Asynchronous {Pipelines, dataflow}

Honors Discussion #5
EECS 150 Spring 2010
Chris W. Fletcher

UCB EECS150 Spring 2010, Honors #5 1

Today

HSRA commentary

Clocking

Synchronizers

Dataflow in asynchronous systems

Big Picture

 Thisweek: Asynchronous pipelines
& data transactions

Clocking Basics

* A clock signal

Clocking Basics

* A clock signal
* Setup time

tsetup

UCB EECS150 Spring 2010, Honors #5

Clocking Basics 3

* A clock signal
* Setup time

* Hold time

UCB EECS150 Spring 2010, Honors #5 6

Clocking Basics

A clock signal

Setup time
Hold time
clk=>Q

UCB EECS150 Spring 2010, Honors #5

Clocking Basics 5

Quiz: Can tsewp OF thos to be negative?

* tetp < 0: D can change after the clock edge
and the new D will be recognized

* ta < 0: D can change before the clock edge
and the old D will be recognized

fokso E E

What about clk=Q?

" 0
thold tsetup : :

Metastability 1

 What happens when tsw Or troe are violated?

e QOutput unknown <t_> /_

(somewhere between 0 and 1)

metastable resolution
.. until “resolution” occurs _qt
at which point “out” could n—e " ou
be either 0 or 1! W[

Metastability 2

e When can tswe Or thod be violated?

e One Clock
Design doesn’t meet timing

(You have bigger problems)

t
* Two Clocks: phase offset .,
May or may not cause violations _ I
. . - <> >
* Two Clocks: different frequencies K
Will almost always cause violations L «3 5o
Thought Q: Exceptions to this? _

Metastability 3

e Resolution must occur within t:

tr= tp — Tak>a-Tal - Tsu

* Good news:
chance to leave metastability increases exponentially with time

\4

e Bad news:

!

¢

synchronization failure

means... circuit failure Lsetup

s
oo

UCB EECS150 Spring 2010, Honors #5 11

Synchronizers

* First flip-flop absorbs metastability

* Second flip-flop protects downstream logic

Clock Domain A | Clock Domain B

——— Output

Clock A

|

|
Input — : .

|

|

Clock B

tr= tp — Tak>a- Tsu

Synchronizers

* How can we do better? Increase tr

Clock Domain A

|
|
| |
|
| bt >
- — +) |
Input ——» : : ——— Output
I I
I I
Clock A : : 2+ Stage Shift Register :
Clock B
1 2 3

tr = NX(tp — Tck>a- tsu)

Synchronizers

* Another “reliable synchronizer”

Clock Domain A Clock Domain B

|
|
|
|
A I) 3
|
|
|

Input —> i |
| :
Clock A | |
________ | |
|
| Clock :
Clock B : Divider !
| (byN) |
o]
1 2 3

tr= Nti — Tak=>a- tsu

Synchronizers

* Synchronizer cost...
— Area (but not much)
— Cycle Delay

* Where does this matter? Handshaking

e Case Study:
Asynchronous FIFOs

Asynchronous Pipelines 1

* Recall... the FIFO interface that we call Ready/Valid

S N __vald | __ | ____ S
Ly < B ey < IR m—— s R m—— o SR e
— —> — @ —
€« — e e

Ready
* This worked in a single clock domain
° Why? Clock |
Transfers @ edge, both parties Valid

see change at the same time Ié K
Ready N

<“ltr<—I1+—><«1><«0+>

Asynchronous Pipelines

 What happens in two clock domains?

Valid
e —— T
Data >
(e—————————— 2
Ready
Clock A Clock B

* First: we must avoid metastability. Ideas?

Asynchronous Pipelines

3

e Step #1: Add synchronizers (prevents metastability)

Valid
>

—>

BN

Clock A Clock B

—

4_

Clock A

UCB EECS150 Spring 2010, Honors #5

Clock A Clock B

< Ready

>

Clock B

18

Asynchronous Pipelines 4

e Step #1: Add synchronizers (prevents metastability)
e Step #2: Add a hold register (does this help here?)

Aside: Why not push data through parallel synchronizers?

N valid — — vl

This still doesn’t work!

ck A ClockB

UCB EECS150 Spring 2010, Honors #5 19

Asynchronous Pipelines

* Problem:

— |t takes multiple cycles for a message
from the receiver to reach the sender

* Why do we care? clock
— What happens when

) -) o Valid $.
the recelver says “stop: & We 9
Synchronizer dela

(i.e. DatalnReady = 0) Ready | Synchronizer delz

e Solution

— Add buffering to the receiver
— Add “almost full” like in lecture

Asynchronous Pipelines

* “Almost full” gives sender time to stop

Valid
> > ——>

Clock A Clock B
> >

< Ready R

Clock A Clock B

 Same idea as what you saw in lecture
* What is the receiver starting to look a lot like?

Data
|
Data
|
Data
|
Data

Data
v

«— <«

Clock A Clock B

Homework

 Thought problem
— Based on what you have seen in lecture & today:
Draw a block diagram for a synchronous FIFO
— (More) reading will be posted

Acknowledgements & Contributors

Slides developed by Chris Fletcher (2/2010).

This work is based on ideas and discussions with:
llia Lebedev, Greg Gibeling, John Wawrzynek, Krste Asanovic,
and other fellow Spring 2009 CS294-48 students

This work has been used by the following courses:
— UC Berkeley CS150 (Spring 2010): Components and Design Techniques for Digital Systems

