
Asynchronous {Pipelines, dataflow}

Honors Discussion #5

EECS 150 Spring 2010

Chris W. Fletcher

1UCB EECS150 Spring 2010, Honors #5

Today

• HSRA commentary

• Clocking

• Synchronizers

• Dataflow in asynchronous systems

2UCB EECS150 Spring 2010, Honors #5

Big Picture

• Last week: Synchronous pipelines

& data transactions

• This week: Asynchronous pipelines

& data transactions

• Next week: {Synchronous, Asynchronous} FIFOs

3UCB EECS150 Spring 2010, Honors #5

Clocking Basics 1

• A clock signal

UCB EECS150 Spring 2010, Honors #5 4

Clocking Basics 2

• A clock signal

• Setup time

UCB EECS150 Spring 2010, Honors #5 5

tsetup

Clocking Basics 3

• A clock signal

• Setup time

• Hold time

UCB EECS150 Spring 2010, Honors #5 6

tsetup thold

Clocking Basics 4

• A clock signal

• Setup time

• Hold time

• clkQ

UCB EECS150 Spring 2010, Honors #5 7

tsetup thold

tclkQ

Clocking Basics 5

Quiz: Can tsetup or thold to be negative?

UCB EECS150 Spring 2010, Honors #5 8

thold tsetup

tclkQ

• tsetup < 0: D can change after the clock edge
and the new D will be recognized

• thold < 0: D can change before the clock edge
and the old D will be recognized

What about clkQ?

Metastability 1

• What happens when tsetup or thold are violated?

UCB EECS150 Spring 2010, Honors #5 9

tsetup

metastable resolution

outin

A
ct

iv
e

A
ctive

???

• Output unknown

(somewhere between 0 and 1)

… until “resolution” occurs

at which point “out” could

be either 0 or 1!

Metastability 2

• When can tsetup or thold be violated?

UCB EECS150 Spring 2010, Honors #5 10

• One Clock

Design doesn’t meet timing

(You have bigger problems)
tsetup

Logic

• Two Clocks: different frequencies
Will almost always cause violations
Thought Q: Exceptions to this? tsetup tclkQ tclkQ

???

• Two Clocks: phase offset
May or may not cause violations

tsetup

tsetup

tclkQ

Metastability 3

• Resolution must occur within tr

UCB EECS150 Spring 2010, Honors #5 11

tr = tp – tclkQ-tcl - tsu

tsetup

tp

tclkQ

tcltr

• Good news:
chance to leave metastability increases exponentially with time

• Bad news:

synchronization failure

means… circuit failure

Synchronizers 1

• First flip-flop absorbs metastability

UCB EECS150 Spring 2010, Honors #5 12

Clock A

Clock B

Input

Clock Domain A Clock Domain B

Level Synchronizer

Output

1 2 3

• Second flip-flop protects downstream logic

tr = tp – tclkQ- tsu

Synchronizers 2

• How can we do better? Increase tr

UCB EECS150 Spring 2010, Honors #5 13

Clock A

Clock B

Input

Clock Domain A Clock Domain B

Reliable Synchronizer

Output

1 2 3

2+ Stage Shift Register

tr = Nx(tp – tclkQ- tsu)

Synchronizers 3

• Another “reliable synchronizer”

UCB EECS150 Spring 2010, Honors #5 14

tr = Nxtp – tclkQ- tsu

Clock A

Clock B

Input

Reliable Synchronizer

Output

1 2 3

Clock Domain BClock Domain A

Clock

Divider

(by N)

Synchronizers 4

• Synchronizer cost…

– Area (but not much)

– Cycle Delay

UCB EECS150 Spring 2010, Honors #5 15

• Where does this matter? Handshaking

• Case Study:

Asynchronous FIFOs

Asynchronous Pipelines 1

• Recall… the FIFO interface that we call Ready/Valid

Valid

Ready

16UCB EECS150 Spring 2010, Honors #5

• This worked in a single clock domain…

• Why?

Ready

Valid

Clock

1+ 1+ 1 0+

Transfers @ edge, both parties
see change at the same time

Asynchronous Pipelines 2

• What happens in two clock domains?

UCB EECS150 Spring 2010, Honors #5 17

Valid

Ready

Clock A Clock B

Data

• First: we must avoid metastability. Ideas?

Asynchronous Pipelines 3

• Step #1: Add synchronizers (prevents metastability)

UCB EECS150 Spring 2010, Honors #5 18

Valid

Clock A Clock B

Clock A Clock B

Clock BClock A

Ready

Asynchronous Pipelines 4

• Step #1: Add synchronizers (prevents metastability)

UCB EECS150 Spring 2010, Honors #5 19

Valid

Clock A Clock B

Clock A Clock B

Clock BClock A

Ready

D
a

ta

D
a

ta

• Step #2: Add a hold register (does this help here?)

Aside: Why not push data through parallel synchronizers?

This still doesn’t work!

Asynchronous Pipelines 5

• Problem:
– It takes multiple cycles for a message

from the receiver to reach the sender

UCB EECS150 Spring 2010, Honors #5 20

• Solution
– Add buffering to the receiver

– Add “almost full” like in lecture

• Why do we care?
– What happens when

the receiver says “stop?”

(i.e. DataInReady = 0) Ready

Valid

Clock

Synchronizer delay

W
e
 w

a
n
t

We get

Asynchronous Pipelines 6

• “Almost full” gives sender time to stop

UCB EECS150 Spring 2010, Honors #5 21

Valid

Clock A Clock B

Clock A Clock B

Clock BClock A

Ready

D
a

ta

D
a
ta

D
a
ta

D
a
ta

D
a
ta

• Same idea as what you saw in lecture

• What is the receiver starting to look a lot like?

Homework

• Thought problem

– Based on what you have seen in lecture & today:

Draw a block diagram for a synchronous FIFO

– (More) reading will be posted

UCB EECS150 Spring 2010, Honors #5 22

Acknowledgements & Contributors

Slides developed by Chris Fletcher (2/2010).

This work is based on ideas and discussions with:

Ilia Lebedev, Greg Gibeling, John Wawrzynek, Krste Asanovic,

and other fellow Spring 2009 CS294-48 students

This work has been used by the following courses:
– UC Berkeley CS150 (Spring 2010): Components and Design Techniques for Digital Systems

23UCB EECS150 Spring 2010, Honors #5

