it all together…

{Synchronous, Asynchronous} FIFOs

3UCB EECS150 Spring 2010, Honors #4

Synchronous Pipelines 1

• Where do we start?

With the simple case…

This circuit is called a
shift register or (de)serializer

• If you put logic in between each stage…

You get a pipeline! 4

Synchronous Pipelines 2

• When/how does this work?
– System puts data into the pipeline

… knowing that it will come out at a known time

– Considerations
• Must know each module’s “latency” (doesn’t have to == 1)
• Make sure the output is ready by the time it sees the data!

1 2 3 4 5 6 7 8

5UCB EECS150 Spring 2010, Honors #4

Synchronous Pipelines 3

• What happens when you want to stop?

(i.e. output isn’t ready when the data arrives)

Ready

Train wreck!

How do we fix this?
Add control logic

6

Synchronous Pipelines 4

• Monolithic/lock-step approach:

1. Controller-timed

• Controller keeps time

• Handles 1/2+ cycle stages

1. Self-timed

• Each module keeps time

• Handles 1/2+ cycle stages

Control

Enable Enable Enable Enable

Ready

 Control Ready

Enable Enable Enable Enable

Done Done Done Done

7

Synchronous Pipelines 5

• Monolithic/lock-step pitfall
– Each can handle multi-stage operations

– But what does this do to performance?

– Well, NO data moves in any stage…

until the slowest stage is done.

– Consider (try to find the bottleneck assuming lock-step):

8

Synchronous Pipelines 6

• “Decoupled” approach

– No central controller
– Latency Insensitive
– Each module keeps track of its own time
– Data moves at the rate of each module
not the rate of the slowest piece

– Sound familiar?

Valid

Ready

9UCB EECS150 Spring 2010, Honors #4

Throughput Considerations 1

• A look under the covers
– What is this register?

{E,R,S} match the Virtex-5

– What events can occur? FFD Q

S

R

InValid

OutValid

OutReady

InReady

1'bx
E

1'b0

FFD Q

E
InData

Read

WriteWrite Read

0 0

Action

0 1

1 0

1 1

No change

Clear

Set

???

What are the implications of this state being unreachable?
10

Throughput Considerations 2

• What we want: full throughput when…
Sender is constantly sending (InValid = 1 always)

Receiver is constantly receiving (OutReady = 1 always)

11

Valid

Ready

1'b1

1'b1

Write Read

0 0

Action

0 1

1 0

1 1

No change

Clear

Set

???

But can we ever get
ideal throughput?

InValid

InReady

OutValid

OutReady

Clock

Homework

• Thought problem

– Fix the throughput issue

(allow for ideal throughput)

• (More) reading will be posted

UCB EECS150 Spring 2010, Honors #4 12

Acknowledgements & Contributors

Slides developed by Chris Fletcher (2/2010).

This work is based in part on slides by:

Krste Asanovic, John Wawrzynek, and John Lazzaro

And is based on ideas by:

Greg Gibeling

This work has been used by the following courses:
– UC Berkeley CS150 (Spring 2010): Components and Design Techniques for Digital Systems

13UCB EECS150 Spring 2010, Honors #4

